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Preface
In this Eighth Edition we again present a text in support of a first course
in control and have retained the best features of our earlier editions. For
this edition, we have responded to a survey of users by adding some
new material (for example, drone dynamics and control) and deleted
other little-used material from the book. We have also updated the text
throughout so that it uses the improved features of MATLAB�. Drones
have been discussed extensively in the controls literature as well as the
common press. They are being used in mining, construction, aerial pho-
tography, search and rescue, movie industry, package delivery, mapping,
surveying, farming, animal research, hurricane hunting, and defense.
Since feedback control is a necessary component of all the drones, we
develop the equations of motion in Chapter 2, and follow that with con-
trol design examples in the chapters 5, 6, 7, and 10. They have great
potential for many tasks and could speed up and lessen the cost of these
activities. The figure below symbolizes the widespread interest in this
exciting new field.

Source: Edward Koren/ The New Yorker c© Conde Nast 15
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16 Preface

The basic structure of the book is unchanged and we continue to
combine analysis with design using the three approaches of the root
locus, frequency response, and state-variable equations. The text con-
tinues to include many carefully worked out examples to illustrate the
material. As before, we provide a set of review questions at the end of
each chapter with answers in the back of the book to assist the students
in verifying that they have learned the material.

In the three central chapters on design methods we continue to
expect the students to learn how to perform the very basic calculations
by hand and make a rough sketch of a root locus or Bode plot as a
sanity check on the computer results and as an aid to design. However,
we introduce the use of Matlab early on in recognition of the univer-
sal use of software tools in control analysis and design. As before, we
have prepared a collection of all the Matlab files (both “m”files and
SIMULINK� “slx” files) used to produce the figures in the book. These
are available along with the advanced material described above at our
website at www.pearsonglobaleditions.com.

New to this Edition
We feel that this Eighth Edition presents the material with good ped-
agogical support, provides strong motivation for the study of control,
and represents a solid foundation for meeting the educational chal-
lenges. We introduce the study of feedback control, both as a specialty
of itself and as support for many other fields.

A more detailed list of the changes is:

• Deleted the disk drive and tape drive examples from Chapters 2, 7,
and 10

• Added drone examples and/or problems in Chapters 2, 5, 6, 7,
and 10

• Added a thermal system control example to Chapters 2 and 4
• Added a section on anti-windup for integral control in Chapter 9
• Added Cramer’s Rule to chapter 2 and Appendix WB
• Updated Matlab commands throughout the book and in

Appendix C
• Updated the section on PID tuning in chapter 4
• Updated the engine control and chemotaxis case studies in

Chapter 10
• Over 60 of the problems in this edition are either new or revised

from the 7th edition

Addressing the Educational Challenges
Some of the educational challenges facing students of feedback con-
trol are long-standing; others have emerged in recent years. Some of the
challenges remain for students across their entire engineering education;
others are unique to this relatively sophisticated course. Whether they

www.pearsonglobaleditions.com
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are old or new, general or particular, the educational challenges we per-
ceived were critical to the evolution of this text. Here, we will state
several educational challenges and describe our approaches to each of
them.

• CHALLENGE Students must master design as well as analysis
techniques.

Design is central to all of engineering and especially so to con-
trol systems. Students find that design issues, with their corresponding
opportunities to tackle practical applications, are particularly motivat-
ing. But students also find design problems difficult because design
problem statements are usually poorly posed and lack unique solutions.
Because of both its inherent importance and its motivational effect on
students, design is emphasized throughout this text so confidence in
solving design problems is developed from the start.

The emphasis on design begins in Chapter 4 following the develop-
ment of modeling and dynamic response. The basic idea of feedback is
introduced first, showing its influence on disturbance rejection, tracking
accuracy, and robustness to parameter changes. The design orienta-
tion continues with uniform treatments of the root locus, frequency
response, and state variable feedback techniques. All the treatments are
aimed at providing the knowledge necessary to find a good feedback
control design with no more complex mathematical development than
is essential to clear understanding.

Throughout the text, examples are used to compare and contrast
the design techniques afforded by the different design methods and,
in the capstone case studies of Chapter 10, complex real-world design
problems are attacked using all the methods in a unified way.

• CHALLENGE New ideas continue to be introduced into control.

Control is an active field of research and hence there is a steady
influx of new concepts, ideas, and techniques. In time, some of these
elements develop to the point where they join the list of things every
control engineer must know. This text is devoted to supporting students
equally in their need to grasp both traditional and more modern topics.

In each of our editions, we have tried to give equal importance to
root locus, frequency response, and state-variable methods for design.
In this edition, we continue to emphasize solid mastery of the under-
lying techniques, coupled with computer-based methods for detailed
calculation. We also provide an early introduction to data sampling and
discrete controllers in recognition of the major role played by digital
controllers in our field. While this material can be skipped to save time
without harm to the flow of the text, we feel that it is very important for
students to understand that computer control is widely used and that
the most basic techniques of computer control are easily mastered.
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• CHALLENGE Students need to manage a great deal of infor-
mation.

The vast array of systems to which feedback control is applied and
the growing variety of techniques available for the solution of control
problems means that today’s student of feedback control must learn
many new ideas. How do students keep their perspective as they plow
through lengthy and complex textual passages? How do they identify
highlights and draw appropriate conclusions? How do they review for
exams? Helping students with these tasks was a criterion for the Fourth,
Fifth, Sixth, and Seventh Editions and continues to be addressed in this
Eighth Edition. We outline these features below.

FEATURE

1. Chapter openers offer perspective and overview. They place the spe-
cific chapter topic in the context of the discipline as a whole, and
they briefly overview the chapter sections.

2. Margin notes help students scan for chapter highlights. They point
to important definitions, equations, and concepts.

3. Shaded highlights identify key concepts within the running text.
They also function to summarize important design procedures.

4. Bulleted chapter summaries help with student review and priori-
tization. These summaries briefly reiterate the key concepts and
conclusions of the chapter.

5. Synopsis of design aids. Relationships used in design and through-
out the book are collected inside the back cover for easy reference.

6. The color blue is used (1) to highlight useful pedagogical features,
(2) to highlight components under particular scrutiny within block
diagrams, (3) to distinguish curves on graphs, and (4) to lend a more
realistic look to figures of physical systems.

7. Review questions at the end of each chapter with solutions in the
back to guide the student in self-study

8. Historical perspectives at the end of each chapter provide some
background and color on how or why the material in that particular
chapter evolved.

• CHALLENGE Students of feedback control come from a wide
range of disciplines.

Feedback control is an interdisciplinary field in that control is
applied to systems in every conceivable area of engineering. Conse-
quently, some schools have separate introductory courses for control
within the standard disciplines and some, such as Stanford, have a sin-
gle set of courses taken by students from many disciplines. However, to
restrict the examples to one field is to miss much of the range and power
of feedback but to cover the whole range of applications is overwhelm-
ing. In this book, we develop the interdisciplinary nature of the field and
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provide review material for several of the most common technologies so
that students from many disciplines will be comfortable with the presen-
tation. For Electrical Engineering students who typically have a good
background in transform analysis, we include in Chapter 2 an introduc-
tion to writing equations of motion for mechanical mechanisms. For
mechanical engineers, we include in Chapter 3 a review of the Laplace
transform and dynamic response as needed in control. In addition, we
introduce other technologies briefly and, from time to time, we present
the equations of motion of a physical system without derivation but
with enough physical description to be understood from a response
point of view. Examples of some of the physical systems represented
in the text include a quadrotor drone, a satellite tracking system, the
fuel–air ratio in an automobile engine, and an airplane automatic pilot
system.

Outline of the Book
The contents of the printed book are organized into ten chapters and
three appendices. Optional sections of advanced or enrichment material
marked with a triangle (�) are included at the end of some chap-
ters. Examples and problems based on this material are also marked
with a triangle (�). There are also four full appendices on the web-
site plus numerous appendices that supplement the material in most
of the chapters. The appendices in the printed book include Laplace
transform tables, answers to the end-of-chapter review questions, and
a list of Matlab commands. The appendices on the website include a
review of complex variables, a review of matrix theory, some important
results related to state-space design, and optional material supporting
or extending several of the chapters.

In Chapter 1, the essential ideas of feedback and some of the key
design issues are introduced. This chapter also contains a brief history
of control, from the ancient beginnings of process control to flight con-
trol and electronic feedback amplifiers. It is hoped that this brief history
will give a context for the field, introduce some of the key people who
contributed to its development, and provide motivation to the student
for the studies to come.

Chapter 2 is a short presentation of dynamic modeling and includes
mechanical, electrical, electromechanical, fluid, and thermodynamic
devices. This material can be omitted, used as the basis of review home-
work to smooth out the usual nonuniform preparation of students, or
covered in-depth depending on the needs of the students.

Chapter 3 covers dynamic response as used in control. Again, much
of this material may have been covered previously, especially by electri-
cal engineering students. For many students, the correlation between
pole locations and transient response and the effects of extra zeros and
poles on dynamic response represent new material. Stability of dynamic
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systems is also introduced in this chapter. This material needs to be
covered carefully.

Chapter 4 presents the basic equations and transfer functions of
feedback along with the definitions of the sensitivity function. With
these tools, open-loop and closed-loop control are compared with
respect to disturbance rejection, tracking accuracy, and sensitivity
to model errors. Classification of systems according to their ability
to track polynomial reference signals or to reject polynomial distur-
bances is described with the concept of system type. Finally, the
classical proportional, integral, and derivative (PID) control struc-
ture is introduced and the influence of the controller parameters on
a system’s characteristic equation is explored along with PID tuning
methods.

Following the overview of feedback in Chapter 4, the core of
the book presents the design methods based on root locus, frequency
response, and state-variable feedback in Chapters 5, 6, and 7, respec-
tively.

Chapter 8 develops the tools needed to design feedback control
for implementation in a digital computer. However, for a complete
treatment of feedback control using digital computers, the reader is
referred to the companion text, Digital Control of Dynamic Systems,
by Franklin, Powell, and Workman; Ellis-Kagle Press, 1998.

In Chapter 9, the nonlinear material includes techniques for the lin-
earization of equations of motion, analysis of zero memory nonlinearity
as a variable gain, frequency response as a describing function, the
phase plane, Lyapunov stability theory, and the circle stability criterion.

In Chapter 10, the three primary approaches are integrated in sev-
eral case studies, and a framework for design is described that includes
a touch of the real-world context of practical control design.

Course Configurations
The material in this text can be covered flexibly. Most first-course stu-
dents in controls will have some dynamics and Laplace transforms.
Therefore, Chapter 2 and most of Chapter 3 would be a review for
those students. In a ten-week quarter, it is possible to review Chap-
ter 3, and cover all of Chapters 1, 4, 5, and 6. Most optional sections
should be omitted. In the second quarter, Chapters 7 and 9 can be cov-
ered comfortably including the optional sections. Alternatively, some
optional sections could be omitted and selected portions of Chapter 8
included. A semester course should comfortably accommodate Chap-
ters 1–7, including the review materials of Chapters 2 and 3, if needed.
If time remains after this core coverage, some introduction of digital
control from Chapter 8, selected nonlinear issues from Chapter 9, and
some of the case studies from Chapter 10 may be added.

The entire book can also be used for a three-quarter sequence
of courses consisting of modeling and dynamic response (Chapters 2
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and 3), classical control (Chapters 4–6), and modern control (Chapters
7–10).

Two basic 10-week courses are offered at Stanford and are taken
by seniors and first-year graduate students who have not had a course
in control, mostly in the departments of Aeronautics and Astronautics,
Mechanical Engineering, and Electrical Engineering. The first course
reviews Chapters 2 and 3 and covers Chapters 4–6. The more advanced
course is intended for graduate students and reviews Chapters 4–6 and
covers Chapters 7–10. This sequence complements a graduate course
in linear systems and is the prerequisite to courses in digital control,
nonlinear control, optimal control, flight control, and smart product
design. Some of the subsequent courses include extensive laboratory
experiments. Prerequisites for the course sequence include dynamics or
circuit analysis and Laplace transforms.

Prerequisites to This Feedback Control Course
This book is for a first course at the senior level for all engineering
majors. For the core topics in Chapters 4–7, prerequisite understand-
ing of modeling and dynamic response is necessary. Many students will
come into the course with sufficient background in those concepts from
previous courses in physics, circuits, and dynamic response. For those
needing review, Chapters 2 and 3 should fill in the gaps.

An elementary understanding of matrix algebra is necessary to
understand the state-space material. While all students will have much
of this in prerequisite math courses, a review of the basic relations is
given in online Appendix WB and a brief treatment of particular mate-
rial needed in control is given at the start of Chapter 7. The emphasis is
on the relations between linear dynamic systems and linear algebra.

Supplements
The website www.pearsonglobaleditions.com includes the dot-m and dot-
slx files used to generate all the Matlab figures in the book, and these
may be copied and distributed to the students as desired. The websites
also contain some more advanced material and appendices which are
outlined in the Table of Contents. A Solutions Manual with complete
solutions to all homework problems is available to instructors only.

Acknowledgments
Finally, we wish to acknowledge our great debt to all those who have
contributed to the development of feedback control into the exciting
field it is today and specifically to the considerable help and education
we have received from our students and our colleagues. In particular,
we have benefited in this effort by many discussions with the following

www.pearsonglobaleditions.com


main_1 — 2019/2/5 — 17:55 — page 22 — #22

22 Preface

who taught introductory control at Stanford: A. E. Bryson, Jr., R. H.
Cannon, Jr., D. B. DeBra, S. Rock, S. Boyd, C. Tomlin, P. Enge, A. Oka-
mura, and C. Gerdes. Other colleagues who have helped us include D.
Fraser, N. C. Emami, B. Silver, M. Dorfman, K. Rudie, L. Pao, F. Khor-
rami, K. Lorell, M. Tischler, D. de Roover, R. Patrick, M. Berrios, J. K.
Lee, J. L. Ebert, I. Kroo, K. Leung, and M. Schwager. Special thanks
go to the many students who have provided almost all the solutions to
the problems in the book.

We especially want to express our great appreciation for the con-
tributions to the book by Gene Franklin. Gene was a mentor, teacher,
advisor, and good friend to us both. We had many meetings as we col-
laborated on earlier editions of the book over the last 28 years of his
life, and every single one of those meetings has been friendly and enjoy-
able as we meshed our views on how to present the material. We learned
control along with humor from Gene in grad school classes, and we
benefitted from his mentoring: in one case as a new assistant profes-
sor, and in the other as a Ph.D. advisee. Collectively, we collaborated
on research, created new courses and laboratories, and written two text-
books over a period of 40 years. Gene always had a smile with a twinkle
in his eye, and was a pleasure to work with; he was a true gentleman.

J.D.P.
A.E.-N.

Stanford, California

Acknowledgments for the Global Edition
Pearson would like to thank and acknowledge Benjamin Chong,
University of Leeds, Mehmet Canevi, Istanbul Technical University,
and Turan Söylemez, Istanbul Technical University, for contributing
to the Global Edition, and Murat Dogruel, Marmara University, Ivo
Grondman, Quang Ha, University of Technology Sydney, Philippe
Mullhaupt, Ecole Polytechnique Fédérale de Lausanne, and Rahul
Sharma, The University of Queensland for reviewing the Global Edi-
tion. We would also like to thank Benjamin Chong, Li Li, University
of Technology Sydney, Rahul Sharma, Turan Söylemez, and Mark
Vanpaemel, Universiteit Antwerpen, for their valuable feedback on the
Global Edition.



main_1 — 2019/2/5 — 10:37 — page 23 — #1

1
An Overview and Brief
History of Feedback Control

A Perspective on Feedback Control
Feedback control of dynamic systems is a very old concept with many
characteristics that have evolved over time. The central idea is that
a dynamic system’s output can be measured and fed back to a con-
troller of some kind then used to affect the system. There are several
variations on this theme.

A system that involves a person controlling a machine, as in driv-
ing an automobile, is called manual control. A system that involves
machines only, as when room temperature can be set by a ther-
mostat, is called automatic control. Systems designed to hold an
output steady against unknown disturbances are called regulators,
while systems designed to track a reference signal are called track-
ing or servo systems. Control systems are also classified according to
the information used to compute the controlling action. If the con-
troller does not use a measure of the system output being controlled
in computing the control action to take, the system is called open-
loop control. If the controlled output signal ismeasured and fed back
for use in the control computation, the system is called closed-loop
or feedback control. There are many other important properties of
control systems in addition to these most basic characteristics. For
example, we will mainly consider feedback of current measurements

23
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as opposed to predictions of the future; however, a very familiar
example illustrates the limitation imposed by that assumption. When
driving a car, the use of simple feedback corresponds to driving in
a thick fog where one can only see the road immediately at the front
of the car and is unable to see the future required position! Looking
at the road ahead is a form of predictive control and this informa-
tion, which has obvious advantages, would always be used where it is
available. In most automatic control situations studied in this book,
observation of the future track or disturbance is not possible. In any
case, the control designer should study the process to see if any infor-
mation could anticipate either a track to be followed or a disturbance
to be rejected. If such a possibility is feasible, the control designer
should use it to feedforward an early warning to the control sys-
tem. An example of this is in the control of steam pressure in the
boiler of an electric power generation plant. The electricity demand
cycle over a day is well known; therefore, when it is known that there
will soon be an increased need for electrical power, that informa-
tion can be fed forward to the boiler controller in anticipation of a
soon-to-be-demanded increase in steam flow.

The applications of feedback control have never been more excit-
ing than they are today. Feedback control is an essential element in
aircraft of all types: most manned aircraft, and all unmanned aircraft
from large military aircraft to small drones. The FAA has predicted
that the number of drones registered in the U.S. will reach 7 million
by 2020! Automatic landing and collision avoidance systems in airlin-
ers are now being used routinely, and the use of satellite navigation
in future designs promises a revolution in our ability to navigate air-
craft in an ever more crowded airspace. The use of feedback control in
driverless cars is an essential element to their success. They are now
under extensive development, and predictions have been made that
driverless cars will ultimately reduce the number of cars on the road
by a very large percentage. The use of feedback control in surgical
robotic systems is also emerging. Control is essential to the operation
of systems from cell phones to jumbo jets and from washing machines
to oil refineries as large as a small city. The list goes on and on. In fact,
many engineers refer to control as a hidden technology because of
its essential importance to so many devices and systems while being
mainly out of sight. The future will no doubt see engineers create even
more imaginative applications of feedback control.

Chapter Overview
In this chapter, we begin our exploration of feedback control using
a simple familiar example: a household furnace controlled by a
thermostat. The generic components of a control system are iden-
tified within the context of this example. In another example
in Section 1.2—an automobile cruise control—we will develop the
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elementary static equations and assign numerical values to ele-
ments of the system model in order to compare the performance
of open-loop control to that of feedback control when dynamics are
ignored. Section 1.3 then introduces the key elements in control sys-
tem design. In order to provide a context for our studies, and to give
you a glimpse of how the field has evolved, Section 1.4 provides a
brief history of control theory and design. In addition, later chapters
have brief sections of additional historical notes on the topics covered
there. Finally, Section 1.5 provides a brief overview of the contents
and organization of the entire book.

1.1 A Simple Feedback System
In feedback systems, the variable being controlled—such as temperature
or speed—is measured by a sensor and the measured information is fed
back to the controller to influence the controlled variable. The principle
is readily illustrated by a very common system, the household furnace
controlled by a thermostat. The components of this system and their
interconnections are shown in Fig. 1.1. Such an illustration identifies
the major parts of the system and shows the directions of information
flow from one component to another.

We can easily analyze the operation of this system qualitatively
from the graph. Suppose both the temperature in the room where
the thermostat is located and the outside temperature are significantly
below the reference temperature (also called the setpoint) when power
is applied. The thermostat will be on and the control logic will open the
furnace gas valve and light the fire box. This will cause heat Qin to be
supplied to the house at a rate that will be significantly larger than the
heat loss Qout. As a result, the room temperature will rise until it exceeds
the thermostat reference setting by a small amount. At this time, the fur-
nace will be turned off and the room temperature will start to fall toward
the outside value. When it falls a small amount below the setpoint,1 the
thermostat will come on again and the cycle will repeat. Typical plots of
room temperature along with the furnace cycles of on and off are shown
in Fig. 1.1. The outside temperature remains at 50◦F and the thermostat
is initially set at 55◦F. At 6 a.m., the thermostat is stepped to 65◦F and
the furnace brings it to that level and cycles the temperature around that
value thereafter. Notice the house is well insulated, so the fall of temper-
ature with the furnace off is significantly slower than the rise with the
furnace on. From this example, we can identify the generic components
of the elementary feedback control system, as shown in Fig. 1.2.

The central component of this feedback system is the process whose
output is to be controlled. In our example the process would be the
house whose output is the room temperature and the disturbance to

1The setpoint, reference, and desired input are all the same thing and shown in Figs. 1.1–
1.3.
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Figure 1.1
Feedback control: (a) component block diagram of a room temperature control system; (b) plot of room
temperature and furnace action

the process is the flow of heat from the house, Qout, due to conduc-
tion through the walls and roof to the lower outside temperature. (The
outward flow of heat also depends on other factors such as wind, open
doors, and so on.) The design of the process can obviously have a
major impact on the effectiveness of the controls. The temperature of
a well-insulated house with thermopane windows is clearly easier to
control than otherwise. Similarly, the design of aircraft with control in
mind makes a world of difference to the final performance. In every
case, the earlier the concepts of control are introduced into the pro-
cess design, the better. The actuator is the device that can influence
the controlled variable of the process. In our case, the actuator is a
gas furnace. Actually, the furnace usually has a pilot light or striking
mechanism, a gas valve, and a blower fan, which turns on or off depend-
ing on the air temperature in the furnace. These details illustrate the
fact that many feedback systems contain components that themselves
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Figure 1.2
Component block diagram of an elementary feedback control

form other feedback systems.2 The central issue with the actuator is
its ability to move the process output with adequate speed and range.
The furnace must produce more heat than the house loses on the worst
day, and must distribute it quickly if the house temperature is to be
kept in a narrow range. Power, speed, and reliability are usually more
important than accuracy. Generally, the process and the actuator are
intimately connected and the control design centers on finding a suit-
able input or control signal to send to the actuator. The combination of
process and actuator is called the plant, and the component that actu-
ally computes the desired control signal is the controller. Because of the
flexibility of electrical signal processing, the controller typically works
on electrical signals, although the use of pneumatic controllers based
on compressed air has a long and important place in process control.
With the development of digital technology, cost-effectiveness and flex-
ibility have led to the use of digital signal processors as the controller
in an increasing number of cases. The component labeled thermostat
in Fig. 1.1 measures the room temperature and is called the sensor in
Fig. 1.2, a device whose output inevitably contains sensor noise. Sensor
selection and placement are very important in control design, for it is
sometimes not possible for the true controlled variable and the sensed
variable to be the same. For example, although we may really wish to
control the house temperature as a whole, the thermostat is in one par-
ticular room, which may or may not be at the same temperature as the
rest of the house. For instance, if the thermostat is set to 68◦F but is
placed in the living room near a roaring fireplace, a person working in

2Jonathan Swift (1733) said it this way: “So, Naturalists observe, a flea Hath smaller fleas
that on him prey; And these have smaller still to bite ‘em; And so proceed, ad infinitum.”
Swift, J., On Poetry: A Rhapsody, 1733, J. Bartlett, ed., Familiar Quotations, 15th ed.,
Boston: Little Brown, 1980.
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the study could still feel uncomfortably cold.3,4 As we will see, in addi-
tion to placement, important properties of a sensor are the accuracy
of the measurements as well as low noise, reliability, and linearity. The
sensor will typically convert the physical variable into an electrical sig-
nal for use by the controller. Our general system also includes an input
filter whose role is to convert the reference signal to electrical form for
later manipulation by the controller. In some cases, the input filter can
modify the reference command input in ways that improve the system
response. Finally, there is a controller to compute the difference between
the reference signal and the sensor output to give the controller a mea-
sure of the system error. The thermostat on the wall includes the sensor,
input filter, and the controller. A few decades ago, the user simply set
the thermostat manually to achieve the desired room temperature at the
thermostat location. Over the last few decades, the addition of a small
computer in the thermostat has enabled storing the desired temperature
over the day and week and more recently, thermostats have gained the
ability to learn what the desired temperature should be and to base that
value, in part, on whether anybody will be home soon! A thermostat
system that includes a motion detector can determine whether anybody
is home and learns from the patterns observed what the desired tem-
perature profile should be. The process of learning the desired setpoint
is an example of artificial intelligence (AI) or machine learning, which
is gaining acceptance in many fields as the power and affordability of
computers improve. The combination of feedback control, AI, sensor
fusion, and logic to tie it all together will become an essential feature in
many future devices such as drones, driverless cars, and many others.

This text will present methods for analyzing feedback control sys-
tems and will describe the most important design techniques engineers
can use in applying feedback to solve control problems. We will also
study the specific advantages of feedback that compensate for the
additional complexity it demands.

1.2 A First Analysis of Feedback
The value of feedback can be readily demonstrated by quantitative anal-
ysis of a simplified model of a familiar system, the cruise control of
an automobile (see Fig. 1.3). To study this situation analytically, we

3In the renovations of the kitchen in the house of one of the authors, the new ovens were
placed against the wall where the thermostat was mounted on the other side. Now when
dinner is baked in the kitchen on a cold day, the author freezes in his study unless the
thermostat is reset.
4The story is told of the new employee at the nitroglycerin factory who was to control
the temperature of a critical part of the process manually. He was told to “keep that
reading below 300◦.” On a routine inspection tour, the supervisor realized that the batch
was dangerously hot and found the worker holding the thermometer under cold water
tap to bring it down to 300◦. They got out just before the explosion. Moral: sometimes
automatic control is better than manual.
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Figure 1.3
Component block
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need a mathematical model of our system in the form of a set of quan-
titative relationships among the variables. For this example, we ignore
the dynamic response of the car and consider only the steady behavior.
(Dynamics will, of course, play a major role in later chapters.) Further-
more, we assume that for the range of speeds to be used by the system,
we can approximate the relations as linear. After measuring the speed
of the vehicle on a level road at 65 mph, we find that a 1◦ change in
the throttle angle (our control variable, u) causes a 10 mph change in
speed (the output variable, y), hence the value 10 in the box between
u and y in Fig. 1.4, which is a block diagram of the plant. Generally,
the block diagram shows the mathematical relationships of a system in
graphical form. From observations while driving up and down hills, it is
found that when the grade changes by 1%, we measure a speed change
of 5 mph, hence the value 0.5 in the upper box in Fig. 1.4, which reflects
that a 1% grade change has half the effect of a 1◦ change in the throttle
angle. The speedometer is found to be accurate to a fraction of 1 mph
and will be considered exact. In the block diagram, the connecting lines
carry signals and a block is like an ideal amplifier which multiplies the
signal at its input by the value marked in the block to give the output
signal. To sum two or more signals, we show lines for the signals coming
into a summer, a circle with the summation sign � inside. An algebraic
sign (plus or minus) beside each arrow head indicates whether the input
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Figure 1.5
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adds to or subtracts from the total output of the summer. For this anal-
ysis, we wish to compare the effects of a 1% grade on the output speed
when the reference speed is set for 65 with and without feedback to the
controller.

In the first case, shown in Fig. 1.5, the controller does not use the
speedometer reading but sets u = r/10, where r is the reference speed,
which is, 65 mph. This is an example of an open-loop control system.Open-loop control
The term open-loop refers to the fact that there is no closed path or
loop around which the signals go in the block diagram; that is, the con-
trol variable u is independent of the output variable, y. In our simple
example, the open-loop output speed, yol , is given by the equations

yol = 10(u− 0.5w)

= 10
( r

10
− 0.5w

)

= r− 5w.
The error in output speed is

eol = r− yol (1.1)

= 5w, (1.2)
and the percent error is

% error = 500
w
r

. (1.3)

If r = 65 and the road is level, then w = 0 and the speed will be 65
with no error. However, if w = 1 corresponding to a 1% grade, then the
speed will be 60 and we have a 5-mph error, which is a 7.69% error in the
speed. For a grade of 2%, the speed error would be 10 mph, which is an
error of 15.38%, and so on. The example shows that there would be no
error when w = 0, but this result depends on the controller gain being
the exact inverse of the plant gain of 10. In practice, the plant gain is
subject to change and if it does, errors are introduced by this means also.
If there is an error in the plant gain in open-loop control, the percent
speed error would be the same as the percent plant-gain error.

The block diagram of a feedback scheme is shown in Fig. 1.6, where
the controller gain has been set to 10. In this simple example, we have
assumed that we have an ideal sensor providing a measurement of ycl .
In this case, the equations are
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Figure 1.6
Closed-loop cruise
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ycl = 10u− 5w,

u = 10(r− ycl).

Combining them yields

ycl = 100r− 100ycl − 5w,

101ycl = 100r− 5w,

ycl = 100
101

r− 5
101

w,

ecl = r
101
+ 5w

101
.

Thus, the feedback has reduced the sensitivity of the speed error to the
grade by a factor of 101 when compared with the open-loop system.
Note, however, that there is now a small speed error on level ground
because even when w = 0,

ycl = 100
101

r = 0.99r mph.

This error will be small as long as the loop gain (product of plant and
controller gains) is large.5 If we again consider a reference speed of 65
mph and compare speeds with a 1% grade, the percent error in the
output speed is

% error = 100

65× 100
101

−
(

65× 100
101

− 5
101

)

65× 100
101

(1.4)

= 100
5× 101

101× 65× 100
(1.5)

= 0.0769%. (1.6)

5In case the error is too large, it is common practice to reset the reference, in this case to
101
100 r, so the output reaches the true desired value.
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The reduction of the speed sensitivity to grade disturbances and
plant gain in our example is due to the loop gain of 100 in the feed-
back case. Unfortunately, there are limits to how high this gain can
be made; when dynamics are introduced, the feedback can make the
response worse than before, or even cause the system to become unsta-The design

trade-off ble. The dilemma is illustrated by another familiar situation where it
is easy to change a feedback gain. If one tries to raise the gain of a
public-address amplifier too much, the sound system will squeal in a
most unpleasant way. This is a situation where the gain in the feedback
loop—from the speakers to the microphone through the amplifier back
to the speakers—is too much. The issue of how to get the gain as large as
possible to reduce the errors without making the system become unsta-
ble is called the design trade-off and is what much of feedback control
design is all about.

1.3 Feedback System Fundamentals
To achieve good control there are typical goals:

• Stability. The system must be stable at all times. This is an absolute
requirement.

• Tracking. The system output must track the command reference
signal as closely as possible.

• Disturbance rejection. The system output must be as insensitive as
possible to disturbance inputs.

• Robustness. The aforementioned goals must be met even if the
model used in the design is not completely accurate or if the
dynamics of the physical system change over time.

The requirement of stability is basic and instability may have two
causes. In the first place, the system being controlled may be unstable.
This is illustrated by the Segway vehicle, which will simply fall over if the
control is turned off. A second cause of instability may be the addition
of feedback! Such an instability is called a “vicious circle,” where the
feedback signal that is circled back makes the situation worse rather
than better. Stability will be discussed in much more detail in Chapters 3
and 4.

There are many examples of the requirement of having the system’s
output track a command signal. For example, driving a car so the vehi-
cle stays in its lane is command tracking. Today, this is done by the
driver; however, there are schemes now under development where the
car’s “autodriver” will carry out this task using feedback control while
the driver does other things, for example, surfing the Internet. Simi-
larly, flying an airplane on the approach to landing requires that a glide
path be accurately tracked by the pilot or an autopilot. It is routine for
today’s aircraft autopilots to carry this out including the flare to the
actual touchdown. The autopilot accepts inputs from the Instrument
Landing System (ILS) that provides an electronic signal showing the
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desired landing trajectory, then commands the aircraft control surfaces
so it follows the desired trajectory as closely as possible.

Disturbance rejection is one of the very oldest applications of feed-
back control. In this case, the “command” is simply a constant setpoint
to which the output is to be held as the environment changes. A very
common example of this is the room thermostat whose job it is to hold
the room temperature close to the setpoint as outside temperature and
wind change, and as doors and windows are opened and closed.

Finally, to design a controller for a dynamic system, it is necessary
to have a mathematical model of the dynamic response of the system
being controlled in all but the simplest cases. Unfortunately, almost all
physical systems are very complex and often nonlinear. As a result,
the design will usually be based on a simplified model and must be
robust enough that the system meets its performance requirements when
applied to the real device. Furthermore, as time and the environment
change, even the best of models will be in error because the system
dynamics have changed. Again, the design must not be too sensitive
to these inevitable changes and it must work well enough regardless.

The tools available to control engineers to design and build feed-
back control systems have evolved over time. The development of digital
computers has been especially important both as computation aids and
as embedded control devices. As computation devices, computers have
permitted identification of increasingly complex models and the appli-
cation of very sophisticated control design methods. Also, as embedded
devices, digital controllers have permitted the implementation of very
complex control laws. Control engineers must not only be skilled in
using these design tools, but also need to understand the concepts
behind these tools to be able to make the best use of them. Also impor-
tant is that the control engineer understands both the capabilities and
the limitations of the controller devices available.

1.4 A Brief History
Interesting histories of early work on feedback control have been writ-
ten by Mayr (1970) and Åström (2014), who trace the control of
mechanisms to antiquity. Two of the earliest examples are the control
of flow rate to regulate a water clock and the control of liquid level in
a wine vessel, which is thereby kept full regardless of how many cups
are dipped from it. The control of fluid flow rate is reduced to the con-
trol of fluid level, since a small orifice will produce constant flow if the
pressure is constant, which is the case if the level of the liquid above the
orifice is constant. The mechanism of the liquid-level control invented
in antiquity and still used today (for example, in the water tank of the
ordinary flush toilet) is the float valve. As the liquid level falls, so doesLiquid-level control
the float, allowing the flow into the tank to increase; as the level rises,
the flow is reduced and if necessary cut off. Figure 1.7 shows how a float
valve operates. Notice here the sensor and actuator are not separate
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Figure 1.7
Early historical control
of liquid level and flow

Supply

Float

devices but are contained in the carefully shaped float-and-supply-tube
combination.

A more recent invention described by Mayr (1970) is a system,
designed by Cornelis Drebbel in about 1620, to control the tempera-Drebbel’s incubator
ture of a furnace used to heat an incubator6 (see Fig. 1.8). The furnace
consists of a box to contain the fire, with a flue at the top fitted with
a damper. Inside the fire box is the double-walled incubator box, the
hollow walls of which are filled with water to transfer the heat evenly to
the incubator. The temperature sensor is a glass vessel filled with alco-
hol and mercury and placed in the water jacket around the incubator
box. As the fire heats the box and water, the alcohol expands and the
riser floats up, lowering the damper on the flue. If the box is too cold,
the alcohol contracts, the damper is opened, and the fire burns hotter.

Figure 1.8
Drebbel’s incubator for
hatching chicken eggs

Water

Flue

gases

Metal plate Fire Alcohol

Mercury

Float

Riser

Damper

Eggs

6French doctors introduced incubators into the care of premature babies over 100 years
ago.
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The desired temperature is set by the length of the riser, which sets the
opening of the damper for a given expansion of the alcohol.

A famous problem in the chronicles of control systems was the
search for a means to control the rotation speed of a shaft. Much early
work (Fuller, 1976) seems to have been motivated by the desire to auto-
matically control the speed of the grinding stone in a wind-driven flour
mill. Of various methods attempted, the one with the most promise used
a conical pendulum, or fly-ball governor, to measure the speed of theFly-ball

governor mill. The sails of the driving windmill were rolled up or let out with
ropes and pulleys, much like a window shade, to maintain fixed speed.
However, it was adaptation of these principles to the steam engine in the
laboratories of James Watt around 1788 that made the fly-ball governor
famous. An early version is shown in Fig. 1.9, while Figs. 1.10 and 1.11
show a close-up of a fly-ball governor and a sketch of its components.

The action of the fly-ball governor (also called a centrifugal gover-
nor) is simple to describe. Suppose the engine is operating in equilib-
rium. Two weighted balls spinning around a central shaft can be seen to
describe a cone of a given angle with the shaft. When a load is suddenly
applied to the engine, its speed will slow, and the balls of the gover-
nor will drop to a smaller cone. Thus the ball angle is used to sense
the output speed. This action, through the levers, will open the main
valve to the steam chest (which is the actuator) and admit more steam
to the engine, restoring most of the lost speed. To hold the steam valve
at a new position, it is necessary for the fly balls to rotate at a differ-
ent angle, implying that the speed under load is not exactly the same
as before. We saw this effect earlier with cruise control, where feedback
control gave a very small error. To recover the exact same speed in the
system, it would require resetting the desired speed setting by changing
the length of the rod from the lever to the valve. Subsequent inventors

Figure 1.9
Photograph of an early
Watt steam engine
Source: Chronicle/Alamy Stock
Photo
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Figure 1.10
Close-up of the fly-ball
governor
Source: Washington
Imaging/Alamy Stock Photo

Figure 1.11
Operating parts of a
fly-ball governor
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introduced mechanisms that integrated the speed error to provide auto-
matic reset. In Chapter 4, we will analyze these systems to show that
such integration can result in feedback systems with zero steady-state
error to constant disturbances.

Because Watt was a practical man, he did not engage in theoret-
ical analysis of the governor, similar to the millwrights earlier. Fuller
(1976) has traced the early development of control theory to a period
of studies from Christiaan Huygens in 1673 to James Clerk MaxwellBeginnings of

control theory in 1868. Fuller gives particular credit to the contributions of G. B. Airy,
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professor of mathematics and astronomy at Cambridge University from
1826 to 1835 and Astronomer Royal at Greenwich Observatory from
1835 to 1881. Airy was concerned with speed control; if his telescopes
could be rotated counter to the rotation of the earth, a fixed star could
be observed for extended periods. Using the centrifugal-pendulum gov-
ernor he discovered that it was capable of unstable motion—“and the
machine (if I may so express myself) became perfectly wild” (Airy, 1840;
quoted in Fuller, 1976). According to Fuller, Airy was the first worker
to discuss instability in a feedback control system and the first to ana-
lyze such a system using differential equations. These attributes signal
the beginnings of the study of feedback control dynamics.

The first systematic study of the stability of feedback control was
apparently given in the paper “On Governors” by Maxwell (1868).7 In
this paper, Maxwell developed the differential equations of the gover-Stability analysis
nor, linearized them about equilibrium, and stated that stability depends
on the roots of a certain (characteristic) equation having negative real
parts. Maxwell attempted to derive conditions on the coefficients of
a polynomial that would hold if all the roots had negative real parts.
He was successful only for second- and third-order cases. Determin-
ing criteria for stability was the problem for the Adams Prize of 1877,
which was won by E. J. Routh.8 His criterion, developed in his essay,
remains of sufficient interest that control engineers are still learning how
to apply his simple technique. Analysis of the characteristic equation
remained the foundation of control theory until the invention of the
electronic feedback amplifier by H. S. Black in 1927 at Bell Telephone
Laboratories.

Shortly after publication of Routh’s work, the Russian mathe-
matician Lyapunov (1892) began studying the question of stability of
motion. His studies were based on the nonlinear differential equa-
tions of motion, and also included results for linear equations that are
equivalent to Routh’s criterion. His work was fundamental to what is
now called the state-variable approach to control theory, but was not
introduced into the control literature until about 1958.

The development of the feedback amplifier is briefly described in an
interesting article based on a talk by Bode (1960) reproduced in BellmanFrequency response
and Kalaba (1964). With the introduction of electronic amplifiers, long-
distance telephoning became possible in the decades following World
War I. However, as distances increased, so did the loss of electrical
energy; in spite of using larger-diameter wires, increasing numbers of
amplifiers were needed to replace the lost energy. Unfortunately, large
numbers of amplifiers resulted in much distortion since the small non-
linearity of the vacuum tubes then used in electronic amplifiers were

7An exposition of Maxwell’s contribution is given in Fuller (1976).
8E. J. Routh was first academically in his class at Cambridge University in 1854, while
J. C. Maxwell was second. In 1877, Maxwell was on the Adams Prize Committee that
chose the problem of stability as the topic for the year.
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multiplied many times. To solve the problem of reducing distortion,
Black proposed the feedback amplifier. As mentioned earlier in con-
nection with the automobile cruise control, the more we wish to reduce
errors (or distortion), the more feedback we need to apply. The loop
gain from actuator to plant to sensor to actuator must be made very
large. With high gain the feedback loop begins to squeal and is unsta-
ble. Here was Maxwell’s and Routh’s stability problem again, except
that in this technology, the dynamics were so complex (with differen-
tial equations of order 50 being common) that Routh’s criterion was
not very helpful. So the communications engineers at Bell Telephone
Laboratories, familiar with the concept of frequency response and the
mathematics of complex variables, turned to complex analysis. In 1932,
H. Nyquist published a paper describing how to determine stability
from a graphical plot of the loop frequency response. From this the-
ory developed an extensive methodology of feedback-amplifier design
described by Bode (1945) and still extensively used in the design of feed-
back controls. Nyquist and Bode plots will be discussed in more detail
in Chapter 6.

Simultaneous with the development of the feedback amplifier, feed-
back control of industrial processes was becoming standard. This field,
characterized by processes that are not only highly complex but also
nonlinear and subject to relatively long time delays between actuator
and sensor, developed the concept of proportional-integral-derivative
(PID) control. The PID controller was first described by Callender et al.PID control
(1936). This technology was based on extensive experimental work and
simple linearized approximations to the system dynamics. It led to stan-
dard experiments suitable to application in the field and eventually to
satisfactory “tuning” of the coefficients of the PID controller. (PID con-
trollers will be covered in Chapter 4.) Also under development at this
time were devices for guiding and controlling aircraft; especially impor-
tant was the development of sensors for measuring aircraft altitude and
speed. An interesting account of this branch of control theory is given
in McRuer (1973).

An enormous impulse was given to the field of feedback control
during World War II. In the United States, engineers and mathemati-
cians at the MIT Radiation Laboratory combined their knowledge
to bring together not only Bode’s feedback amplifier theory and the
PID control of processes, but also the theory of stochastic processes
developed by Wiener (1930). The result was the development of a
comprehensive set of techniques for the design of servomechanisms, as
control mechanisms came to be called. Much of this work was collected
and published in the records of the Radiation Laboratory by James et al.
(1947).

Another approach to control systems design was introduced in 1948
by W. R. Evans, who was working in the field of guidance and con-
trol of aircraft. Many of his problems involved unstable or neutrally
stable dynamics, which made the frequency methods difficult, so he
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suggested returning to the study of the characteristic equation that had
been the basis of the work of Maxwell and Routh nearly 70 years ear-
lier. However, Evans developed techniques and rules allowing one to
follow graphically the paths of the roots of the characteristic equation
as a parameter was changed. His method, the root locus, is suitable forRoot locus
design as well as for stability analysis and remains an important tech-
nique today. The root-locus method developed by Evans will be covered
in Chapter 5.

During the 1950s, several authors, including R. Bellman and
R. E. Kalman in the United States and L. S. Pontryagin in the U.S.S.R.,State-variable design
began again to consider the ordinary differential equation (ODE) as a
model for control systems. Much of this work was stimulated by the new
field of control of artificial earth satellites, in which the ODE is a nat-
ural form for writing the model. Supporting this endeavor were digital
computers, which could be used to carry out calculations unthinkable
10 years before. (Now, of course, these calculations can be done by any
engineering student with a laptop computer.) The work of Lyapunov
was translated into the language of control at about this time, and the
study of optimal controls, begun by Wiener and Phillips during World
War II, was extended to optimizing trajectories of nonlinear systems
based on the calculus of variations. Much of this work was presented
at the first conference of the newly formed International Federation of
Automatic Control held in Moscow in 1960.9 This work did not use the
frequency response or the characteristic equation but worked directly
with the ODE in “normal” or “state” form and typically called for
extensive use of computers. Even though the foundations of the study
of ODEs were laid in the late 19th century, this approach is now often
called modern control to distinguish it from classical control, which uses
Laplace transforms and complex variable methods of Bode and others.
In the period from the 1970s continuing through the present, we find
a growing body of work that seeks to use the best features of each
technique.

Thus, we come to the current state of affairs where the principles of
control are applied in a wide range of disciplines, including every branch
of engineering. The well-prepared control engineer needs to understand
the basic mathematical theory that underlies the field and must be able
to select the best design technique suited to the problem at hand. With
the ubiquitous use of computers, it is especially important that the engi-
neer is able to use his or her knowledge to guide and verify calculations
done on the computer.10

9Optimal control gained a large boost when Bryson and Denham (1962) showed that the
path of a supersonic aircraft should actually dive at one point in order to reach a given
altitude in minimum time. This nonintuitive result was later demonstrated to skeptical
fighter pilots in flight tests.
10For more background on the history of control, see the survey papers appearing in the
IEEE Control Systems Magazine of November 1984 and June 1996.
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1.5 An Overview of the Book
The central purpose of this book is to introduce the most important
techniques for single-input–single-output control systems design. Chap-
ter 2 will review the techniques necessary to obtain physical models of
the dynamic systems that we wish to control. These include model mak-
ing for mechanical, electric, electromechanical, and a few other physical
systems, including a simple model for a quadrotor drone, which will be
used in subsequent chapters. Chapter 2 will also briefly describe the lin-
earization of nonlinear models, although this will be discussed more
thoroughly in Chapter 9.

In Chapter 3 and Appendix A, we will discuss the analysis of
dynamic response using Laplace transforms along with the relationship
between time response and the poles and zeros of a transfer function.
The chapter also includes a discussion of the critical issue of system
stability, including the Routh test.

In Chapter 4, we will cover the basic equations and features of
feedback. An analysis of the effects of feedback on disturbance rejec-
tion, tracking accuracy, sensitivity to parameter changes, and dynamic
response will be given. The idea of elementary PID control is discussed.

In Chapters 5, 6, and 7, we introduce the techniques for realizing the
control objectives first identified in Chapter 4 in more complex dynamic
systems. These include the root locus, frequency response, and state
variable techniques. These are alternative means to the same end and
have different advantages and disadvantages as guides to design of con-
trols. The methods are fundamentally complementary, and each needs
to be understood to achieve the most effective control systems design.

In Chapter 8, we will develop the ideas of implementing controllers
in a digital computer. The chapter addresses how one “digitizes” the
control equations developed in Chapters 4 through 7, how the sampling
introduces a delay that tends to destabilize the system, and how the
sample rate needs to be a certain multiple of the system frequencies for
good performance. Just as the Laplace transform does for nonsampled
signals, the analysis of sampled systems requires another analysis tool—
the z-transform—and that tool is described and its use is illustrated.

Most real systems are nonlinear to some extent. However, the anal-
yses and design methods in most of the book up to here are for linear
systems. In Chapter 9, we will explain why the study of linear systems
is pertinent, why it is useful for design even though most systems are
nonlinear, and how designs for linear systems can be modified to handle
many common nonlinearities in the systems being controlled. The chap-
ter will cover saturation, describing functions, adaptive control and the
anti-windup controller, and contains a brief introduction to Lyapunov
stability theory.

Application of all the techniques to problems of substantial com-
plexity will be discussed in Chapter 10. The design methods discussed in
Chapters 4–7 are all brought to bear simultaneously on specific case
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studies which are representative of real world problems. These cases
are somewhat simplified versions of control systems that are in use
today in satellites on orbit, in most commercial aircraft, in all automo-
biles sold in the Western world today, in semiconductor manufacturing
throughout the world, and in the drones being used in many fields.

Control designers today make extensive use of computer-aided
control systems design software that is commercially available. Fur-Computer aids
thermore, most instructional programs in control systems design make
software tools available to the students. The most widely used software
for the purpose are Matlab� and Simulink� from The MathWorks.
Matlab routines have been included throughout the text to help illus-
trate this method of solution and many problems require computer aids
for solution. Many of the figures in the book were created using Matlab
and the files for their creation are available free of charge on the web
at www.pearsonglobaleditions.com. Students and instructors are invited
to use these files as it is believed that they should be helpful in learning
how to use computer methods to solve control problems.

Needless to say, many topics are not treated in the book. We do not
extend the methods to multivariable controls, which are systems with
more than one input and/or output, except as part of the case study of
the rapid thermal process in Chapter 10. Nor is optimal control treated
in more than a very introductory manner in Chapter 7.

Also beyond the scope of this text is a detailed treatment of the
experimental testing and modeling of real hardware, which is the ulti-
mate test of whether any design really works. The book concentrates on
analysis and design of linear controllers for linear plant models—not
because we think that is the final test of a design, but because that is the
best way to grasp the basic ideas of feedback and is usually the first step
in arriving at a satisfactory design. We believe that mastery of the mate-
rial here will provide a foundation of understanding on which to build
knowledge of the actual physical behavior of control systems—a foun-
dation strong enough to allow one to build a personal design method
in the tradition of all those who worked to give us the knowledge we
present here.

SUMMARY

• Control is the process of making a system variable adhere to a par-
ticular value, called the reference value. A system designed to follow
a changing reference is called tracking control or a servo. A system
designed to maintain an output fixed regardless of the disturbances
present is called a regulating control or a regulator.

• Two kinds of control were defined and illustrated based on the
information used in control and named by the resulting structure.
In open-loop control, the system does not measure the output and
there is no correction of the actuating signal to make that output
conform to the reference signal. In closed-loop control, the system

www.pearsonglobaleditions.com
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includes a sensor to measure the output and uses feedback of the
sensed value to influence the control variable.

• A simple feedback system consists of the process (or plant) whose
output is to be controlled, the actuator whose output causes the
process output to change, a reference command signal, and output
sensors that measure these signals, and the controller that imple-
ments the logic by which the control signal that commands the
actuator is calculated.

• Block diagrams are helpful for visualizing system structure and
the flow of information in control systems. The most common
block diagrams represent the mathematical relationships among the
signals in a control system.

• A well-designed feedback control system will be stable, track a
desired input or setpoint, reject disturbances, and be insensitive (or
robust) to changes in the math model used for design.

• The theory and design techniques of control have come to be
divided into two categories: classical control methods use Laplace
transforms (or z-transform) and were the dominant methods for
control design until modern control methods based on ODEs in
state form were introduced into the field starting in the 1960s.
Many connections have been discovered between the two cate-
gories and well-prepared engineers must be familiar with both
techniques.

REVIEW QUESTIONS

1.1 What are the main components of a feedback control system?

1.2 What is the purpose of the sensor?

1.3 Give three important properties of a good sensor.

1.4 What is the purpose of the actuator?

1.5 Give three important properties of a good actuator.

1.6 What is the purpose of the controller? Give the input(s) and output(s) of
the controller.

1.7 What physical variable is measured by a tachometer?

1.8 Describe three different techniques for measuring temperature.

1.9 Why do most sensors have an electrical output, regardless of the physical
nature of the variable being measured?

PROBLEMS

1.1 Draw a component block diagram for each of the following feedback
control systems:

(a) The manual steering system of an automobile
(b) Drebbel’s incubator
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(c) The water level controlled by a float and valve
(d) Watt’s steam engine with fly-ball governor

In each case, indicate the location of the elements listed below and give
the units associated with each signal:
• The process
• The process desired output signal
• The sensor
• The actuator
• The actuator output signal
• The controller
• The controller output signal
• The reference signal
• The error signal
Notice that in a number of cases the same physical device may perform
more than one of these functions.

1.2 Identify the physical principles and describe the operation of the thermostat
in your home or office.

1.3 A machine for making paper is diagrammed in Fig. 1.12. There are two
main parameters under feedback control: the density of fibers as controlled
by the consistency of the thick stock that flows from the headbox onto the
wire, and the moisture content of the final product that comes out of the
dryers. Stock from the machine chest is diluted by white water returning
from under the wire as controlled by a control valve (CV). A meter supplies
a reading of the consistency. At the “dry end” of the machine, there is a
moisture sensor. Draw a block diagram and identify the nine components
listed in Problem 1.1 part (d) for the following:

(a) Control of consistency
(b) Control of moisture

1.4 Many variables in the human body are under feedback control. For each of
the following controlled variables, draw a block diagram showing the pro-
cess being controlled, the sensor that measures the variable, the actuator
that causes it to increase and/or decrease, the information path that com-
pletes the feedback path, and the disturbances that upset the variable. You
may need to consult an encyclopedia or textbook on human physiology for
information on this problem.

Controller

Machine

chest

Thick stock

Consistency

sensor
Valve input

Head box Wire

Dryers

Dryer control

input

Paper

Moisture

sensor

White water

CV

Figure 1.12
A papermaking machine
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(a) Blood pressure
(b) Blood sugar concentration
(c) Heart rate
(d) Eye-pointing angle
(e) Eye-pupil diameter

1.5 Draw a block diagram of the components for an elevator-position control.
Indicate how you would measure the position of the elevator car. Con-
sider a combined coarse and fine measurement system. What accuracies
do you suggest for each sensor? Your system should be able to correct for
the fact that in elevators for tall buildings there is significant cable stretch
as a function of cab load.

1.6 Feedback control requires being able to sense the variable being controlled.
Because electrical signals can be transmitted, amplified, and pro-
cessed easily, often we want to have a sensor whose output is a
voltage or current proportional to the variable being measured. Describe
a sensor that would give an electrical output proportional to the
following:

(a) Temperature
(b) Pressure
(c) Liquid level
(d) Flow of liquid along a pipe (or blood along an artery)
(e) Linear position
(f) Rotational position
(g) Linear velocity
(h) Rotational speed
(i) Translational acceleration
(j) Torque

1.7 Each of the variables listed in Problem 1.6 can be brought under feedback
control. Describe an actuator that could accept an electrical input and be
used to control the variables listed. Give the units of the actuator output
signal.

1.8 Feedback in Biology

(a) Negative Feedback in Biology: When a person is under long-term
stress (say, a couple of weeks before an exam!), hypothalamus (in
the brain) secretes a hormone called Corticotropin Releasing Fac-
tor (CRF) which binds to a receptor in the pituitary gland stim-
ulating it to produce Adrenocorticotropic hormone (ACTH), which
in turn stimulates the adrenal cortex (outer part of the adrenal
glands) to release the stress hormone Glucocorticoid (GC). This in
turn shuts down (turns off the stress response) for both CRF and
ACTH production by negative feedback via the bloodstream until GC
returns to its normal level. Draw a block diagram of this closed-loop
system.

(b) Positive Feedback in Biology: This happens in some unique circum-
stances. Consider the birth process of a baby. Pressure from the head of
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the baby going through the birth canal causes contractions via secretion
of a hormone called oxytocin which causes more pressure which in turn
intensifies contractions. Once the baby is born, the system goes back to
normal (negative feedback). Draw a block diagram of this closed-loop
system.
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A Perspective on Dynamic Models
The overall goal of feedback control is to use feedback to cause the
output variable of a dynamic process to follow a desired reference
variable accurately, regardless of the reference variable’s path and
regardless of any external disturbances or any changes in the dynam-
ics of the process. This complex design goal is met by a number of
simple, distinct steps. The first of these is to develop a mathemat-
ical description (called a dynamic model or mathematical model)
of the process to be controlled. The term model, as it is used and
understood by control engineers, means a set of differential equa-
tions that describe the dynamic behavior of the process. A model can
be obtained using principles of the underlying physics or by testing a
prototype of the device, measuring its response to inputs, and using
the data to construct an analytical model. We will focus only on using
physics in this chapter. There are entire books written on experimen-
tally determining models, sometimes called system identification,
and these techniques will be described very briefly in Chapter 3. A
careful control system designer will typically rely on at least some
experiments to verify the accuracy of the model when it is derived
from physical principles.

In many cases, the modeling of complex processes is difficult
and expensive, especially when the important steps of building and
testing prototypes are included. However, in this introductory text,
we will focus on the most basic principles of modeling for the most
common physical systems. More comprehensive sources and special-
ized texts will be referenced throughout where appropriate for those
wishing more detail.

Source: burnel1/123RF

46
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In later chapters, we will explore a variety of analysis methods for
dealing with the dynamic equations and their solution for purposes of
designing feedback control systems.

Chapter Overview
The fundamental step in building a dynamic model is writing the
dynamic equations for the system. Through discussion and a variety of
examples, Section 2.1 demonstrates how to write the dynamic equa-
tions for a variety of mechanical systems. In addition, the section
demonstrates the use of Matlab to find the time response of a simple
system to a step input. Furthermore, the ideas of transfer functions
and block diagrams are introduced, along with the idea that problems
can also be solved via Simulink.

Electric circuits and electromechanical systems will bemodeled in
Sections 2.2 and 2.3, respectively.

For those wanting modeling examples for more diverse dynamic
systems, Section 2.4, which is optional, will extend the discussion to
heat- and fluid-flow systems.

The chapter then concludes with Section 2.5, a discussion of the
history behind the discoveries that led to the knowledge that we take
for granted today.

The differential equations developed in modeling are often non-
linear. Because nonlinear systems are significantly more challenging
to solve than linear ones, and because linear models are usually
adequate for purposes of control design, the emphasis in the early
chapters is primarily on linear systems. However, we do show how
to linearize simple nonlinearities in this chapter and show how to
use Simulink to numerically solve for the motion of a nonlinear sys-
tem. A much more extensive discussion of linearization and analysis
of nonlinear systems is contained in Chapter 9.

In order to focus on the important first step of developingmathe-
matical models, we will defer explanation of the computational meth-
ods used to solve the dynamic equations developed in this chapter
until Chapter 3.

2.1 Dynamics of Mechanical Systems
2.1.1 Translational Motion
The cornerstone for obtaining a mathematical model, or the dynamicNewton’s law for

translational motion equations,1 for any mechanical system is Newton’s law,

F = ma, (2.1)

1For systems with moving parts, these equations are typically referred to as the “equations
of motion.”
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where

F = the vector sum of all forces applied to each body in a system,
newtons (N),

a = the vector acceleration of each body with respect to an iner-
tial reference frame (that is, one that is neither accelerating
nor rotating with respect to the stars); often called inertial
acceleration, m/sec2,

m = mass of the body, kg.

Note that here in Eq. (2.1), as throughout the text, we use the con-
vention of boldfacing the type to indicate that the quantity is a matrix
or vector, possibly a vector function.

A force of 1 N will impart an acceleration of 1 m/sec2 to a mass
of 1 kg. The “weight” of an object is mg, where g is the acceleration
of gravity (= 9.81 m/sec2), which is the quantity measured on scales.
Scales are typically calibrated in kilograms, which is used as a direct
measure of mass assuming the standard value for g.

Application of this law typically involves defining convenient coor-Use of free-body diagram
in applying Newton’s law dinates to account for the body’s motion (position, velocity, and

acceleration), determining the forces on the body using a free-body
diagram, then writing the equations of motion from Eq. (2.1). The pro-
cedure is simplest when the coordinates chosen express the position with
respect to an inertial reference frame because, in this case, the accelera-
tions needed for Newton’s law are simply the second derivatives of the
position coordinates.

EXAMPLE 2.1 A Simple System; Cruise Control Model

1. Write the equations of motion for the speed and forward motion
of the car shown in Fig. 2.1, assuming the engine imparts a force u
as shown. Take the Laplace transform of the resulting differential
equation and find the transfer function between the input u and the
output v.

Figure 2.1
Cruise control model

u
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2. Use Matlab to find the response of the velocity of the car for the
case in which the input jumps from being u = 0 at time t = 0 to a
constant u = 500 N thereafter. Assume the car mass m is 1000 kg
and viscous drag coefficient, b = 50 N·sec/m.

Solution

1. Equations of motion: For simplicity, we assume the rotational iner-
tia of the wheels is negligible, and that there is friction retarding the
motion of the car that is proportional to the car’s speed with a pro-
portionality constant, b.2 The car can then be approximated for
modeling purposes using the free-body diagram seen in Fig. 2.2,
which defines coordinates, shows all forces acting on the body
(heavy lines), and indicates the acceleration (dashed line). The
coordinate of the car’s position, x, is the distance from the ref-
erence line shown and is chosen so positive is to the right. Note in
this case, the inertial acceleration is simply the second derivative of
x (that is, a = ẍ) because the car position is measured with respect
to an inertial reference frame. The equation of motion is found
using Eq. (2.1). The friction force acts opposite to the direction of
motion; therefore it is drawn opposite to the direction of positive
motion and entered as a negative force in Eq. (2.1). The result is

u− bẋ = mẍ, (2.2)

or

ẍ+ b
m

ẋ = u
m

. (2.3)

For the case of the automotive cruise control where the variable of
interest is the speed, v (=ẋ), the equation of motion becomes

v̇+ b
m

v = u
m

. (2.4)

The solution of such an equation will be covered in detail in
Chapter 3; however, the essence is that you assume a solution of

Figure 2.2
Free-body diagram for
cruise control

x

Friction

force bx
u

x

m

2If the speed is v, the aerodynamic portion of the friction force is actually proportional to
v2. We have assumed it to be linear here for simplicity.



main_1 — 2019/2/5 — 10:40 — page 50 — #5

50 Chapter 2 Dynamic Models

the form v = Voest given an input of the form u = Uoest. Then,
since v̇ = sVoest, the differential equation can be written as3

(
s+ b

m

)
Voest = 1

m
Uoest. (2.5)

The est term cancels out, and we find that

Vo

Uo
=

1
m

s+ b
m

. (2.6)

For reasons that will become clear in Chapter 3, this is often writ-
ten using capital letters to signify that it is the “transform” of the
solution, or

V(s)
U(s)

=
1
m

s+ b
m

. (2.7)

This expression of the differential equation (2.4) is called the trans-Transfer function
fer function and will be used extensively in later chapters. Note that,
in essence, we have substituted s for d/dt in Eq. (2.4). This trans-
fer funtion serves as a math model that relates the car’s velocity
to the forces propelling the car, that is, inputs from the accelerator
pedal. Transfer functions of a system will be used in later chapters
to design feedback controllers such as a cruise control device found
in many modern cars.

2. Time response: The dynamics of a system can be prescribed to Mat-
lab in terms of its transfer function as can be seen in the Matlab
statements below that implements Eq. (2.7). The step function in
Matlab calculates the time response of a linear system to a unit
step input. Because the system is linear, the output for this case
can be multiplied by the magnitude of the input step to derive a
step response of any amplitude. Equivalently, sys can be multiplied
by the magnitude of the input step.
The statementsStep response with Matlab

s=tf(’s’); % sets up the mode to define the
transfer function

sys = (1/1000)/(s + 50/1000); % defines the transfer function from
Eq. (2.7) with the numbers filled in.

step(500*sys); % plots the step response for u = 500.

calculate and plot the time response of velocity for an input step
with a 500-N magnitude. The step response is shown in Fig. 2.3.

Newton’s law also can be applied to systems with more than one
mass. In this case, it is particularly important to draw the free-body

3The use of an operator for differentiation was developed by Cauchy in about 1820 based
on the Laplace transform, which was developed in about 1780. In Chapter 3, we will
show how to derive transfer functions using the Laplace transform (refer to Gardner and
Barnes, 1942).
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Figure 2.3
Response of the car
velocity to a step in u

10

8

6

4

2

0
V

el
o
ci

ty
 (

m
/s

ec
)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

diagram of each mass, showing the applied external forces as well as
the equal and opposite internal forces that act from each mass on the
other.

EXAMPLE 2.2 A Two-Mass System: Suspension Model

Figure 2.4 shows an automobile suspension system. Write the equa-
tions of motion for the automobile and wheel motion assuming one-
dimensional vertical motion of one quarter of the car mass above one
wheel. A system consisting of one of the four-wheel suspensions is usu-
ally referred to as a quarter-car model. The system can be approximated
by the simplified system shown in Fig. 2.5 where two spring constants
and a damping coefficient are defined. Assume the model is for a car
with a mass of 1580 kg, including the four wheels, which have a mass of
20 kg each. By placing a known weight (an author) directly over a wheel
and measuring the car’s deflection, we find that ks = 130,000 N/m. Mea-
suring the wheel’s deflection for the same applied weight, we find that
kw � 1,000,000 N/m. By using the step response data in Fig. 3.19(b) and
qualitatively observing that the car’s response to a step change matches
the damping coefficient curve for ζ = 0.7 in the figure, we conclude that
b = 9800 N·sec/m.

Figure 2.4
Automobile suspension
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Figure 2.5
The quarter-car model

m1

m2

b

y

x

r

ycar

Road surface

Inertial reference

ks

kw

Solution. The system can be approximated by the simplified system
shown in Fig. 2.5. The coordinates of the two masses, x and y, with the
reference directions as shown, are the displacements of the masses from
their equilibrium conditions. The equilibrium positions are offset from
the springs’ unstretched positions because of the force of gravity. The
shock absorber is represented in the schematic diagram by a dashpot
symbol with friction constant b. The magnitude of the force from the
shock absorber is assumed to be proportional to the rate of change of
the relative displacement of the two masses—that is, the force = b( ẏ −
ẋ). The force of gravity could be included in the free-body diagram;
however, its effect is to produce a constant offset of x and y. By defining
x and y to be the distance from the equilibrium position, the need to
include the gravity forces is eliminated.

The force from the car suspension acts on both masses in propor-
tion to their relative displacement with spring constant ks. Figure 2.6
shows the free-body diagram of each mass. Note the forces from the
spring on the two masses are equal in magnitude but act in opposite
directions, which is also the case for the damper. A positive displace-
ment y of mass m2 will result in a force from the spring on m2 in the
direction shown and a force from the spring on m1 in the direction
shown. However, a positive displacement x of mass m1 will result in
a force from the spring ks on m1 in the opposite direction to that drawn
in Fig. 2.6, as indicated by the minus x term for the spring force.

Figure 2.6
Free-body diagrams for
suspension system

m1

x

kw(x - r)

ks(y - x)

m2

y

b(y - x)ks(y - x)

b(y - x)
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The lower spring kw represents the tire compressibility, for which
there is insufficient damping (velocity-dependent force) to warrant
including a dashpot in the model. The force from this spring is propor-
tional to the distance the tire is compressed and the nominal equilibrium
force would be that required to support m1 and m2 against gravity. By
defining x to be the distance from equilibrium, a force will result if either
the road surface has a bump (r changes from its equilibrium value of
zero) or the wheel bounces (x changes). The motion of the simplified
car over a bumpy road will result in a value of r(t) that is not constant.

As previously noted, there is a constant force of gravity acting on
each mass; however, this force has been omitted, as have been the equal
and opposite forces from the springs. Gravitational forces can always be
omitted from vertical-spring mass systems (1) if the position coordinates
are defined from the equilibrium position that results when gravity is
acting, and (2) if the spring forces used in the analysis are actually the
perturbation in spring forces from those forces acting at equilibrium.

Applying Eq. (2.1) to each mass, and noting that some forces on
each mass are in the negative (down) direction, yields the system of
equations

b( ẏ− ẋ)+ ks( y− x)− kw(x− r) = m1ẍ,

−ks( y− x)− b( ẏ− ẋ) = m2ÿ.

Some rearranging results in

ẍ+ b
m1
(ẋ− ẏ)+ ks

m1
(x− y)+ kw

m1
x = kw

m1
r, (2.8)

ÿ+ b
m2
( ẏ− ẋ)+ ks

m2
( y− x) = 0. (2.9)

The most common source of error in writing equations for systems
such as these are sign errors. The method for keeping the signs straightCheck for sign errors
in the preceding development entailed mentally picturing the displace-
ment of the masses and drawing the resulting force in the direction that
the displacement would produce. Once you have obtained the equations
for a system, a check on the signs for systems that are obviously stable
from physical reasoning can be quickly carried out. As we will see when
we study stability in Section 3.6 of Chapter 3, a stable system always
has the same signs on similar variables. For this system, Eq. (2.8) shows
that the signs on the ẍ, ẋ, and x terms are all positive, as they must be
for stability. Likewise, the signs on the ÿ, ẏ, and y terms are all positive
in Eq. (2.9).

The transfer function is obtained in a similar manner as before
for zero initial conditions. Substituting s for d/dt in the differential
equations yields
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s2X(s)+ s
b

m1
(X(s)− Y(s))+ ks

m1
(X(s)− Y(s))+ kw

m1
X(s) = kw

m1
R(s),

s2Y(s)+ s
b

m2
(Y(s)− X(s))+ ks

m2
(Y(s)− X(s)) = 0,

which can also be written in matrix form as[
s2 + s b

m1
+ ks

m1
+ kw

m1
−s b

m1
− ks

m1

−s b
m2
− ks

m2
s2 + s b

m2
+ ks

m2

][
X(s)
Y(s)

]
+

[
kw
m1
0

]
R(s).

for which Cramer’s Rule (see Appendix WB) can be used to find the
transfer function

Y (s)
R (s)

=
kwb

m1m2

(
s+ ks

b

)

s4 +
(

b
m1
+ b

m2

)
s3 +

(
ks
m1
+ ks

m2
+ kw

m1

)
s2 +

(
kwb

m1m2

)
s+ kwks

m1m2

.

To determine numerical values, we subtract the mass of the four
wheels from the total car mass of 1580 kg and divide it by 4 to find that
m2 = 375 kg. The wheel mass was measured directly to be m1 = 20 kg.
Therefore, the transfer function with the numerical values is

Y(s)
R(s)

= 1.31e06(s+ 13.3)
s4 + (516.1)s3 + (5.685e04)s2 + (1.307e06)s+ 1.733e07

.

We will see in Chapter 3 (and later chapters) how this sort of transfer
function will allow us to find the response of the car body to inputs
resulting from the car motion over a bumpy road.

2.1.2 Rotational Motion
Application of Newton’s law to one-dimensional rotational systemsNewton’s law for

rotational motion requires that Eq. (2.1) be modified to

M = Iα, (2.10)

where

M = the sum of all external moments about the center of mass of a
body, N ·m,

I = the body’s mass moment of inertia about its center of mass,
kg·m2,

α = the angular acceleration of the body, rad/sec2.

EXAMPLE 2.3 Rotational Motion: Satellite Attitude Control Model

Satellites, as shown in Fig. 2.7, usually require attitude control so anten-
nas, sensors, and solar panels are properly oriented. Antennas are
usually pointed toward a particular location on earth, while solar panels
need to be oriented toward the sun for maximum power generation. To
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Figure 2.7
Communications
satellite
Source: Courtesy Thaicom PLC
and Space Systems/Loral

gain insight into the full three-axis attitude control system, it is helpful
to consider one axis at a time. Write the equations of motion for one
axis of this system then show how they would be depicted in a block
diagram. In addition, determine the transfer function of this system and
construct the system as if it were to be evaluated via Matlab’s Simulink.

Solution. Figure 2.8 depicts this case, where motion is allowed only
about the axis perpendicular to the page. The angle θ that describes
the satellite orientation must be measured with respect to an inertial
reference—that is, a reference that has no angular acceleration. The
control force comes from reaction jets that produce a moment of Fcd
about the mass center. There may also be small disturbance moments
MD on the satellite, which arise primarily from solar pressure acting
on any asymmetry in the solar panels. Applying Eq. (2.10) yields the
equation of motion

Fcd +MD = I θ̈ . (2.11)

The output of this system, θ , results from integrating the sum of theDouble-integrator
plant input torques twice; hence, this type of system is often referred to as
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Figure 2.8
Satellite control
schematic
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Figure 2.9
Block diagrams
representing Eq. (2.11)
in the upper half and
Eq. (2.12) in the lower
half
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the double-integrator plant. The transfer function can be obtained as
described for Eq. (2.7) and is

�(s)
U(s)

= 1
I

1
s2 , (2.12)

where U = Fcd +MD. In this form, the system is often referred to as
the 1/s2 plant.1/s2 plant

Figure 2.9 shows a block diagram representing Eq. (2.11) in the
upper half, and a block diagram representing Eq. (2.12) in the lower
half. This simple system can be analyzed using the linear analysis tech-
niques that will be described in later chapters, or via Matlab as we saw
in Example 2.1. It can also be numerically evaluated for an arbitrary
input time history using Simulink, which is a sister software package to
Matlab for interactive, nonlinear simulation and has a graphical user
interface with drag and drop properties. Figure 2.10 shows a block
diagram of the system as depicted by Simulink.
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In many cases a system, such as the satellite shown in Fig. 2.7, has
some flexibility in the structure. Depending on the nature of the flexibil-
ity, it can cause challenges in the design of a control system. Particular
difficulty arises when there is flexibility between the sensor and actuator
locations. Therefore, it is often important to include this flexibility in
the model even when the system seems to be quite rigid.

EXAMPLE 2.4 Flexibility: Flexible Satellite Attitude Control

Figure 2.11(a) shows the situation where there is some flexibility
between the satellite attitude sensor (θ2) and the body of the satellite
(θ1) where the actuators are placed. Find the equations of motion and
transfer function relating the motion of the instrument package to a
control torque applied to the body of the satellite. For comparison, also
determine the transfer function between the control torque to the atti-
tude of the body of the satellite as if the sensors were located there.
Retain the fexible model of the overall satellite for this second case,
however.

Solution. The dynamic model for this situation is shown schematically
in Fig. 2.11(b). This model is dynamically similar to the resonant system
shown in Fig. 2.5, and results in equations of motion that are similar in
form to Eqs. (2.8) and (2.9). The moments on each body are shown
in the free-body diagrams in Fig. 2.12. The discussion of the moments
on each body is essentially the same as the discussion for Example 2.2,

Figure 2.11
Model of the flexible
satellite

Figure 2.12
Free-body diagrams of
the flexible satellite
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except the springs and damper in that case produced forces, instead of
moments that act on each inertia, as in this case. When the moments
are summed, equated to the accelerations according to Eq. (2.10), and
rearranged, the result is

I1θ̈1 + b(θ̇1 − θ̇2)+ k(θ1 − θ2) = Tc

I2θ̈2 + b(θ̇2 − θ̇1)+ k(θ2 − θ1) = 0.

Ignoring the damping b for simplicity, and substituting s for d/dt in the
differential equations as we did for Example 2.2 yields

(I1s2 + k)�1 (s)− k�2 (s) = Tc

−k�1 (s) + (I2s2 + k)�2 (s) = 0.

Using Cramer’s Rule as we did for Example 2.2, we find the transfer
function between the control torque, Tc, and the sensor angle, θ2, to beNon-collocated sensor and

actuator
�2 (s)
Tc (s)

= k

I1I2s2
(

s2 + k
I1
+ k

I2

) . (2.13)

For the second case, where we assume the attitude sensor is on the main
body of the satellite, we want the transfer function between the control
torque, Tc, and the satellite body angle, θ1. Using Cramer’s Rule again,
we find that

�1 (s)
Tc (s)

= I2s2 + k

I1I2s2
(

s2 + k
I1
+ k

I2

) . (2.14)

These two cases are typical of many situations in which the sensor and
actuator may or may not be placed in the same location in a flexible
body. We refer to the situation between sensor and actuator in Eq. (2.13)
as the “noncollocated” case, whereas Eq. (2.14) describes the “collo-Collocated sensor and

actuator cated” case. You will see in Chapter 5 that it is far more difficult to
control a system when there is flexibility between the sensor and actua-
tor (noncollocated case) than when the sensor and actuator are rigidly
attached to one another (the collocated case).

EXAMPLE 2.5 Rotational Motion: Quadrotor Drone

Figure 2.13 shows a small drone with four rotors. Find the equations
of motion between an appropriate command to the individual motors
and the three degrees of freedom; that is, pitch, roll, and yaw as defined
by Fig. 2.14. The x and y axes are in the horizontal plane, while the
z-axis is straight down. For this example, we only wish to describe the
situation for very small motion about the initially level position of the
coordinate system shown in Fig. 2.14. Note rotors 1 and 3 are rotat-
ing clockwise (CW) and rotors 2 and 4 are rotating counter clockwise
(CCW); therefore, rotors 1 and 3 have an angular momentum in the
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Figure 2.13
Quadcopter with a
camera
Source: narongpon
chaibot/Shutterstock

Figure 2.14
Orientation of the four
rotors and definition of
the attitude angles
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+z direction, while rotors 2 and 4 have an angular velocity in the −z
direction. Also, define what the “appropriate” commands would be
in order to only produce the desired angular motion of pitch, roll, or
yaw, without disturbing the other axes. The equations of motion for
larger motions are complex and involve coupling between the axes as
well as nonlinear terms due to angular motion, inertia asymmetry, and
aerodynamics. These terms will be discussed in Chapter 10.

Solution. First, we need to establish what the commands should be to
the motors attached to each of the four rotor blades in order to pro-
duce the desired motion without producing any undesired motion in
another axis. Let’s define the torque to each rotor as T1, T2, T3, T4.
In steady hovering flight, there will be a torque applied to each rotor
that maintains a steady rotor speed and thus a constant lift. The rotor
speed stays constant because the torque from the motor just balances
the aerodynamic drag on the rotor. If we were to add a perturbation that
increased the torque magnitude applied to a rotor, the angular speed
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would increase until it reached a new equilibrium with the drag, and
the rotor would produce an increased amount of lift. Likewise, for a
negative perturbation in the torque magnitude on a rotor, the speed of
the rotor and the lift would decrease. Note rotors 1 and 3 are rotat-
ing in a positive (CW) direction, hence there will be positive torques
(T1 and T3) applied to those rotors, and negative torques (T2 and T4)
applied to rotors 2 and 4 to maintain their negative (CCW) rotation.
Another important aspect of this arrangement results from Newton’s
Third Law, that is: For every action, there is an equal and opposite reac-
tion. This law tells us there are equal and opposite torques applied on
the motors. Thus there are negative torques being applied to the 1 and
3 motors, while there are positive torques being applied to the 2 and
4 motors. In steady hovering flight, the torques being applied to the
motors are all of equal magnitude and the two positive torques cancel
out the two negative torques, hence the body of the quadrotor has no
net torque applied about the z-axis and there is no yaw motion pro-
duced. (This is not the case for a single rotor helicopter where there is
a large reaction torque applied to the engine, and that torque must be
balanced by the tail rotor mounted perpendicular to the large lift rotor
on top.)

To produce a control action to increase pitch, θ , without produc-
ing a torque about the other two axes, it makes sense to apply a small
increase to the torque on rotor 1 with an equally small decrease to the
torque on rotor 3. Thus, there is no net increase in the overall lift on
the drone, and there is no change in the balance of the torques on the
rotors nor their reaction torques on the drone itself. However, the posi-
tive change in lift from rotor 1 coupled with the negative change in lift
from rotor 3 will produce a positive torque about the y-axis which will
act to increase θ . Therefore, we produce the control torque for positive θ
motion, Tθ , by setting δT1 = +Tθ and δT3 = −Tθ . Following Example
2.3, the transfer function for pitch is

�(s)
Tθ (s)

= 1
Iy

1
s2 . (2.15)

Similarly, for roll control, we produce a positive roll torque, Tφ , by
setting δT4 = −Tφ , thus increasing the negative rotation rate for rotor 4
and increasing it’s resulting lift. Furthermore, we set δT2 = +Tφ , which
reduces the lift from rotor 2, thus keeping the overall lift constant and
contributing to the desired roll torque. The resulting transfer function
for roll is

�(s)
Tφ(s)

= 1
Ix

1
s2 . (2.16)

Positive yaw control is accomplished by increasing the torque mag-
ntitude on rotors 2 and 4, while decreasing the torque magnitude on
rotors 1 and 3 an equal amount. This will increase the lift from rotors
2 and 4 while decreasing the lift on rotors 1 and 3, thus producing no
net change in the lift nor a torque that would influence θ or φ. But,
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the reaction torques will be in the positive direction for all four motors!
This comes about because rotors 1 and 3 are rotating in a CW (pos-
itive direction) so a decrease in the torque applied to their rotors is a
negative perturbation, thus resulting in positive reaction torques on the
motors. Rotors 2 and 4 are rotating in a CCW (negative direction) so an
increase in the torque magntitude applied to their rotors is also a neg-
ative perturbation, thus adding to the positive reaction torque applied
to the motors. Therefore, the control torque for positive ψ motion, Tψ ,
is produced by setting δT1 = δT2 = δT3 = δT4 = −Tψ . The resulting
transfer function is


(s)
Tψ(s)

= 1
Iz

1
s2 . (2.17)

These three equations assume there is small motion from the hori-
zontal orientation and thus any damping from aerodynamic forces are
assumed negligible and the equations remain linear.

This example shows why quadrotors have become so popular for
small drones; it is a well-balanced simple arrangement and does not
require any complex mechanical arrangements to balance the torques.
All the control can be accomplished by simply controlling the torque to
the four rotors. Furthermore, with the definitions developed above for
the motor commands and repeated here,

For pitch; δT1 = +Tθ ; δT3 = −Tθ , (2.18)

For roll; δT2 = +Tφ ; δT4 = −Tφ , (2.19)

For yaw; δT1 = δT2 = δT3 = δT4 = − Tψ , (2.20)

the dynamics for each degree of attitude motion is uncoupled from the
motion in the other axes.

In the special case in which a point in a rotating body is fixed with
respect to an inertial reference frame, as is the case with a pendulum,
Eq. (2.10) can be applied such that M is the sum of all moments about
the fixed point, and I is the moment of inertia about the fixed point.

EXAMPLE 2.6 Rotational Motion: Pendulum

1. Write the equations of motion for the simple pendulum shown in
Fig. 2.15, where all the mass is concentrated at the end point and
there is a torque, Tc, applied at the pivot.

2. Use Matlab to determine the time history of θ to a step input in Tc
of 1 N·m. Assume l = 1 m, m = 1 kg, and g = 9.81 m/sec2.

Solution

1. Equations of motion: The moment of inertia about the pivot point
is I = ml2. The sum of moments about the pivot point contains a
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Figure 2.15
Pendulum

mg
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l

term from gravity as well as the applied torque Tc. The equation of
motion, obtained from Eq. (2.10), is

Tc −mgl sin θ = I θ̈ , (2.21)

which is usually written in the form

θ̈ + g
l

sin θ = Tc

ml2 . (2.22)

This equation is nonlinear due to the sin θ term. A general dis-
cussion of nonlinear equations will be contained in Chapter 9;
however, we can proceed with a linearization of this case by assum-
ing the motion is small enough that sin θ ∼= θ . Then, Eq. (2.22)
becomes the linear equation

θ̈ + g
l
θ = Tc

ml2 . (2.23)

With no applied torque, the natural motion is that of a harmonic
oscillator with a natural frequency of 4

ωn =
√

g
l

. (2.24)

The transfer function can be obtained as described for Eq. (2.7),
yielding

�(s)
Tc(s)

=
1

ml2

s2 + g
l

. (2.25)

2. Time history: The dynamics of a system can be prescribed to Mat-
lab in terms of its transfer function and the step response via the
step function. The Matlab statements

4In a grandfather clock, it is desired to have a pendulum period of exactly 2 sec. Show
that the pendulum should be approximately 1 m in length.
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t = 0:0.02:10; % vector of times for output, 0 to 10 at 0.02
increments

m = 1; % value of mass (Kg)
L = 1; % value of length (m)
g = 9.81; % value of gravity, g (m/sec2)
s = tf(’s’); % sets up transfer function input mode
sys = (1/(m*L^2))/

(s^2 + g/L)
y = step(sys,t); % computes step responses at times given

by t for step at t = 0
Rad2Deg = 57.3; % converts radians to degrees
plot(t, Rad2Deg*y) % converts output from radians to degrees

and plots step response

will produce the desired time history shown in Fig. 2.16.

As we saw in this example, the resulting equations of motion are
often nonlinear. Such equations are much more difficult to solve than
linear ones, and the kinds of possible motions resulting from a non-
linear model are much more difficult to categorize than those resulting
from a linear model. It is therefore useful to linearize models in order to
gain access to linear analysis methods. It may be that the linear models
and linear analysis are used only for the design of the control system
(whose function may be to maintain the system in the linear region).
Once a control system is synthesized and shown to have desirable per-
formance based on linear analysis, it is then prudent to carry out further
analysis or an accurate numerical simulation of the system with the sig-
nificant nonlinearities in order to validate that performance. SimulinkSimulink
is an expedient way to carry out these simulations and can handle most

Figure 2.16
Response of the
pendulum to a step
input of 1 N·m in the
applied torque
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Figure 2.17
The Simulink block
diagram representing
the linear equation
(2.26)
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Figure 2.18
The Simulink block
diagram representing
the nonlinear
equation (2.27)

Step
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Gain 3

Integrator 3 Integrator 2

Trigonometric

function

57.31

9.81 sin

Scope

1

S
1

S

nonlinearities. Use of this simulation tool is carried out by constructing
a block diagram5 that represents the equations of motion. The linear
equation of motion for the pendulum with the parameters as specified
in Example 2.6 can be seen from Eq. (2.23) to be

θ̈ = −9.81 ∗ θ + 1, (2.26)

and this is represented in Simulink by the block diagram in Fig. 2.17.
Note the circle on the left side of the figure with the + and − signs
indicating addition and subtraction, implements Eq. (2.26).

The result of running this numerical simulation will be essentially
identical to the linear solution shown in Fig. 2.16 because the solution is
for relatively small angles where sin θ ∼= θ . However, using Simulink to
solve for the response enables us to simulate the nonlinear equation so
we could analyze the system for larger motions. In this case, Eq. (2.26)
becomes

θ̈ = −9.81 ∗ sin θ + 1, (2.27)

and the Simulink block diagram shown in Fig. 2.18 implements this
nonlinear equation.

Simulink is capable of simulating all commonly encountered non-
linearities, including deadzones, on–off functions, stiction, hysteresis,
aerodynamic drag (a function of v2), and trigonometric functions. All
real systems have one or more of these characteristics in varying degrees.
These nonlinearities will be expanded upon in detail in Chapter 9.

EXAMPLE 2.7 Use of Simulink for Nonlinear Motion: Pendulum

Use Simulink to determine the time history of θ for the pendulum in
Example 2.6. Compare it against the linear solution for Tc values of
1 N·m and 4 N·m.

5A more extensive discussion of block diagrams is contained in Section 3.2.1 of Chapter 3
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Figure 2.19
Block diagram of the
pendulum for both the
linear and nonlinear
models
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Solution. Time history: The Simulink block diagrams for the two cases
discussed above are combined and both outputs in Figs. 2.17 and 2.18
are sent via a “multiplexer block (Mux)” to the “scope” so they can be
plotted on the same graph. Figure 2.19 shows the combined block dia-
gram where the gain, K, represents the values of Tc. The outputs of this
system for Tc values of 1 N ·m and 4 N·m are shown in Fig. 2.20. Note
for Tc = 1 N·m, the outputs at the top of the figure remain at 12◦ or less,
and the linear approximation is extremely close to the nonlinear output.
For Tc = 4 N·m, the output angle grows near to 50◦ and a substantial
difference in the response magnitude and frequency is apparent due to
θ being a poor approximation to sin θ at these magnitudes. In fact, since
sin θ compared to θ signifies a reduced gravitational restoring force at
the higher angles, we see an increased amplitude and slower frequency.

Chapter 9 will be devoted to the analysis of nonlinear systems and
greatly expands on these ideas.

2.1.3 Combined Rotation and Translation
In some cases, mechanical systems contain both translational and
rotational portions. The procedure is the same as that described in
Sections 2.1.1 and 2.1.2: sketch the free-body diagrams, define coordi-
nates and positive directions, determine all forces and moments acting,
and apply Eqs. (2.1) and/or (2.10). An exact derivation of the equations
for these systems can become quite involved; therefore, the complete
analysis for the following example is contained in Appendix W2.1.4
located at www.pearsonglobaleditions.com, and only the linearized
equations of motion and their transfer functions are given here.

EXAMPLE 2.8 Rotational and Translational Motion: Hanging Crane

Write the equations of motion for the hanging crane shown schemat-
ically in Fig. 2.21. Linearize the equations about θ = 0, which would
typically be valid for the hanging crane. Also, linearize the equations for

www.pearsonglobaleditions.com
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Figure 2.20
Response of the
pendulum Simulink
numerical simulation
for the linear and
nonlinear models:
(a) for Tc = 1 N·m;
(b) Tc = 4 N·m
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Figure 2.21
Schematic of the crane
with hanging load

x

u mt

u

I, mp

θ = π , which represents the situation for the inverted pendulum shown
in Fig. 2.22. The trolley has mass mt and the hanging crane (or pendu-
lum) has mass mp and inertia about its mass center of I . The distance
from the pivot to the mass center of the pendulum is l; therefore, the
moment of inertia of the pendulum about the pivot point is (I +mpl2).
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Figure 2.22
Inverted pendulum
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Solution. Free-body diagrams need to be drawn for the trolley and the
pendulum and the reaction forces considered where the two attach to
one another. We carry out this process in Appendix W2.1.3. After New-
ton’s laws are applied for the translational motion of the trolley and
the rotational motion of the pendulum, it will be found that the reac-
tion forces between the two bodies can be eliminated, and the only
unknowns will be θ and x. The results are two coupled second-order
nonlinear differential equations in θ and x with the input being the force
applied to the trolley, u. They can be linearized in a manner similar to
that done for the simple pendulum by assuming small angles. For small
motions about θ = 0, we let cos θ ∼= 1, sin θ ∼= θ , and θ̇2 ∼= 0; thus the
equations are approximated by

(I +mpl2)θ̈ +mpglθ = −mplẍ,

(mt +mp)ẍ+ bẋ+mplθ̈ = u. (2.28)

Note the first equation is very similar to the simple pendulum,
Eq. (2.21), where the applied torque arises from the trolley accelerations.
Likewise, the second equation representing the trolley motion, x, is very
similar to the car translation in Eq. (2.3), where the forcing term arises
from the angular acceleration of the pendulum. Eliminating x in these
two coupled equations leads to the desired transfer function. Neglecting
the friction term, b, simplifies the algebra and leads to an approximate
transfer function from the control input u to hanging crane angle θ :

�(s)
U(s)

= −mpl

((I +mpl2)(mt +mp)−m2
pl2)s2 +mpgl(mt +mp)

. (2.29)

For the inverted pendulum in Fig. 2.22, where θ ∼= π , assume θ =
π+θ ′, where θ ′ represents motion from the vertical upward direction. InInverted pendulum

equations this case, sin θ ∼= −θ ′, cos θ ∼= −1, and the nonlinear equations become6

6The inverted pendulum is often described with the angle of the pendulum being positive
for clockwise motion. If defined that way, then the sign reverses on all terms in Eqs. (2.30)
in θ ′ or θ̈ ′.
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(I +mpl2)θ̈ ′ −mpglθ ′ = mplẍ,

(mt +mp)ẍ+ bẋ−mplθ̈ ′ = u. (2.30)

As noted in Example 2.2, a stable system will always have the same
signs on each variable, which is the case for the stable hanging crane
modeled by Eqs. (2.28). However, the signs on θ and θ̈ in the first equa-
tion in Eq. (2.30) are opposite, thus indicating instability, which is the
characteristic of the inverted pendulum.

The transfer function, again without friction, is

�′(s)
U(s)

= mpl

((I +mpl2)(mt +mp)−m2
pl2)s2 −mpgl(mt +mp)

. (2.31)

Evaluation of this transfer function for an infinitessimal step in u will
result in a diverging value of θ ′ thus requiring feedback to remain
upright, a subject for Chapter 5.

In Chapter 5, you will learn how to stabilize systems using feed-
back and will see that even unstable systems like an inverted pendulum
can be stabilized provided there is a sensor that measures the output
quantity and a control input. For the case of the inverted pendulum
perched on a trolley, it would be required to measure the pendulum
angle, θ ′, and provide a control input, u, that accelerated the trolley in
such a way that the pendulum remained pointing straight up. In years
past, this system existed primarily in university control system labora-
tories as an educational tool. However, more recently, there is a practical
device in production and being sold that employs essentially this same
dynamic system: the Segway. It uses a gyroscope so the angle of the
device is known with respect to vertical, and electric motors provide a
torque on the wheels so it balances the device and provides the desired
forward or backward motion. It is shown in Fig. 2.23.

2.1.4 Complex Mechanical Systems
This section contains the derivation of the equations of motion
for mechanical systems. In particular, it contains the full deriva-
tion of the equations of motion for the hanging crane in Example
2.8 and the inverted pendulum on a cart. See Appendix W2.1.4 at
www.pearsonglobaleditions.com.

2.1.5 Distributed Parameter Systems
All the preceding examples contained one or more rigid bodies,
although some were connected to others by springs. Actual structures—
for example, satellite solar panels, airplane wings, or robot arms—
usually bend, as shown by the flexible beam in Fig. 2.24(a). The
equation describing its motion is a fourth-order partial differential
equation that arises because the mass elements are continuously dis-
tributed along the beam with a small amount of flexibility between

www.pearsonglobaleditions.com
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Figure 2.23
The Segway, which is
similar to the inverted
pendulum and is kept
upright by a feedback
control system
Source: Photo courtesy of
David Powell

elements. This type of system is called a distributed parameter system.
The dynamic analysis methods presented in this section are not suffi-
cient to analyze this case; however, more advanced texts (Thomson and
Dahleh, 1998) show the result is

EI
∂4w
∂x4 + ρ

∂2w
∂t2 = 0, (2.32)

where

E = Young’s modulus,

I = beam area moment of inertia,

ρ = beam density,

w = beam deflection at length x along the beam.

The exact solution to Eq. (2.32) is too cumbersome to use in design-
ing control systems, but it is often important to account for the gross
effects of bending in control systems design.

The continuous beam in Fig. 2.24(b) has an infinite number of
vibration-mode shapes, all with different frequencies. Typically, the
lowest-frequency modes have the largest amplitude and are the most
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Figure 2.24
(a) Flexible robot arm
used for research at
Stanford University;
(b) model for
continuous flexible
beam; (c) simplified
model for the first
bending mode;
(d) model for the first
and second bending
modes
Source: Photo courtesy of
E. Schmitz

(b) (c) (d)

w

important to approximate well. The simplified model in Fig. 2.24(c) can
be made to duplicate the essential behavior of the first bending mode
shape and frequency, and would usually be adequate for controller
design. If frequencies higher than the first bending mode are antici-
pated in the control system operation, it may be necessary to model the
beam as shown in Fig. 2.24(d), which can be made to approximate the
first two bending modes and frequencies. Likewise, higher-order mod-
els can be used if such accuracy and complexity are deemed necessaryA flexible structure can be

approximated by a lumped
parameter model

(Schmitz, 1985; Thomson and Dahleh, 1998). When a continuously
bending object is approximated as two or more rigid bodies connected
by springs, the resulting model is sometimes referred to as a lumped
parameter model.

2.1.6 Summary: Developing Equations of Motion for Rigid
Bodies

The physics necessary to write the equations of motion of a rigid body is
entirely given by Newton’s laws of motion. The method is as follows:
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1. Assign variables such as x and θ that are both necessary and
sufficient to describe an arbitrary position of the object.

2. Draw a free-body diagram of each component. Indicate all forces
acting on each body and their reference directions. Also indicate
the accelerations of the center of mass with respect to an inertial
reference for each body.

3. Apply Newton’s law in translation [Eq. (2.1)] and/or rotation
[Eq. (2.10)] form.

4. Combine the equations to eliminate internal forces.
5. The number of independent equations should equal the number of

unknowns.

2.2 Models of Electric Circuits
Electric circuits are frequently used in control systems largely because
of the ease of manipulation and processing of electric signals. Although
controllers are increasingly implemented with digital logic, many func-
tions are still performed with analog circuits. Analog circuits are faster
than digital and, for very simple controllers, an analog circuit would be
less expensive than a digital implementation. Furthermore, the power
amplifier for electromechanical control and the anti-alias prefilters for
digital control must be analog circuits.

Electric circuits consist of interconnections of sources of electric
voltage and current, and other electronic elements such as resistors,
capacitors, and transistors. An important building block for circuits
is an operational amplifier (or op-amp),7 which is also an example
of a complex feedback system. Some of the most important methods
of feedback system design were developed by the designers of high-
gain, wide-bandwidth feedback amplifiers, mainly at the Bell Telephone
Laboratories between 1925 and 1940. Electric and electronic compo-
nents also play a central role in electromechanical energy conversion
devices such as electric motors, generators, and electrical sensors. In
this brief survey, we cannot derive the physics of electricity or give a
comprehensive review of all the important analysis techniques. We will
define the variables, describe the relations imposed on them by typical
elements and circuits, and describe a few of the most effective methods
available for solving the resulting equations.

Symbols for some linear circuit elements and their current–voltage
relations are given in Fig. 2.25. Passive circuits consist of intercon-
nections of resistors, capacitors, and inductors. With electronics, we
increase the set of electrical elements by adding active devices, including
diodes, transistors, and amplifiers.

7Oliver Heaviside introduced the mathematical operation p to signify differentiation so
that pv = dv/dt. The Laplace transform incorporates this idea, using the complex vari-
able s. Ragazzini et al. (1947) demonstrated that an ideal, high-gain electronic amplifier
permitted one to realize arbitrary “operations” in the Laplace transform variable s, so
they named it the operational amplifier, commonly abbreviated to op-amp.
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The basic equations of electric circuits, called Kirchhoff’s laws, areKirchhoff’s laws
as follows:

1. Kirchhoff ’s current law (KCL). The algebraic sum of currents leav-
ing a junction or node equals the algebraic sum of currents entering
that node.

2. Kirchhoff ’s voltage law (KVL). The algebraic sum of all voltages
taken around a closed path in a circuit is zero.

With complex circuits of many elements, it is essential to write the
equations in a careful, well-organized way. Of the numerous methods
for doing this, we choose for description and illustration the popular
and powerful scheme known as node analysis. One node is selected as a
reference and we assume the voltages of all other nodes to be unknowns.
The choice of reference is arbitrary in theory, but in actual electronic
circuits the common, or ground, terminal is the obvious and standard
choice. Next, we write equations for the selected unknowns using the
current law (KCL) at each node. We express these currents in terms of
the selected unknowns by using the element equations in Fig. 2.25. If the
circuit contains voltage sources, we must substitute a voltage law (KVL)
for such sources. Example 2.9 illustrates how node analysis works.

Figure 2.25
Elements of electric
circuits
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Figure 2.26
Bridged tee circuit
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EXAMPLE 2.9 Equations for the Bridged Tee Circuit

Determine the differential equations for the circuit shown in Fig. 2.26.

Solution. We select node 4 as the reference and the voltages v1, v2, and
v3 at nodes 1, 2, and 3 as the unknowns. We start with the degenerate
KVL relationship

v1 = vi. (2.33)

At node 2, the KCL is

−v1 − v2

R1
+ v2 − v3

R2
+ C1

dv2

dt
= 0, (2.34)

and at node 3, the KCL is

v3 − v2

R2
+ C2

d(v3 − v1)

dt
= 0. (2.35)

These three equations describe the circuit. If desired, one could elim-
inate v2 from the above equations, thus obtaining a second-order
differential equation that describes the dynamic relationship between
the input, vi(= v1), and output, v3(= vo).

EXAMPLE 2.10 Equations for a Circuit with a Current Source

Determine the differential equations for the circuit shown in Fig. 2.27.
Choose the capacitor voltages and the inductor current as the
unknowns.

Solution. We select node 3 as the reference and the voltages v1 and v2,
and the current through the inductor, iL, as unknowns. We start the
KCL relationships: relationships:
At node 1, the KCL is

i(t) = iL + i1, (2.36)

and at node 2, the KCL is

iL + i1 = i2 + i3. (2.37)
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Figure 2.27
Circuit for Example 2.10
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Furthermore, from Fig. 2.27, we see that

i3 = v2

R2
, (2.38)

i1 = C1
dv1

dt
, (2.39)

i2 = C2
dv2

dt
, (2.40)

vR = iLR, (2.41)

L
diL
dt
= v1 − vR. (2.42)

These reduce to three differential equations in the three unknowns,

L
diL
dt
= v1 − iLR, (2.43)

C1
dv1

dt
= i(t)− iL, (2.44)

C2
dv2

dt
= i(t)− v2

R2
. (2.45)

Kirchhoff’s laws can also be applied to circuits that contain an
operational amplifier. The simplified circuit of the op-amp is shown inOperational amplifier
Fig. 2.28(a) and the schematic symbol is drawn in Fig. 2.28(b). If the
positive terminal is not shown, it is assumed to be connected to ground,
v+ = 0, and the reduced symbol of Fig. 2.28(c) is used. For use in
control circuits, it is usually assumed that the op-amp is ideal with the
values R1 = ∞, R0 = 0, and A = ∞. The equations of the ideal op-amp
are extremely simple, being

i+ = i− = 0, (2.46)

v+ − v− = 0. (2.47)

The gain of the amplifier is assumed to be so high that the output
voltage becomes vout = whatever it takes to satisfy these equations. Of
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Figure 2.28
(a) Op-amp simplified
circuit; (b) op-amp
schematic symbol;
(c) reduced symbol
for v+ = 0
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course, a real amplifier only approximates these equations, but unless
they are specifically described, we will assume all op-amps are ideal.
More realistic models are the subject of several problems given at the
end of the chapter.

EXAMPLE 2.11 Op-Amp Summer

Find the equations and transfer functions of the circuit shown in
Fig. 2.29.

Solution. Equation (2.47) requires that v− = 0, and thus the currents
are i1 = v1/R1, i2 = v2/R2, and iout = vout/Rf . To satisfy Eq. (2.46),
i1+ i2+ iout = 0, from which it follows that v1/R1+v2/R2+vout/Rf = 0,
and we have

vout = −
[

Rf

R1
v1 + Rf

R2
v2

]
. (2.48)

From this equation, we see the circuit output is a weighted sum of the
input voltages with a sign change. The circuit is called a summer.The op-amp summer

A second important example for control is given by the op-amp
integrator.

Figure 2.29
The op-amp summer
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Figure 2.30
The op-amp integrator

yin

C

Rin

-

iout

yout

EXAMPLE 2.12 Integrator

Find the transfer function for the circuit shown in Fig. 2.30.Op-amp as integrator

Solution. In this case, the equations are differential and Eqs. (2.46) and
(2.47) require

iin + iout = 0, (2.49)
so

vin

Rin
+ C

dvout

dt
= 0. (2.50)

Equation (2.50) can be written in integral form as

vout = − 1
RinC

∫ t

0
vin(τ ) dτ + vout(0). (2.51)

Using the operational notation that d/dt = s in Eq. (2.50), the transfer
function (which assumes zero initial conditions) can be written as

Vout(s) = −1
s

Vin(s)
RinC

. (2.52)

Thus the ideal op-amp in this circuit performs the operation of
integration and the circuit is simply referred to as an integrator.

2.3 Models of Electromechanical Systems
Electric current and magnetic fields interact in two ways that are
particularly important to an understanding of the operation of most
electromechanical actuators and sensors. If a current of i amp in a con-
ductor of length l m is arranged at right angles in a magnetic field of B
teslas, then there is a force on the conductor at right angles to the plane
of i and B, with magnitude

F = Bli N. (2.53)

This equation is the basis of conversion of electric energy to mechanicalLaw of motors
work and is called the law of motors.

2.3.1 Loudspeakers
EXAMPLE 2.13 Modeling a Loudspeaker

A typical geometry for a loudspeaker for producing sound is sketched in
Fig. 2.31. The permanent magnet establishes a radial field in the cylin-
drical gap between the poles of the magnet. The force on the conductor
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Figure 2.31
Geometry of a
loudspeaker: (a) overall
configuration; (b) the
electromagnet and
voice coil

Permanent magnet

Coil

Cone

Bobbin

S

N

S

Electromagnet

Cone

(a) (b)

Low-force

suspension

wound on the bobbin causes the voice coil to move, producing sound.
The effects of the air can be modeled as if the cone had equivalent mass
M and viscous friction coefficient b. Assume the magnet establishes a
uniform field B of 0.4 tesla and the bobbin has 18 turns at a 1.9-cm
diameter. Write the equations of motion of the device.

Solution. The current is at right angles to the field, and the force of
interest is at right angles to the plane of i and B, so Eq. (2.53) applies.
In this case the field strength is B = 0.4 tesla and the conductor length is

l = 18× 2π
0.95
100
= 1.074 m.

Thus, the force is

F = 0.4× 1.074× i = 0.43i N.

The mechanical equation follows from Newton’s laws, and for a
mass M and friction coefficient b, the equation is

Mẍ+ bẋ = 0.43i. (2.54)

This second-order differential equation describes the motion of the
loudspeaker cone as a function of the input current i driving the sys-
tem. Substituting s for d/dt in Eq. (2.54) as before, the transfer function
is easily found to be

X(s)
I(s)
=

0.43
M

s
(

s+ b
M

) . (2.55)

The second important electromechanical relationship is the effect
of mechanical motion on electric voltage. If a conductor of length l m is
moving in a magnetic field of B teslas at a velocity of v m/sec at mutually
right angles, an electric voltage is established across the conductor with
magnitude

e = Blv V. (2.56)
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Figure 2.32
A loudspeaker showing
the electric circuit
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This expression is called the law of generators.Law of generators

EXAMPLE 2.14 Loudspeaker with Circuit

For the loudspeaker in Fig. 2.31 and the circuit driving it in Fig. 2.32,
find the differential equations relating the input voltage va to the output
cone displacement x. Assume the effective circuit resistance is R and the
inductance is L.

Solution. The loudspeaker motion satisfies Eq. (2.54), and the motion
results in a voltage across the coil as given by Eq. (2.56), with the
velocity ẋ. The resulting voltage is

ecoil = Blẋ = 0.43ẋ. (2.57)

This induced voltage effect needs to be added to the analysis of the
circuit. The equation of motion for the electric circuit is

L
di
dt
+ Ri = va − 0.43ẋ. (2.58)

These two coupled equations, (2.54) and (2.58), constitute the
dynamic model for the loudspeaker.

Again, substituting s for d/dt in these equations and replacing all
the parameters with the given numerical values, the transfer function
between the applied voltage and the loudspeaker displacement is found
to be

X(s)
Va(s)

= 0.43

s
[
(Ms+ b)(Ls+ R)+ (0.43)2

] . (2.59)

2.3.2 Motors
A common actuator based on the laws of motors and generators andDC motor

actuators used in control systems is the direct current (DC) motor to provide
rotarymotion. A sketch of the basic components of a DC motor is given
in Fig. 2.33. In addition to housing and bearings, the nonturning part
(stator) has magnets, which establish a field across the rotor. The mag-
nets may be electromagnets or, for small motors, permanent magnets.
The brushes contact the rotating commutator, which causes the current
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Figure 2.33
Sketch of a DC motor
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always to be in the proper conductor windings so as to produce maxi-
mum torque. If the direction of the current is reversed, the direction of
the torque is reversed.

The motor equations give the torque T on the rotor in terms of the
armature current ia and express the back emf voltage in terms of theBack emf
shaft’s rotational velocity θ̇m.8

Thus,

T = Kt ia, (2.60)

e = Ke θ̇m. (2.61)

In consistent units, the torque constant Kt equals the electric constant
Ke, but in some cases, the torque constant will be given in other units,
such as ounce-inches per ampere, and the electric constant may be
expressed in units of volts per 1000 rpm. In such cases, the engineer must
make the necessary translations to be certain the equations are correct.

EXAMPLE 2.15 Modeling a DC Motor

Find the equations for a DC motor with the equivalent electric circuit
shown in Fig. 2.34(a). Assume the rotor has inertia Jm and viscous
friction coefficient b.

Solution. The free-body diagram for the rotor, shown in Fig. 2.34(b),
defines the positive direction and shows the two applied torques, T and
bθ̇m. Application of Newton’s laws yields

Jmθ̈m + bθ̇m = Ktia. (2.62)

Analysis of the electric circuit, including the back emf voltage, shows
the electrical equation to be

La
dia
dt
+ Raia = va − Keθ̇m. (2.63)

8Because the generated electromotive force (emf) works against the applied armature
voltage, it is called the back emf.
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Figure 2.34
DC motor: (a) electric
circuit of the armature;
(b) free-body diagram
of the rotor +
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With s substituted for d/dt in Eqs. (2.62) and (2.63), the transfer
function for the motor is readily found to be

�m(s)
Va(s)

= Kt

s [(Jms+ b)(Las+ Ra)+ KtKe]
. (2.64)

In many cases the relative effect of the inductance is negligible compared
with the mechanical motion and can be neglected in Eq. (2.63). If so, we
can combine Eqs. (2.62) and (2.63) into one equation to get

Jmθ̈m +
(

b+ KtKe

Ra

)
θ̇m = Kt

Ra
va. (2.65)

From Eq. (2.65) it is clear that in this case the effect of the back emf is
indistinguishable from the friction, and the transfer function is

�m(s)
Va(s)

=
Kt
Ra

Jms2 +
(

b+ KtKe
Ra

)
s

(2.66)

= K
s(τ s+ 1)

, (2.67)

where

K = Kt

bRa + KtKe
, (2.68)

τ = RaJm

bRa + KtKe
. (2.69)

In many cases, a transfer function between the motor input and the
output speed (ω = θ̇m) is required. In such cases, the transfer function
would be

�(s)
Va(s)

= s
�m(s)
Va(s)

= K
τ s+ 1

. (2.70)

Another device used for electromechanical energy conversion is the
alternating current (AC) induction motor invented by N. Tesla. Elemen-AC motor actuators
tary analysis of the AC motor is more complex than that of the DC
motor. A typical experimental set of curves of torque versus speed for
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fixed frequency and varying amplitude of applied (sinusoidal) voltage
is given in Fig. 2.35. Although the data in the figure are for a con-
stant engine speed, they can be used to extract the motor constants that
will provide a dynamic model for the motor. For analysis of a control
problem involving an AC motor such as that described by Fig. 2.35, we
make a linear approximation to the curves for speed near zero and at a
midrange voltage to obtain the expression

T = K1va − K2θ̇m. (2.71)

The constant K1 represents the ratio of a change in torque to a change
in voltage at zero speed, and is proportional to the distance between the
curves at zero speed. The constant K2 represents the ratio of a change
in torque to a change in speed at zero speed and a midrange voltage;
therefore, it is the slope of a curve at zero speed as shown by the line
at V2. For the electrical portion, values for the armature resistance Ra
and inductance La are also determined by experiment. Once we have
values for K1, K2, Ra, and La, the analysis proceeds as the analysis in
Example 2.15 for the DC motor. For the case in which the inductor can
be neglected, we can substitute K1 and K2 into Eq. (2.65) in place of
Kt/Ra and KtKe/Ra, respectively.

In addition to the DC and AC motors mentioned here, control sys-
tems use brushless DC motors (Reliance Motion Control Corp., 1980)
and stepping motors (Kuo, 1980). Models for these machines, devel-
oped in the works just cited, do not differ in principle from the motors
considered in this section. In general, the analysis, supported by exper-
iment, develops the torque as a function of voltage and speed similar
to the AC motor torque–speed curves given in Fig. 2.35. From such
curves, one can obtain a linearized formula such as Eq. (2.71) to use in

T
or

qu
e,

 T

T
or

qu
e,

 T

ya = V1

ya = V2 (7V1)

Speed, um

V3

V2

V1

ya = V4

Speed, um

(a) (b)

Slope K2

Figure 2.35
Torque-speed curves for a servo motor showing four amplitudes of armature voltage: (a) low-
rotor-resistance machine; (b) high-rotor-resistance machine showing four values of armature voltage, va
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the mechanical part of the system and an equivalent circuit consisting
of a resistance and an inductance to use in the electrical part.

2.3.3 Gears
The motors used for control purposes are often used in conjunction

�
with gears as shown in Fig. 2.36 in order to multiply the torque. The
force transmitted by the teeth of one gear is equal and opposite to the
force applied to the other gear as shown in Fig. 2.36(a); therefore, since
torque = force × distance, the torques applied to and from each shaft
by the teeth obeys

T1

r1
= T2

r2
= f , force applied by teeth (2.72)

and thus, we see that the torque multiplication is proportional to the
radius of the gears, r, or equivalently, the number of teeth, N, in each
gear,

T2

T1
= r2

r1
= N2

N1
= n, (2.73)

where we have defined the quantity, n, to be the gear ratio.
Similarly, the velocity of the contact tooth of one gear is the same

as the velocity of the tooth on the opposite gear, and since velocity =
ωr, where ω is the angular velocity,

ω1r1 = ω2r2 = v.

Thus,
ω1

ω2
= r2

r1
= N2

N1
= n. (2.74)

Furthermore, the angles will change in proportion to the angular
velocities, so

θ1

θ2
= ω1

ω2
= N2

N1
= n. (2.75)

Note these are all geometric relationships in the sense that we have
not considered any inertias or accelerations of the gear train. These
relationships simply change the scale factor on the torque and speed
from a motor. There is also another effect that must be considered: the

Figure 2.36
(a) Geometry
definitions and forces
on teeth; (b)
definitions for the
dynamic analysis

(a) (b)
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effective rotational inertia and damping of the system when consider-
ing the dynamics. Suppose the servo motor whose output torque is Tm
is attached to gear 1. Also suppose the servo’s gear 1 is meshed with
gear 2, and the angle θ2 describes its position (body 2). Furthermore,
the inertia of gear 1 and all that is attached to it (body 1) is J1, while
the inertia of the second gear and all the attached load (body 2) is J2,
similarly for the friction b1 and b2. We wish to determine the transfer
function between the applied torque, Tm, and the output θ2, that is,
�2(s)/Tm(s). The equation of motion for body 1 is

J1θ̈1 + b1θ̇1 = Tm − T1, (2.76)

where T1 is the reaction torque from gear 2 acting back on gear 1. For
body 2, the equation of motion is

J2θ̈2 + b2θ̇2 = T2, (2.77)

where T2 is the torque applied on gear 2 by gear 1. Note that these
are not independent systems because the motion is tied together by the
gears. Substituting θ2 for θ1 in Eq. (2.76) using the relationship from
Eq. (2.75), replacing T2 with T1 in Eq. (2.77) using the relationship in
Eq. (2.73), and eliminating T1 between the two equations results in

(J2 + J1n2)θ̈2 + (b2 + b1n2)θ̇2 = nTm. (2.78)

So the transfer function is

�2(s)
Tm(s)

= n
Jeqs2 + beqs

, (2.79)

where
Jeq = J2 + J1n2, and beq = b2 + b1n2. (2.80)

These quantities are referred to as the “equivalent” inertias and damp-
ing coefficients.9 If the transfer function had been desired between the
applied torque, Tm, and θ1, a similar analysis would be required to arrive
at the equivalent inertias and damping, which would be different from
those above.

2.4 Heat and Fluid-Flow Models
Thermodynamics, heat transfer, and fluid dynamics are each the subject

�
of complete textbooks. For purposes of generating dynamic models for
use in control systems, the most important aspect of the physics is to
represent the dynamic interaction between the variables. Experiments
are usually required to determine the actual values of the parame-
ters, and thus to complete the dynamic model for purposes of control
systems design.

9The equivalent inertia is sometimes referred to as “reflected impedance”; however, this
term is more typically applied to electronic circuits.



main_1 — 2019/2/5 — 10:40 — page 84 — #39

84 Chapter 2 Dynamic Models

2.4.1 Heat Flow
Some control systems involve regulation of temperature for portions of
the system. The dynamic models of temperature control systems involve
the flow and storage of heat energy. Heat energy flows through sub-
stances at a rate proportional to the temperature difference across the
substance; that is,

q = 1
R
(T1 − T2), (2.81)

where
q = heat-energy flow, joules per second (J/sec),
R = thermal resistance, ◦C/J · sec,
T = temperature, ◦C.

The net heat-energy flow into a substance affects the temperature of the
substance according to the relation

Ṫ = 1
C

q, (2.82)

where C is the thermal capacity. Typically, there are several paths for
heat to flow into or out of a substance, and q in Eq. (2.82) is the sum of
heat flows obeying Eq. (2.81).

EXAMPLE 2.16 Heat Flow from a Room

A room with all but two sides insulated (1/R = 0) is shown in Fig. 2.37.
Find the differential equations that determine the temperature in the
room.

Solution. Application of Eqs. (2.81) and (2.82) yields

ṪI = 1
CI

(
1

R1
+ 1

R2

)
(TO − TI ),

where

CI = thermal capacity of air within the room,

TO = temperature outside,

TI = temperature inside,

R2 = thermal resistance of the room ceiling,

R1 = thermal resistance of the room wall.

Figure 2.37
Dynamic model for room
temperature

q2

q1

R2

R1

Temperature

outside, TO
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Normally the material properties are given in tables as follows:

1. The specific heat at constant volume cv, which is converted to heatSpecific heat
capacity by

C = mcv, (2.83)
where m is the mass of the substance;

2. The thermal conductivity10 k, which is related to thermal resistanceThermal conductivity
R by

1
R
= kA

l
,

where A is the cross-sectional area and l is the length of the heat-
flow path.

EXAMPLE 2.17 A Thermal Control System

The system consists of two thermal masses in contact with one another
where heat is being applied to the mass on the left, as shown in Fig. 2.38.
There is also heat transferred directly to the second mass in contact
with it, and heat is lost to the environmnet from both masses. Find the
relevant dynamic equations and the transfer function between the heat
input, u, and the temperature of the mass on the right.

Solution. Applying Eqs. (2.81) and (2.82) yields
C1Ṫ1 = u−H1T1 −Hx(T1 − T2), (2.84)

C2Ṫ2 = Hx(T1 − T2)−H2T2, (2.85)
where

C1 = thermal capacity of mass 1,

C2 = thermal capacity of mass 2,

To = temperature outside the masses,

T1 = T∗1 − To temperature difference of mass 1,

T2 = T∗2 − To temperature difference of mass 2,

H1 = 1/R1 = thermal resistance from mass 1,

H2 = 1/R2 = thermal resistance from mass 2,

Hx = 1/Rx = thermal resistance from mass 1 to mass 2.

Figure 2.38
A Thermal Control
System

T1
*

T0

u

q2q2

qxqx

q1q1

T2
*

10In the case of insulation for houses, resistance is quoted as R-values; for example, R-11
refers to a substance that has a resistance to heat-flow equivalent to that given by 11 in.
of solid wood.
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Figure 2.39
Heat exchanger Steam @ Tsi

Water

ww @ Twi

ws = KsAs

Steam @ Ts

Tm
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Using Cramer’s Rule with Eqs. (2.84) and (2.85) yields the desired
transfer function

T2(s)
U(s)

= Hx

(C1s+Hx +H1)(C2s+Hx +H2)
. (2.86)

In addition to flow due to transfer, as expressed by Eq. (2.81), heat can
also flow when a warmer mass flows into a cooler mass, or vice versa.
In this case,

q = wcv(T1 − T2), (2.87)

where w is the mass flow rate of the fluid at T1 flowing into the reser-
voir at T2. For a more complete discussion of dynamic models for
temperature control systems, see Cannon (1967) or textbooks on heat
transfer.

EXAMPLE 2.18 Equations for Modeling a Heat Exchanger

A heat exchanger is shown in Fig. 2.39. Steam enters the chamber
through the controllable valve at the top, and cooler steam leaves at
the bottom. There is a constant flow of water through the pipe that
winds through the middle of the chamber so it picks up heat from the
steam. Find the differential equations that describe the dynamics of the
measured water outflow temperature as a function of the area As of
the steam-inlet control valve when open. The sensor that measures the
water outflow temperature, being downstream from the exit temperature
in the pipe, lags the temperature by td sec.

Solution. The temperature of the water in the pipe will vary continu-
ously along the pipe as the heat flows from the steam to the water. The
temperature of the steam will also reduce in the chamber as it passes
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over the maze of pipes. An accurate thermal model of this process is
therefore quite involved because the actual heat transfer from the steam
to the water will be proportional to the local temperatures of each fluid.
For many control applications, it is not necessary to have great accu-
racy because the feedback will correct for a considerable amount of
error in the model. Therefore, it makes sense to combine the spatially
varying temperatures into single temperatures Ts and Tw for the out-
flow steam and water temperatures, respectively. We then assume the
heat transfer from steam to water is proportional to the difference in
these temperatures, as given by Eq. (2.81). There is also a flow of heat
into the chamber from the inlet steam that depends on the steam flow
rate and its temperature according to Eq. (2.87),

qin = wscvs(Tsi − Ts),

where

ws = KsAs, mass flow rate of the steam,

As = area of the steam inlet valve,

Ks = flow coefficient of the inlet valve,

cvs = specific heat of the steam,

Tsi = temperature of the inflow steam,

Ts = temperature of the outflow steam.

The net heat flow into the chamber is the difference between the heat
from the hot incoming steam and the heat flowing out to the water.
This net flow determines the rate of temperature change of the steam
according to Eq. (2.82),

CsṪs = AsKscvs(Tsi − Ts)− 1
R
(Ts − Tw), (2.88)

where

Cs = mscvs is the thermal capacity of the steam in the chamber
with mass ms,

R = the thermal resistance of the heat flow averaged over the
entire exchanger.

Likewise, the differential equation describing the water temperature
is

CwṪw = wwccw(Twi − Tw)+ 1
R
(Ts − Tw), (2.89)

where

ww = mass flow rate of the water,

ccw = specific heat of the water,

Twi = temperature of the incoming water,

Tw = temperature of the outflowing water.
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To complete the dynamics, the time delay between the measurement and
the exit flow is described by the relation

Tm(t) = Tw(t− td),

where Tm is the measured downstream temperature of the water and td
is the time delay. There may also be a delay in the measurement of the
steam temperature Ts, which would be modeled in the same manner.

Equation (2.88) is nonlinear because the quantity Ts is multiplied
by the control input As. The equation can be linearized about Tso (a
specific value of Ts) so Tsi − Ts is assumed constant for purposes of
approximating the nonlinear term, which we will define as�Ts. In order
to eliminate the Twi term in Eq. (2.89), it is convenient to measure all
temperatures in terms of deviation in degrees from Twi. The resulting
equations are then

CsṪs = − 1
R

Ts + 1
R

Tw + Kscvs�TsAs,

CwṪw = −
(

1
R
+ wwcvw

)
Tw + 1

R
Ts,

Tm = Tw(t− td).

Although the time delay is not a nonlinearity, we will see in Chap-
ter 3 that operationally, Tm = e−td sTw. Therefore, the transfer function
of the heat exchanger has the form

Tm(s)
As(s)

= Ke−td s

(τ1s+ 1)(τ2s+ 1)
. (2.90)

2.4.2 Incompressible Fluid Flow
Fluid flows are common in many control system components. One
example is the hydraulic actuator, which is used extensively in con-Hydraulic actuator
trol systems because it can supply a large force with low inertia and
low weight. They are often used to move the aerodynamic control
surfaces of airplanes; to gimbal rocket nozzles; to move the linkages
in earth-moving equipment, farm tractor implements, snow-grooming
machines; and to move robot arms.

The physical relations governing fluid flow are continuity, force
equilibrium, and resistance. The continuity relation is simply a state-The continuity relation
ment of the conservation of matter; that is,

ṁ = win − wout, (2.91)

where

m = fluid mass within a prescribed portion of the system,

win = mass flow rate into the prescribed portion of the system,

wout = mass flow rate out of the prescribed portion of the system.
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Figure 2.40
Water tank example

in

out

h Pressure p1

EXAMPLE 2.19 Equations for Describing Water Tank Height

Determine the differential equation describing the height of the water
in the tank in Fig. 2.40.

Solution. Application of Eq. (2.91) yields

ḣ = 1
Aρ

(win − wout) , (2.92)

where

A = area of the tank,

ρ = density of water,

h = m/Aρ = height of water,

m = mass of water in the tank.

Force equilibrium must apply exactly as described by Eq. (2.1) for
mechanical systems. Sometimes in fluid-flow systems, some forces result
from fluid pressure acting on a piston. In this case, the force from the
fluid is

f = pA, (2.93)

where

f = force,

p = pressure in the fluid,

A = area on which the fluid acts.

EXAMPLE 2.20 Modeling a Hydraulic Piston

Determine the differential equation describing the motion of the piston
actuator shown in Fig. 2.41, given that there is a force FD acting on it
and a pressure p in the chamber.

Solution. Equations (2.1) and (2.93) apply directly, where the forces
include the fluid pressure as well as the applied force. The result is

Mẍ = Ap− FD,
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Figure 2.41
Hydraulic piston
actuator

x Piston

Liquid at

pressure p

FD

where

A = area of the piston,

p = pressure in the chamber,

M = mass of the piston,

x = position of the piston.

In many cases of fluid-flow problems, the flow is resisted either by a
constriction in the path or by friction. The general form of the effect of
resistance is given by

w = 1
R
(p1 − p2)

1/α, (2.94)

where

w = mass flow rate,

p1, p2 = pressures at ends of the path through which flow is

occurring,

R,α = constants whose values depend on the type of restriction.

Or, as is more commonly used in hydraulics,

Q = 1
ρR

(p1 − p2)
1/α, (2.95)

where

Q = volume flow rate, where Q = w/ρ,

ρ = fluid density.

The constant α takes on values between 1 and 2. The most common
value is approximately 2 for high flow rates (those having a Reynolds
number Re > 105) through pipes or through short constrictions or noz-
zles. For very slow flows through long pipes or porous plugs wherein
the flow remains laminar (Re � 1000), α = 1. Flow rates between
these extremes can yield intermediate values of α. The Reynolds num-
ber indicates the relative importance of inertial forces and viscous forces
in the flow. It is proportional to a material’s velocity and density and to
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the size of the restriction, and it is inversely proportional to the viscosity.
When Re is small, the viscous forces predominate and the flow is lam-
inar. When Re is large, the inertial forces predominate and the flow is
turbulent.

Note a value of α = 2 indicates that the flow is proportional to
the square root of the pressure difference and therefore will produce a
nonlinear differential equation. For the initial stages of control systems
analysis and design, it is typically very useful to linearize these equa-
tions so the design techniques described in this book can be applied.
Linearization involves selecting an operating point and expanding the
nonlinear term to be a small perturbation from that point.

EXAMPLE 2.21 Linearization of Water Tank Height and Outflow

Find the nonlinear differential equation describing the height of the
water in the tank in Fig. 2.40. Assume there is a relatively short restric-
tion at the outlet and that α = 2. Also linearize your equation about the
operating point ho.

Solution. Applying Eq. (2.94) yields the flow out of the tank as a
function of the height of the water in the tank:

wout = 1
R
(p1 − pa)

1/2. (2.96)

Here,

p1 = ρgh+ pa, the hydrostatic pressure,

pa = ambient pressure outside the restriction.

Substituting Eq. (2.96) into Eq. (2.92) yields the nonlinear differential
equation for the height:

ḣ = 1
Aρ

(
win − 1

R

√
p1 − pa

)
. (2.97)

Linearization involves selecting the operating point po = ρgho + pa
and substituting p1 = po + �p into Eq. (2.96). Then, we expand the
nonlinear term according to the relation

(1+ ε)β ∼= 1+ βε, (2.98)

where ε � 1. Equation (2.96) can thus be written as

wout =
√

po − pa

R

(
1+ �p

po − pa

)1/2

∼=
√

po − pa

R

(
1+ 1

2
�p

po − pa

)
. (2.99)

The linearizing approximation made in Eq. (2.99) is valid as long as
�p � po − pa; that is, as long as the deviations of the system pressure
from the chosen operating point are relatively small.
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Combining Eqs. (2.92) and (2.99) yields the following linearized
equation of motion for the water tank level:

�ḣ = 1
Aρ

[
win −

√
po − pa

R

(
1+ 1

2
�p

po − pa

)]
.

Because �p = ρg�h, this equation reduces to

�ḣ = − g
2AR
√

po − pa
�h+ win

Aρ
−
√

po − pa

ρAR
, (2.100)

which is a linear differential equation for�ḣ. The operating point is not
an equilibrium point because some control input is required to maintain
it. In other words, when the system is at the operating point (�h = 0)
with no input (win = 0), it will move from that point because �ḣ 
= 0.
So, if no water is flowing into the tank, the tank will drain, thus moving
it from the reference point. To define an operating point that is also an
equilibrium point, we need to require that there be a nominal flow rate,

wino

Aρ
=
√

po − pa

ρAR
,

and define the linearized input flow to be a perturbation from that value.

Hydraulic actuators obey the same fundamental relationships weHydraulic actuators
saw in the water tank: continuity [Eq. (2.91)], force balance [Eq. (2.93)],
and flow resistance [Eq. (2.94)]. Although the development here
assumes the fluid to be perfectly incompressible, in fact, hydraulic fluid
has some compressibility due primarily to entrained air. This feature
causes hydraulic actuators to have some resonance because the com-
pressibility of the fluid acts like a stiff spring. This resonance limits their
speed of response.

EXAMPLE 2.22 Modeling a Hydraulic Actuator

1. Find the nonlinear differential equations relating the movement θ
of the control surface to the input displacement x of the valve for
the hydraulic actuator shown in Fig. 2.42.

2. Find the linear approximation to the equations of motion when
ẏ = constant, with and without an applied load—that is, when
F 
= 0 and when F = 0. Assume θ motion is small.

Solution

1. Equations of motion: When the valve is at x = 0, both passages are
closed and no motion results. When x > 0, as shown in Fig. 2.42,
the oil flows clockwise as shown and the piston is forced to the left.
When x < 0, the fluid flows counterclockwise. The oil supply at
high pressure ps enters the left side of the large piston chamber,
forcing the piston to the right. This causes the oil to flow out of the
valve chamber from the rightmost channel instead of the left.
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Figure 2.42
Hydraulic actuator with valve

We assume the flow through the orifice formed by the valve is
proportional to x; that is,

Q1 = 1
ρR1

(ps − p1)
1/2x. (2.101)

Similarly,

Q2 = 1
ρR2

(p2 − pe)
1/2x. (2.102)

The continuity relation yields

Aẏ = Q1 = Q2, (2.103)

where
A = piston area.

The force balance on the piston yields

A(p1 − p2)− F = mÿ, (2.104)

where

m = mass of the piston and the attached rod,

F = force applied by the piston rod to the control surface
attachment point.

Furthermore, the moment balance of the control surface using
Eq. (2.10) yields

I θ̈ = Fl cos θ − Fad, (2.105)
where

I = moment of inertia of the control surface and attachment
about the hinge,

Fa = applied aerodynamic load.
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To solve this set of five equations, we require the following
additional kinematic relationship between θ and y:

y = l sin θ . (2.106)

The actuator is usually constructed so the valve exposes the two
passages equally; therefore, R1 = R2, and we can infer from
Eqs. (2.101) to (2.103) that

ps − p1 = p2 − pe. (2.107)

These relations complete the nonlinear differential equations of
motion; they are formidable and difficult to solve.

2. Linearization and simplification: For the case in which ẏ = a con-
stant (ÿ = 0) and there is no applied load (F = 0), Eqs. (2.104)
and (2.107) indicate that

p1 = p2 = ps + pe

2
. (2.108)

Therefore, using Eq. (2.103) and letting sin θ = θ (since θ is
assumed to be small), we get

θ̇ =
√

ps − pe√
2AρRl

x. (2.109)

This represents a single integration between the input x and the
output θ , where the proportionality constant is a function only of
the supply pressure and the fixed parameters of the actuator. For
the case ẏ = constant but F 
= 0, Eqs. (2.104) and (2.107) indicate
that

p1 = ps + pe + F/A
2

and

θ̇ =
√

ps − pe − F/A√
2AρRl

x. (2.110)

This result is also a single integration between the input x and the
output θ , but the proportionality constant now depends on the
applied load F .

As long as the commanded values of x produce θ motion that
has a sufficiently small value of θ̈ , the approximation given by
Eq. (2.109) or (2.110) is valid and no other linearized dynamic
relationships are necessary. However, as soon as the commanded
values of x produce accelerations in which the inertial forces (mÿ
and the reaction to I θ̈ ) are a significant fraction of ps − pe, the
approximations are no longer valid. We must then incorporate
these forces into the equations, thus obtaining a dynamic relation-
ship between x and θ that is much more involved than the pure
integration implied by Eq. (2.109) or (2.110). Typically, for initial
control system designs, hydraulic actuators are assumed to obey
the simple relationship of Eq. (2.109) or (2.110). When hydraulic
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actuators are used in feedback control systems, resonances have
been encountered that are not explained by using the approxi-
mation that the device is a simple integrator as in Eq. (2.109) or
(2.110). The source of the resonance is the neglected accelerations
discussed above along with the additional feature that the oil is
slightly compressible due to small quantities of entrained air. This
phenomenon is called the “oil-mass resonance.”

2.5 Historical Perspective
Newton’s second law of motion (Eq. 2.1) was first published in his
Philosophiæ Naturalis Principia Mathematica in 1686 along with his two
other famous laws of motion. The first: A body will continue with the
same uniform motion unless acted on by an external unbalanced force,
and the third: To every action, there is an equal and opposite reac-
tion. Isaac Newton also published his law of gravitation in this same
publication, which stated that every mass particle attracts all other par-
ticles by a force proportional to the inverse of the square of the distance
between them and the product of their two masses. His basis for devel-
oping these laws was the work of several other early scientists, combined
with his own development of the calculus in order to reconcile all the
observations. It is amazing that these laws still stand today as the basis
for almost all dynamic analysis with the exception of Einstein’s addi-
tions in the early 1900s for relativistic effects. It is also amazing that
Newton’s development of calculus formed the foundation of our math-
ematics that enable dynamic modeling. In addition to being brilliant, he
was also very eccentric. As Brennan writes in Heisenberg Probably Slept
Here, “He was seen about campus in his disheveled clothes, his wig
askew, wearing run-down shoes and a soiled neckpiece. He seemed to
care about nothing but his work. He was so absorbed in his studies that
he forgot to eat.” Another interesting aspect of Newton is that he ini-
tially developed the calculus and the now famous laws of physics about
20 years prior to publishing them! The incentive to publish them arose
from a bet between three men having lunch at a pub in 1684: Edmond
Halley, Christopher Wren, and Robert Hooke. They all had the opin-
ion that Kepler’s elliptical characterization of planetary motion could
be explained by the inverse square law, but nobody had ever proved it,
so they “placed a bet as to who could first prove the conjecture.”11 Hal-
ley went to Newton for help due to his fame as a mathematician, who
responded he had already done it many years ago and would forward
the papers to him. He not only did that shortly afterward, but followed
it up with the Principia with all the details two years later.

11Much of the background on Newton was taken from Heisenberg Probably Slept Here,
by Richard P. Brennan, 1997. The book discusses his work and the other early scientists
that laid the groundwork for Newton.
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The basis for Newton’s work started with the astronomer Nicholas
Copernicus more than a hundred years before the Principia was pub-
lished. He was the first to speculate that the planets revolved around the
sun, rather than everything in the skies revolving around the earth. But
Copernicus’ heretical notion was largely ignored at the time, except by
the church who banned his publication. However, two scientists did take
note of his work: Galileo Galilei in Italy and Johannes Kepler in Aus-
tria. Kepler relied on a large collection of astronomical data taken by
a Danish astronomer, Tycho Brahe, and concluded that the planetary
orbits were ellipses rather than the circles that Copernicus had postu-
lated. Galileo was an expert telescope builder and was able to clearly
establish that the earth was not the center of all motion, partly because
he was able to see moons revolving around other planets. He also did
experiments with rolling balls down inclined planes that strongly sug-
gested that F = ma (alas, it’s a myth that he did his experiments by
dropping objects out of the Leaning Tower of Pisa). Galileo published
his work in 1632, which raised the ire of the church who then later
banned him to house arrest until he died.12 It was not until 1985 that the
church recognized the important contributions of Galileo! These men
laid the groundwork for Newton to put it all together with his laws of
motion and the inverse square gravitational law. With these two physical
principles, all the observations fit together with a theoretical framework
that today forms the basis for the modeling of dynamic systems.

The sequence of discoveries that ultimately led to the laws of
dynamics that we take for granted today were especially remarkable
when we stop to think that they were all carried out without a com-
puter, a calculator, or even a slide rule. On top of that, Newton had to
invent calculus in order to reconcile the data.

After publishing the Principia, Newton went on to be elected to
Parliament and was given high honors, including being the first man of
science to be knighted by the Queen. He also got into fights with other
scientists fairly regularly and used his powerful positions to get what he
wanted. In one instance, he wanted data from the Royal Observatory
that was not forthcoming fast enough. So he created a new board with
authority over the Observatory and had the Astronomer Royal expelled
from the Royal Society. Newton also had other less scientific interests.
Many years after his death, John Maynard Keynes found that Newton
had been spending as much of his time on metaphysical occult, alchemy,
and biblical works as he had been on physics.

More than a hundred years after Newton’s Principia, Michael Fara-
day performed a multitude of experiments and postulated the notion of
electromagnetic lines of force in free space. He also discovered induc-
tion (Faraday’s Law), which led to the electric motor and the laws
of electrolysis. Faraday was born into a poor family, had virtually no
schooling, and became an apprentice to a bookbinder at age 14. There

12Galileo’s life, accomplishments, and house arrest are very well described in Dava Sobel’s
book, Galileo’s Daughter.
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he read many of the books being bound and became fascinated by sci-
ence articles. Enthralled by these, he maneuvered to get a job as a
bottle washer for a famous scientist, eventually learned enough to be
a competitor to him, and ultimately became a professor at the Royal
Institution in London. But lacking a formal education, he had no math-
ematical skills, and lacked the ability to create a theoretical framework
for his discoveries. Faraday became a famous scientist in spite of his
humble origins. After he had achieved fame for his discoveries and was
made a Fellow of the Royal Society, the prime minister asked him what
good his inventions could be.13 Faraday’s answer was, “Why Prime Min-
ister, someday you can tax it.” But in those days, scientists were almost
exclusively men born into privilege; so Faraday had been treated like
a second-class citizen by some of the other scientists. As a result, he
rejected knighthood as well as burial at Westminster Abbey. Faraday’s
observations, along with those by Coulomb and Ampere, led James
Clerk Maxwell to integrate all their knowledge on magnetism and elec-
tricity into Maxwell’s equations. Against the beliefs of most prominent
scientists of the day (Faraday being an exception), Maxwell invented
the concepts of fields and waves that explained magnetic and electro-
static forces and was the key to creating the unifying theory. Although
Newton had discovered the spectrum of light, Maxwell was also the first
to realize that light was one type of the same electromagnetic waves, and
its behavior was explained as well by Maxwell’s equations. In fact, the
only constants in his equations are μ and ε. The constant speed of light
is c = 1/

√
με.

Maxwell was a Scottish mathematician and theoretical physicist.
His work has been called the second great unification in physics, the
first being that due to Newton. Maxwell was born into the privileged
class and was given the benefits of an excellent education and excelled
at it. In fact, he was an extremely gifted theoretical and experimental
scientist as well as a very generous and kind man with many friends and
little vanity. In addition to unifying the observations of electromagnet-
ics into a theory that still governs our engineering analyses today, he
was the first to present an explanation of how light travels, the primary
colors, the kinetic theory of gases, the stability of Saturn’s rings, and the
stability of feedback control systems! His discovery of the three primary
colors (red, green, and blue) forms the basis of our color television to
this day. His theory showing the speed of light is a constant was diffi-
cult to reconcile with Newton’s laws and led Albert Einstein to create
the special theory of relativity in the early 1900s. This led Einstein to
say, “One scientific epoch ended and another began with James Clerk
Maxwell.”14

13E = MC2, A Biography of the World’s Most Famous Equation, by David Bodanis,
Walker and Co., New York, 2000.
14The Man Who Changed Everything: The Life of James Clerk Maxwell, Basil Mahon,
Wiley, Chichester, UK, 2003.
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SUMMARY

Mathematical modeling of the system to be controlled is the first
step in analyzing and designing the required system controls. In this
chapter we developed analytical models for representative systems.
Important equations for each category of system are summarized in
Table 2.1. It is also possible to obtain a mathematical model using
experimental data exclusively. This approach will be discussed briefly
in Chapter 3 and more extensively in Chapter 12 of Franklin, Powell,
and Workman (1998).

TABLE 2.1 Key Equations for Dynamic Models

Important Laws Associated Equation
System or Relationships Equations Number(s)

Mechanical Translational motion F = ma (2.1)
(Newton’s law)

Rotational motion M = Iα (2.10)
Electrical Operational amplifier (2.46), (2.47)
Electromechanical Law of motors F = Bli (2.53)

Law of generators e = Blv (2.56)
Torque developed in a rotor T = Ktia (2.60)

Back emf Voltage generated as a result e = Keθ̇m (2.61)
of rotation of a rotor

Gears Effective inertia Jeq = J2 + J1n2 (2.80)
Heat flow Heat-energy flow q = 1/R(T1 − T2) (2.81)

Temperature as a function of Ṫ = 1
C q (2.82)

heat-energy flow
Specific heat C = mcv (2.83)

Fluid flow Continuity relation ṁ = win − wout (2.91)
(conservation of matter)

Force of a fluid acting f = pA (2.93)
on a piston

Effect of resistance to fluid w = 1/R(p1 − p2)
1/α (2.94)

flow

REVIEW QUESTIONS

2.1 What is a “free-body diagram”?

2.2 What are the two forms of Newton’s law?

2.3 For a structural process to be controlled, such as a robot arm, what is the
meaning of “collocated control”? “Noncollocated control”?

2.4 State Kirchhoff’s current law.

2.5 State Kirchhoff’s voltage law.

2.6 When, why, and by whom was the device named an “operational
amplifier”?
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2.7 What is the major benefit of having zero input current to an operational
amplifier?

2.8 Why is it important to have a small value for the armature resistance Ra
of an electric motor?

2.9 What are the definition and units of the electric constant of a motor?

2.10 What are the definition and units of the torque constant of an electric
motor?

2.11 Why do we approximate a physical model of the plant (which is always
nonlinear) with a linear model?

2.12 Give the relationships for the following:�
(a) Heat flow across a substance

(b) Heat storage in a substance

2.13 Name and give the equations for the three relationships governing fluid�
flow.

PROBLEMS

Problems for Section 2.1: Dynamics of Mechanical Systems

2.1 Write the differential equations for the mechanical systems shown in
Fig. 2.43. For Fig. 2.43(a) and (b), state whether you think the system will
eventually decay so it has no motion at all, given that there are nonzero

Figure 2.43
Mechanical systems
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initial conditions for both masses and there is no input; give a reason for
your answer. Also, for part (c), answer the question for F = 0.

2.2 Write the differential equation for the mechanical system shown in
Fig. 2.44. State whether you think the system will eventually decay so
it has no motion at all, given that there are nonzero initial conditions for
both masses, and give a reason for your answer.

Figure 2.44
Mechanical system for
Problem 2.2

m1

K1

x1
b2

x2

K1

K2

No friction

m1

No friction

2.3 Write the equations of motion for the double-pendulum system shown in
Fig. 2.45. Assume the displacement angles of the pendulums are small
enough to ensure the spring is always horizontal. The pendulum rods
are taken to be massless, of length l, and the springs are attached three-
fourths of the way down.

Figure 2.45
Double pendulum

m

k

m

2.4 Write the equations of motion of a pendulum consisting of a thin, 2 kg
stick of length l suspended from a pivot. How long should the rod be
in order for the period to be exactly 1 sec? (The inertia I of a thin stick
about an end point is 1

3 ml2. Assume θ is small enough that sin θ ∼= θ .)
Why do you think grandfather clocks are typically about 6 ft high?

2.5 For the car suspension discussed in Example 2.2, plot the position of the
car and the wheel after the car hits a “unit bump”(that is, r is a unit step)
using Matlab. Assume m1 = 10 kg, m2 = 350 kg, Kw = 500,000 N/m,
and Ks = 10,000 N/m. Find the value of b that you would prefer if you
were a passenger in the car.

2.6 For the quadcopter shown in Figs. 2.13 and 2.14:

(a) Determine the appropriate commands to rotor #s 1, 2, 3, & 4 so a
pure vertical force will be applied to the quadcopter, that is, a force
that will have no effect on pitch, roll, or yaw.

(b) Determine the transfer function between Fh, and altitude, h. That is,
find h(s)/Fh(s).
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2.7 Automobile manufacturers are contemplating building active suspension
systems. The simplest change is to make shock absorbers with a change-
able damping, b(u1). It is also possible to make a device to be placed in
parallel with the springs that has the ability to supply an equal force, u2,
in opposite directions on the wheel axle and the car body.

(a) Modify the equations of motion in Example 2.2 to include such
control inputs.

(b) Is the resulting system linear?
(c) Is it possible to use the force u2 to completely replace the springs and

shock absorber? Is this a good idea?

2.8 In many mechanical positioning systems, there is flexibility between one
part of the system and another. An example is shown in Fig. 2.7 where
there is flexibility of the solar panels. Figure 2.46 depicts such a situa-
tion, where a force u is applied to the mass M and another mass m is
connected to it. The coupling between the objects is often modeled by
a spring constant k with a damping coefficient b, although the actual
situation is usually much more complicated than this.

(a) Write the equations of motion governing this system.
(b) Find the transfer function between the control input u and the

output y.

Figure 2.46
Schematic of a system
with flexibility

b

k
u

Mm

yx

2.9 Modify the equation of motion for the cruise control in Example 2.1,
Eq. (2.4), so it has a control law; that is, let

u = K(vr − v), (2.111)

where

vr = reference speed, (2.112)

K = constant. (2.113)

This is a “proportional”control law in which the difference between vr
and the actual speed is used as a signal to speed the engine up or slow it
down. Revise the equations of motion with vr as the input and v as the
output and find the transfer function. Assume m = 1500 kg and b = 70
N·sec/m, and find the response for a unit step in vr using Matlab. Using
trial and error, find a value of K that you think would result in a control
system in which the actual speed converges as quickly as possible to the
reference speed with no objectionable behavior.
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2.10 Determine the dynamic equations for lateral motion of the robot in Fig.
2.47. Assume it has three wheels with a single, steerable wheel in the front
where the controller has direct control of the rate of change of the steering
angle, Usteer, with geometry as shown in Fig. 2.48. Assume the robot
is going in approximately a straight line and its angular deviation from
that straight line is very small. Also assume the robot is traveling at a
constant speed, Vo. The dynamic equations relating the lateral velocity
of the center of the robot as a result of commands in Usteer are desired.

Figure 2.47
Robot for delivery of
hospital supplies
Source: Bill Clark/Daily
Progress/AP Images

Figure 2.48
Model for robot motion

L
2
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2.11 Determine the pitch, yaw, and roll control equations for the hexacopter
shown in Fig. 2.49 that are similar to those for the quadcopter given in
Eqs. (2.18) to (2.20).

Assume rotor #1 is in the direction of flight, and the remaining
rotors are numbered CW from that rotor. In other words, rotors #1 and
#4 will determine the pitch motion. Rotor #s 2, 3, 5, & 6 will determine
roll motion. Pitch, roll and yaw motions are defined by the coordinate
system shown in Fig. 2.14 in Example 2.5. In addition to developing the
equations for the 3 degrees of freedom in terms of how the six rotor
motors should be commanded (similar to those for the quadrotor in
Eqs. (2.18)–(2.20)), it will also be necessary to decide which rotors are
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Figure 2.49
Hexacopter

turning CW and which ones are turning CCW. The direction of rotation
for the rotors needs to be selected so there is no net torque about the ver-
tical axis; that is, the hexicopter will have no tendancy for yaw rotation
in steady-state. Furthermore, a control action to affect pitch should have
no effect on yaw or roll. Likewise, a control action for roll should have no
effect on pitch or yaw, and a control action for yaw should have no effect
on pitch or roll. In other words, the control actions should produce no
cross-coupling between pitch, roll, and yaw just as was the case for the
quadcopter in Example 2.5.

2.12 In most cases, quadcopters have a camera mounted that does not swivel
in the x-y plane and its direction of view is oriented at 45◦ to the arms
supporting the rotors. Therefore, these drones typically fly in a direc-
tion that is aligned with the camera rather than along an axis containing
two of the rotors. To simplify the flight dynamics, the x-direction of the
coordinate system is aligned with the camera direction. Based on the
coordinate definitions for the axes in Fig. 2.14, assume the x-axis lies
half way between rotors # 1 and 2 and determine the rotor commands
for the four rotors that would accomplish independent motion for pitch,
roll, and yaw.

Problems for Section 2.2: Models of Electric Circuits

2.13 A first step toward a realistic model of an op-amp is given by the
following equations and is shown in Fig. 2.50:

Vout = 107

s+ 1
[v+ − v−] ,

i+ = i− = 0.

Find the transfer function of the simple amplification circuit shown using
this model.

Figure 2.50
Circuit for Problem 2.13

Rin y-

y+Vin Vout

Rf

-

+
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2.14 Show the op-amp connection shown in Fig. 2.51 results in Vout = Vin
if the op-amp is ideal. Give the transfer function if the op-amp has the
nonideal transfer function of Problem 2.13.

Figure 2.51
Circuit for Problem 2.14 y-

y+
Vin

Vout

- 

+

2.15 A common connection for a motor power amplifier is shown in Fig. 2.52.
The idea is to have the motor current follow the input voltage, and
the connection is called a current amplifier. Assume the sense resistor
rs is very small compared with the feedback resistor R, and find the
transfer function from Vin to Ia. Also show the transfer function when
Rf = ∞.

Figure 2.52
Op-amp circuit for
Problem 2.15 Rin

Rs

R

Vin
Vout

DC motor

Rf

-

+
-
+Ia

y-

y+

2.16 An op-amp connection with feedback to both the negative and the pos-
itive terminals is shown in Fig. 2.53. If the op-amp has the nonideal
transfer function given in Problem 2.13, give the maximum value pos-
sible for the positive feedback ratio, P = r

r+R , in terms of the negative

feedback ratio, N = Rin
Rin+Rf

, for the circuit to remain stable.

Figure 2.53
Op-amp circuit for
Problem 2.16 Rin
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2.17 Write the dynamic equations and find the transfer functions for the
circuits shown in Fig. 2.54.

(a) Passive lead circuit
(b) Active lead circuit
(c) Active lag circuit
(d) Passive notch circuit

Figure 2.54
(a) Passive lead;
(b) active lead;
(c) active lag; and
(d) passive notch
circuits

(b)

(a)

Vout

(c)

R1R2
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C
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Vout

Rin
Vin

R2 R1

C

R

(d)

R/2 2C
R

C C

VoutVin

R2

R1

C

u y

2.18 The very flexible circuit shown in Fig. 2.55 is called a biquad because
its transfer function can be made to be the ratio of two second-order or
quadratic polynomials. By selecting different values for Ra, Rb, Rc, and
Rd , the circuit can realize a low-pass, band-pass, high-pass, or band-
reject (notch) filter.

(a) Show that if Ra = R and Rb = Rc = Rd = ∞, the transfer function
from Vin to Vout can be written as the low-pass filter

Vout

Vin
= A

s2

ω2
n
+ 2ζ s

ωn
+ 1

, (2.114)



main_1 — 2019/2/5 — 10:40 — page 106 — #61

106 Chapter 2 Dynamic Models

R1

Rc

Rb

Ra
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R R
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C

C

Vout
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Figure 2.55
Op-amp biquad

where

A = R
R1

,

ωn = 1
RC

,

ζ = R
2R2

.

(b) Using the Matlab command step, compute and plot on the same
graph the step responses for the biquad of Fig. 2.55 for A = 2,
ωn = 3, and ζ = 0.1, 0.5, and 1.0.

2.19 Find the equations and transfer function for the biquad circuit of
Fig. 2.55 if Ra = R, Rd = R1, and Rb = Rc = ∞.

Problems for Section 2.3: Models of Electromechanical
Systems

2.20 The torque constant of a motor is the ratio of torque to current and is
often given in ounce-inches per ampere. (Ounce-inches have dimension
force × distance, where an ounce is 1/16 of a pound.) The electric con-
stant of a motor is the ratio of back emf to speed and is often given in
volts per 1000 rpm. In consistent units, the two constants are the same
for a given motor.

(a) Show that the units ounce-inches per ampere are proportional to
volts per 1000 rpm by reducing both to MKS (SI) units.

(b) A certain motor has a back emf of 30 V at 1000 rpm. What is its
torque constant in ounce-inches per ampere?

(c) What is the torque constant of the motor of part (b) in newton-meters
per ampere?
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2.21 The electromechanical system shown in Fig. 2.56 represents a simpli-
fied model of a capacitor microphone. The system consists in part of
a parallel plate capacitor connected into an electric circuit. Capacitor
plate a is rigidly fastened to the microphone frame. Sound waves pass
through the mouthpiece and exert a force fe(t) on plate b, which has
mass M and is connected to the frame by a set of springs and dampers.
The capacitance C is a function of the distance x between the plates, as
follows:

C(x) = εA
x

,

Figure 2.56
Simplified model for
capacitor microphone

 - 
 + 

x

K

B

L R

i(t)
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b
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where

ε = dielectric constant of the material between the plates,

A = surface area of the plates.

The charge q and the voltage e across the plates are related by

q = C(x)e.

The electric field in turn produces the following force fe on the movable
plate that opposes its motion:

fe = q2

2εA
.

(a) Write differential equations that describe the operation of this sys-
tem. (It is acceptable to leave in nonlinear form.)

(b) Can one get a linear model?
(c) What is the output of the system?

2.22 A very typical problem of electromechanical position control is an
electric motor driving a load that has one dominant vibration mode.
The problem arises in computer-disk-head control, reel-to-reel tape
drives, and many other applications. A schematic diagram is sketched in
Fig. 2.57. The motor has an electrical constant Ke, a torque constant Kt,
an armature inductance La, and a resistance Ra. The rotor has an inertia
J1 and a viscous friction B. The load has an inertia J2. The two iner-
tias are connected by a shaft with a spring constant k and an equivalent
viscous damping b. Write the equations of motion.
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Figure 2.57
Motor with a flexible
load
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2.23 For the robot in Fig. 2.47, assume you have command of the torque on�
a servo motor that is connected to the drive wheels with gears that have
a 2:1 ratio, so the torque on the wheels is increased by a factor of 2 over
that delivered by the servo. Determine the dynamic equations relating the
speed of the robot with respect to the torque command of the servo. Your
equations will require certain quantities, for example, mass of vehicle,
inertia, and radius of the wheels. Assume you have access to whatever
you need.

2.24 Using Fig. 2.36, derive the transfer function between the applied torque,�
Tm, and the output, θ2, for the case when there is a spring attached to
the output load. That is, there is a torque applied to the output load, Ts,
where Ts = −Ksθ2.

Figure 2.58
(a) Precision table kept
level by actuators;
(b) side view of one
actuator

yi
Tact

(b)

d

yi

(a)

Problems for Section 2.4: Heat and Fluid-Flow Models�
2.25 A precision table-leveling scheme shown in Fig. 2.58 relies on thermal

expansion of actuators under two corners to level the table by raising or
lowering their respective corners. The parameters are as follows:

Tact = actuator temperature,

Tamb = ambient air temperature,

Rf = heat-flow coefficient between the actuator and the air,

C = thermal capacity of the actuator,

R = resistance of the heater.

Assume (1) the actuator acts as a pure electric resistance, (2) the heat flow
into the actuator is proportional to the electric power input, and (3) the
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motion d is proportional to the difference between Tact and Tamb due to
thermal expansion. Find the differential equations relating the height of
the actuator d versus the applied voltage vi.

2.26 An air conditioner supplies cold air at the same temperature to each
room on the fourth floor of the high-rise building shown in Fig. 2.59(a).
The floor plan is shown in Fig. 2.59(b). The cold airflow produces an
equal amount of heat flow q out of each room. Write a set of differential
equations governing the temperature in each room, where

Figure 2.59
Building
air-conditioning:
(a) high-rise building;
(b) floor plan of the
fourth floor

Fourth

floor

Ro

Ri

(a)

(b)

To = temperature outside the building,

Ro = resistance to heat flow through the outer walls,

Ri = resistance to heat flow through the inner walls.

Assume (1) all rooms are perfect squares, (2) there is no heat flow through
the floors or ceilings, and (3) the temperature in each room is uniform
throughout the room. Take advantage of symmetry to reduce the number
of differential equations to three.

2.27 For the two-tank fluid-flow system shown in Fig. 2.60, find the differen-
tial equations relating the flow into the first tank to the flow out of the
second tank.

Figure 2.60
Two-tank fluid-flow
system for Problem 2.27

wout

win
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2.28 A laboratory experiment in the flow of water through two tanks is
sketched in Fig. 2.61. Assume Eq. (2.96) describes flow through the
equal-sized holes at points A, B, or C.

Figure 2.61
Two-tank fluid-flow
system for Problem 2.28

Pump

A

B
C

h1

h3

h2

(a) With holes at B and C, but none at A, write the equations of motion
for this system in terms of h1 and h2. Assume when h2 = 15 cm, the
outflow is 200 g/min.

(b) At h1 = 30 cm and h2 = 10 cm, compute a linearized model and the
transfer function from pump flow (in cubic-centimeters per minute)
to h2.

(c) Repeat parts (a) and (b) assuming hole B is closed and hole A is open.
Assume h3 = 20 cm, h1 > 20 cm, and h2 < 20 cm.

2.29 The equations for heating a house are given by Eqs. (2.81) and (2.82), and
in a particular case can be written with time in hours as

C
dTh
dt
= Ku− Th − To

R
,

where

(a) C is the thermal capacity of the house, BTU/◦F,
(b) Th is the temperature in the house, ◦F,
(c) To is the temperature outside the house, ◦F,
(d) K is the heat rating of the furnace, = 90, 000 BTU/h,
(e) R is the thermal resistance, ◦F per BTU/h,
(f) u is the furnace switch, = 1 if the furnace is on and = 0 if the furnace

is off.

It is measured that, with the outside temperature at 32◦F and the house
at 60◦F, the furnace raises the temperature 2◦F in six min (0.1 h). With
the furnace off, the house temperature falls 2◦F in 40 min. What are the
values of C and R for the house?
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A Perspective on System Response
We discussed in Chapter 2 how to obtain the dynamic model of a sys-
tem. In designing a control system, it is important to see how well a
trial design matches the desired performance. We do this by solving
the equations of the system model.

There are two ways to approach solving the dynamic equations.
For a quick, approximate analysis, we use linear analysis techniques.
The resulting approximations of system response provide insight into
why the solution has certain features and how the system might be
changed to modify the response in a desired direction. In contrast,
a precise picture of the system response typically calls for numeri-
cal simulation of nonlinear equations of motion using computer aids.
This chapter focuses on linear analysis and computer tools that can be
used to solve for the time response of linear systems.

There are three domains within which to study dynamic response:
the Laplace transform (s-plane), the frequency response, and
the state space (analysis using the state-variable description). The

111
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well-prepared control engineer needs to be fluent in all of them, so
they will be treated in depth in Chapters 5, 6, and 7, respectively.
The purpose of this chapter is to discuss some of the fundamental
mathematical tools needed before studying analysis in the s-plane,
frequency response, and state space.

Chapter Overview
The Laplace transform, reviewed in Section 3.1 (and Appendix A), is
the mathematical tool for transforming differential equations into an
easier-to-manipulate algebraic form. In addition to the mathemati-
cal tools at our disposal, there are graphical tools that can help us
to visualize the model of a system and evaluate the pertinent mathe-
matical relationships between elements of the system. One approach
is the block diagram, which was introduced in Chapter 1. Block-
diagram manipulation will be discussed in Section 3.2 and allows the
manipulation of transfer functions.

Once the transfer function has been determined, we can iden-
tify its poles and zeros, which tell us a great deal about the sys-
tem characteristics, including its frequency response introduced in
Section 3.1. Sections 3.3 to 3.5 will focus on poles and zeros and some
of the ways for manipulating them to steer system characteristics in
a desired way. When feedback is introduced, the possibility that the
system may become unstable is introduced. To study this effect, in
Section 3.6 we consider the definition of stability and Routh’s test,
which can determine stability by examining the coefficients of the
system’s characteristic equation. Finally, Section 3.7 will provide a
historical perspective for the material in this chapter. An alterna-
tive representation of a system in graphical form is the signal-flow
graph and flow graphs that allow the determination of complicated
transfer functions, which are discussed in Appendix W3.2.3 online at
www.pearsonglobaleditions.com.

3.1 Review of Laplace Transforms
Two attributes of linear time-invariant systems (LTIs) form the basis for
almost all analytical techniques applied to these systems:

1. A linear system response obeys the principle of superposition.
2. The response of an LTI system can be expressed as the convolution

of the input with the unit impulse response of the system.

The concepts of superposition, convolution, and impulse response
will be defined shortly.

From the second property (as we will show), it follows immediately
that the response of an LTI system to an exponential input is also expo-
nential. This result is the principal reason for the usefulness of Fourier
and Laplace transforms in the study of LTI systems.

www.pearsonglobaleditions.com
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3.1.1 Response by Convolution
The principle of superposition states that if the system has an input thatSuperposition principle
can be expressed as a sum of signals, then the response of the system
can be expressed as the sum of the individual responses to the respec-
tive signals. We can express superposition mathematically. Consider the
system to have input u and output y. Suppose further that, with the sys-
tem at rest, we apply the input u1(t) and observe the output y1(t). After
restoring the system to rest, we apply a second input u2(t) and again
observe the output, which we call y2(t). Then, we form the composite
input u(t) = α1u1(t) + α2u2(t). Finally, if superposition applies, then
the response will be y(t) = α1y1(t) + α2y2(t). Superposition will apply
if and only if the system is linear.

EXAMPLE 3.1 Superposition

Show that superposition holds for the system modeled by the first-order
linear differential equation

ẏ+ ky = u.

Solution. We let u = α1u1 + α2u2 and assume y = α1y1 + α2y2. Then
ẏ = α1ẏ1 + α2ẏ2. If we substitute these expressions into the system
equation, we get

α1ẏ1 + α2ẏ2 + k(α1y1 + α2y2) = α1u1 + α2u2.

From this, it follows that

α1(ẏ1 + ky1 − u1)+ α2(ẏ2 + ky2 − u2) = 0. (3.1)

If y1 is the solution with input u1 and y2 is the solution with input
u2, then Eq. (3.1) is satisfied, the response is the sum of the individual
responses, and superposition holds.

Notice the superposition result of Eq. (3.1) would also hold if k
were a function of time. If k were constant, we call the system time
invariant. In that case, it follows that if the input is delayed or shifted in
time, then the output is unchanged except also being shifted by exactly
the same amount. Mathematically, this is expressed by saying that, if
y1(t) is the output caused by u1(t) then y1(t− τ) will be the response to
u1(t− τ).

EXAMPLE 3.2 Time Invariance

Consider
ẏ1(t)+ k(t)y1(t) = u1(t), (3.2)

and
ẏ2(t)+ k(t)y2(t) = u1(t− τ),

where τ is a constant shift. Assume that y2(t) = y1(t− τ); then
dy1(t− τ)

dt
+ k(t)y1(t− τ) = u1(t− τ).
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Let us make the change of variable t− τ = η, then
dy1(η)

dη
+ k(η + τ)y1(η) = u1(η). (3.3)

Eq. (3.3) can satisfy Eq. (3.2) only if τ = 0, or if k(η + τ) = k =
constant, in which case

dy1(η)

dη
+ ky1(η) = u(η),

which is Eq. (3.1). Therefore, we conclude that if the system is time
invariant, y(t− τ) will be the response to u(t− τ); that is, if the input is
delayed by τ sec, then the output is also delayed by τ sec.

We are able to solve for the response of a linear system to a general
signal simply by decomposing the given signal into a sum of the elemen-
tary components and, by superposition, concluding that the response to
the general signal is the sum of the responses to the elementary signals.
In order for this process to work, the elementary signals need to be suf-
ficiently “rich” that any reasonable signal can be expressed as a sum
of them, and their responses have to be easy to find. The most com-
mon candidates for elementary signals for use in linear systems are the
impulse and the exponential.

Suppose the input signal to an LTI system is a short pulse as u1(t) =
p(t), and the corresponding output signal is y1(t) = h(t), as shown in
Fig. 3.1(a). Now if the input is scaled to u1(t) = u(0)p(t), then by the
scaling property of superposition, the output response will be y1(t) =
u(0)h(t). We showed that an LTI system obeys time invariance. If we
delay the short pulse signal in time by τ , then the input is of the form
u2(t) = p(t−τ) and the output response will also be delayed by the same
amount y2(t) = h(t−τ) as shown in Fig. 3.1(b). Now, by superposition,
the response to the two short pulses will be the sum of their individual
outputs as shown in Fig. 3.1(c). If we have four pulses as the input, then
the output will be the sum of the four individual responses as shown in
Fig. 3.1(d). Any arbitrary input signal u(t) may be approximated by a
series of pulses as shown in Fig. 3.2. We define a short pulse p�(t) as aShort pulse
rectangular pulse having unit area such that

p�(t) =
{

1
�

, 0 ≤ t ≤ �
0, elsewhere

(3.4)

as shown in Fig. 3.1(a). Suppose the response of the system to p�(t) is
defined as h�(t). The response at time n� to � u(k�)p�(k�) is

� u(k�) h�(n�− k�).

By superposition, the total response to the series of the short pulses at
time t is given by

y(t) =
k=∞∑
k=0

� u(k�) h�(t− k�). (3.5)
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Figure 3.1
Illustration of
convolution as the
response of a system to
a series of short pulse
(impulse) input signals
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If we take the limit as �→ 0, the basic pulse gets more and more nar-
row and taller while holding a constant area. We then have the concept
of an impulse signal, δ(t), and that will allow us to treat continuous
signals. In that case, we have

lim
�→0

p�(t) = δ(t), (3.6)

lim
�→0

h�(t) = h(t) = the impulse response. (3.7)

Moreover, in the limit as�→ 0, the summation in Eq. (3.5) is replaced
by the integral

y(t) =
∫ ∞

0
u(τ )h(t− τ) dτ , (3.8)

which is the convolution integral.
The idea for the impulse comes from dynamics. Suppose we wish

to study the motion of a baseball hit by a bat. The details of the colli-
sion between the bat and ball can be very complex as the ball deforms
and the bat bends; however, for purposes of computing the path of the
ball, we can summarize the effect of the collision as the net velocity
change of the ball over a very short time period. We assume the ball is
subjected to an impulse, a very intense force for a very short time. TheImpulse response
physicist Paul Dirac suggested that such forces could be represented by
the mathematical concept of an impulse δ(t), which has the property
thatDefinition of impulse

δ(t) = 0 t �= 0, (3.9)∫ ∞
−∞

δ(t)dt = 1. (3.10)

If f (t) is continuous at t = τ , then it has the “sifting property.”Sifting property of impulse ∫ ∞
−∞

f (τ )δ(t− τ) dτ = f (t). (3.11)

In other words, the impulse is so short and so intense that no value of
f matters except over the short range where the δ occurs. Since inte-
gration is a limit of a summation process, Eq. (3.11) can be viewed as
representing the function f as a sum of impulses. If we replace f by u,
then Eq. (3.11) represents an input u(t) as a sum of impulses of inten-
sity u(t − τ). To find the response to an arbitrary input, the principle
of superposition tells us that we need only find the response to a unit
impulse.

If the system is not only linear but also time invariant (LTI), then
the impulse response is given by h(t − τ) because the response at t to
an input applied at τ depends only on the difference between the time
the impulse is applied and the time we are observing the response, that
is, the elapsed time. Time-invariant systems are called shift invariant for
this reason. For time-invariant systems, the output for a general input
is given by the integral

y(t) =
∫ ∞
−∞

u(τ )h(t− τ) dτ , (3.12)
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or by changing of variables as τ1 = t− τ

y(t) =
∫ −∞
∞

u(t− τ1)h(τ1) (−dτ1) =
∫ ∞
−∞

h(τ )u(t− τ) dτ . (3.13)

This is the convolution integral.The convolution integral

EXAMPLE 3.3 Convolution

We can illustrate convolution with a simple system. Determine the
impulse response for the system described by the differential equation

ẏ+ ky = u = δ(t),
with an initial condition of y(0) = 0 before the impulse.

Solution. Because δ(t) has an effect only near t = 0, we can integrate
this equation from just before zero to just after zero with the result that

∫ 0+

0−
ẏ dt+ k

∫ 0+

0−
y dt =

∫ 0+

0−
δ(t) dt.

The integral of ẏ is simply y, the integral of y over so small a range
is zero, and the integral of the impulse over the same range is unity.
Therefore,

y(0+)− y(0−) = 1.

Because the system was at rest before application of the impulse,
y(0−) = 0. Thus the effect of the impulse is that y(0+) = 1. For positive
time, we have the differential equation

ẏ+ ky = 0, y(0+) = 1.

If we assume a solution y = Aest, then ẏ = Asest. The preceding
equation then becomes

Asest + kAest = 0,

s+ k = 0,

s = −k.

Because y(0+) = 1, it is necessary that A = 1. Thus the solution for the
impulse response is y(t) = h(t) = e−kt for t > 0. To take care of the fact
that h(t) = 0 for negative time, we define the unit-step functionUnit step

1(t) =
{

0, t < 0,
1, t ≥ 0.

With this definition, the impulse response of the first-order system
becomes

h(t) = e−kt1(t).

The response of this system to a general input is given by the convolu-
tion of this impulse response with the input
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y(t) =
∫ ∞
−∞

h(τ )u(t− τ) dτ

=
∫ ∞
−∞

e−kτ1(τ )u(t− τ) dτ

=
∫ ∞

0
e−kτu(t− τ) dτ .

For time-invariant systems, the output for a general input is given
by the integral

y(t) =
∞∫

−∞
u(τ )h(t− τ)dτ . (3.14)

Notice the limits on the integral are at infinity. Thus, either or both h
and u may be nonzero for negative time. If h has values for negative
time, it means that the system response starts before the input is applied!
Systems which do this are called non-causal because they do not obeyNon-causal system
the usual law of cause and effect.1 Of course, all physical systems are
causal. Furthermore, in most cases of interest we take t = 0 as the time
when the input starts. In this case, with causal systems, the integral may
be written as

y(t) =
t∫

0

u(τ )h(t− τ)dτ . (3.15)

3.1.2 Transfer Functions and Frequency Response
A simple version of the transfer function concept was developed in
Chapter 2. A more rigorous treatment of this concept using the con-
volution integral follows. The evaluation of the convolution integral
Eq. (3.14) can be difficult and an indirect approach has been developed
using the Laplace transform2 defined as

Y(s) =
∞∫

−∞
y(t)e−stdt.

Applying this transform to the convolution,

Y(s) =
∞∫

−∞

⎡
⎣
∞∫

−∞
h(τ )u(t− τ)dτ

⎤
⎦ e−stdt.

Next, we exchange the order of integration such that we integrate with
respect to t first

1A system is said to be causal if the output is not dependent on future inputs, that is, “the
system does not laugh before it is tickled.”
2Many properties of the Laplace transform are given in Appendix A.
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Y(s) =
∞∫

−∞

⎡
⎣
∞∫

−∞
u(t− τ)e−stdt

⎤
⎦ h(τ )dτ .

Changing variables of the inner integral by defining t− τ = η, we get

Y(s) =
∞∫

−∞

⎡
⎣
∞∫

−∞
u(η)e−s(η+τ)dt

⎤
⎦ h(τ )dτ , (3.16)

Y(s) =
⎡
⎣
∞∫

−∞
u(η)e−sηdη

⎤
⎦
∞∫

−∞
h(τ )e−sτdτ ,

Y(s) = U(s)H(s).

In this solution, U(s) is the Laplace transform of the input time function
and H(s), the Laplace transform of the impulse response, is defined as
the transfer function. By this operation, the complicated convolutionTransfer function
integral is replaced by a simple multiplication of the transforms. What
remains is to interpret the transforms and the transfer function. In the
first instance, the integrals of the transforms usually do not converge for
all values of the variable s, and they are only defined for a finite region
in the s-plane.

An immediate consequence of convolution is that an input of the
form est results in an output H(s)est. Note that both the input and out-
put are exponential time functions, and that the output differs from the
input only in the amplitude H(s). H(s) is defined as the transfer func-
tion of the system. The specific constant s may be complex, expressed
as s = σ1 + jω. Thus, both the input and the output may be complex. If
we let u(t) = est in Eq. (3.13), then

y(t) =
∫ ∞
−∞

h(τ )u(t− τ) dτ ,

y(t) =
∫ ∞
−∞

h(τ )es(t−τ) dτ ,

y(t) =
∫ ∞
−∞

h(τ )este−sτ dτ ,

y(t) =
∫ ∞
−∞

h(τ )e−sτ dτest,

y(t) = H(s)est, (3.17)

where

H(s) =
∫ ∞
−∞

h(τ )e−sτ dτ .3 (3.18)

3The integral does not converge for every value of s and care must be taken to be sure that
the result is not used where it does not exist. Refer to Appendix A for details.
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Laplace defined this integral and it is called the Laplace transform.
Notice the limits on the integral are −∞ to +∞, implying that h(t)
may have values at any time. Equation (3.18) needs to be interpreted
carefully.4 Notice this input is exponential for all time (−∞ < t <∞)
and Eq. (3.18) represents the response for all time and hence there are
no initial conditions, and Eq. (3.17) gives the steady-state behavior of
the system. Therefore, if the input is an exponential for all time, and if
we know the transfer function H(s), the output is readily computed by
multiplication and the need for convolution goes away! The important
conclusion is that if the input is an exponential time function so is the
output and the scaling term is the transfer function. For any real, causal
system, h(t) = 0 for t < 0, and the limits on the integral can be set from
0 to∞

H(s) =
∫ ∞

0
h(τ )e−sτ dτ .

For a causal system, Eq. (3.13) simplifies to

y(t) =
∫ ∞

0
h(τ )u(t− τ) dτ . (3.19)

EXAMPLE 3.4 Transfer Function

Compute the transfer function for the system of Example 3.1, and find
the output y for all time (−∞ < t <∞) when the input u = est for all
time and s is a given complex number.

Solution. The system equation from Example 3.3 is
ẏ(t)+ ky(t) = u(t) = est. (3.20)

We assume we can express y(t) as H(s)est. With this form, we have ẏ =
sH(s)est, and Eq. (3.20) reduces to

sH(s)est + kH(s)est = est. (3.21)
Solving for the transfer function H(s), we get

H(s) = 1
s+ k

.

Substituting this back into Eq. (3.17) yields the output for all time

y(t) = est

s+ k
.

The integral in Eq. (3.18) does not need to be computed to find the
transfer function of a system. Instead, one can assume a solution of the
form of Eq. (3.17), substitute that into the differential equation of the
system, then solve for the transfer function H(s).

The transfer function can be formally defined as follows: The func-
tion H(s), which is the transfer gain from U(s) to Y(s)—input to
output—is called the transfer function of the system. It is the ratio of theTransfer function

4The corresponding output for the system is the particular solution from the well-known
result for solving linear ordinary differential equations.
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Laplace transform of the output of the system to the Laplace transform
of the input. We can derive the transfer function explicitly. If we take the
Laplace transform of both sides of Eq. (3.19), we have Y(s) = H(s)U(s)
and

Y(s)
U(s)

= H(s), (3.22)

with the key assumption that all of the initial conditions on the system
are zero.

Transfer function The transfer function H(s) is the ratio of the Laplace transform
of the output of the system to its input assuming all zero initial
conditions.

If the input u(t) is the unit impulse δ(t), then y(t) is the unit impulse
response. The Laplace transform of u(t) is 1 and the transform of y(t) is
H(s) because

Y(s) = H(s). (3.23)

In words, this is to say

Transfer function The transfer function H(s) is the Laplace transform of the unit
impulse response h(t).

Thus, one way to characterize an LTI system is by applying a unit
impulse and measuring the resulting response, which is a description
(the inverse Laplace transform) of the transfer function.

For example, given the ordinary differential equation describing a
third-order system with the output y(t) and input u(t)

...
y + a1ÿ+ a2ẏ+ a3y = b1ü+ b2u̇+ b3u, (3.24)

we take the Laplace transform of both sides of the equation, assuming
zero initial conditions (y(0−) = ẏ(0−) = ÿ(0−) = u(0−) = u̇(0−) = 0),
to obtain

s3Y(s)+ a1s2Y(s)+ a2sY(s)+ a3Y(s) = b1s2U(s)+ b2sU(s)+ b3U(s),
(3.25)

(s3 + a1s2 + a2s+ a3)Y(s) = (b1s2 + b2s+ b3)U(s),

which leads to the transfer function H(s),

H(s) = Y(s)
U(s)

= b1s2 + b2s+ b3

s3 + a1s2 + a2s+ a3
= b(s)

a(s)
. (3.26)

This idea can then be easily extended to a system of any order n.
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EXAMPLE 3.5 Transfer Function for an RC Circuit

Compute the transfer function for the RC circuit driven by a voltage
source as shown in Fig. 3.3.

Solution. The system equation from Kirchhoff’s voltage law is

Ri(t)+ y(t) = u(t),

i(t) = C
dy(t)

dt
,

or
RCẏ+ y = u(t).

If the input voltage is a unit impulse signal

RCẏ+ y = δ(t),
and we take the Laplace transform of both sides of the above equation
(see Appendix A)

RC(sY(s)− y(0−))+ Y(s) = U(s) = 1.

Then assuming zero initial condition (y(0−) = 0) we find

H(s) = Y(s)
U(s)

= Y(s) = 1
RCs+ 1

.

The output, that is, the inverse Laplace transform of Y(s), is the impulse
response

y(t) = h(t) = 1
RC

e−
t

RC 1(t).

Therefore, the transfer function for this system is

H(s) = L{h(t)} = 1
RCs+ 1

.

A very common way to use the exponential response of LTIs is
in finding the frequency response, or response to a sinusoid. First, weFrequency response
express the sinusoid as a sum of two exponential expressions (Euler’s
relation):

A cos(ωt) = A
2
(e jωt + e−jωt).

Figure 3.3
RC circuit diagram

+

-

+

-

R

C y(t)u(t)

i(t)
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If we let s = jω in the basic response formula Eq. (3.17), then the
response to u(t) = e jωt is y(t) = H( jω)e jωt; similarly, the response
to u(t) = e−jωt is H(−jω)e−jωt. By superposition, the response to the
sum of these two exponentials, which make up the cosine signal, is the
sum of the responses:

y(t) = A
2

[
H(jω)e jωt +H(−jω)e−jωt] . (3.27)

The transfer function H( jω) is a complex number that can be rep-
resented in polar form or in magnitude-and-phase form as H( jω) =
M(ω)e jϕ(ω), or simply H = Me jϕ . With this substitution, Eq. (3.27)
becomes

y(t) = A
2

M
(

e j(ωt+ϕ) + e−j(ωt+ϕ)) ,

= AM cos(ωt+ ϕ), (3.28)

where

M = |H( jω)|, ϕ = ∠H( jω).

This means if a system represented by the transfer function H(s) has a
sinusoidal input with magnitude A, the output will be sinusoidal at the
same frequency with magnitude AM and will be shifted in phase by the
angle ϕ.

EXAMPLE 3.6 Frequency Response

For the system in Example 3.1, find the response to the sinusoidal
input u = A cos(ωt). That is, find the frequency response and plot the
response for k = 1.

Solution. In Example 3.4, we found the transfer function of the system
in Example 3.1. To find the frequency response, we let s = jω so

H(s) = 1
s+ k

=⇒ H( jω) = 1
jω + k

.

From this, we get

M =
∣∣∣∣

1
jω + k

∣∣∣∣ =
1√

ω2 + k2
and ϕ = − tan−1

(ω
k

)
.

According to Eq. (3.28), the response of this system to a sinusoid will
be

y(t) = AM cos(ωt+ ϕ). (3.29)

M is usually referred to as the amplitude ratio and ϕ is referred to as
the phase, and they are both functions of the input frequency, ω. The
Matlab program that follows is used to compute the amplitude ratio
and phase for k = 1, as shown in Fig. 3.4. The logspace command is
used to set the frequency range (on a logarithmic scale) and the bode
command is used to compute the frequency response in Matlab. Pre-
senting frequency response in this manner (that is, on a log–log scale)
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was originated by H. W. Bode; thus, these plots are referred to as “Bode
plots.”5 (See Chapter 6, Section 6.1.)

k = 1;
tf=('s'); % define Laplace variable
sysH = 1/(s+k); % define system by its transfer function
w = logspace(-2,2); % set frequency w to 50 values from

10−2 to 10+2
[mag,phase] = bode(sysH,w); % compute frequency response
loglog(w,squeeze(mag)); % log–log plot of magnitude
semilogx(w,squeeze(phase)); % semi-log plot of phase

We can generalize the frequency response by study of the Laplace
transform of a signal f (t) as a generalization of Eq. (3.18),

F(s) =
∫ ∞
−∞

f (t)e−stdt. (3.30)

If we apply this definition to both u(t) and y(t) and use the convolutionThe key property of
Laplace transforms integral Eq. (3.13), we find that

Y(s) = H(s)U(s), (3.31)

where Y(s) and U(s) are the Laplace transforms of y(t) and u(t), res-
pectively.

Figure 3.4
Frequency-response
plot for k = 1
Source: Reprinted with
permission of The
MathWorks, Inc.
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5Note % is used in Matlab to denote comments.
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Laplace transforms such as Eq. (3.30) can be used to study the
complete response characteristics of feedback systems, including the
transient response—that is, the time response to an initial condition
or suddenly applied signal. This is in contrast to the use of Fourier
transforms, which only take into account the steady-state response. A
standard problem in control is to find the response y(t) of a system
given the input u(t) and a model of the system. With Eq. (3.30), we
have a means for computing the response of LTI systems to quite gen-
eral inputs. Given any input into a system, we compute the transform
of the input and the transfer function for the system. The transform of
the output is then given by Eq. (3.31) as the product of these two. IfTransient response
we wanted the time function of the output, we would need to “invert”
Y(s) to get what is called the inverse transform; this step is typically not
carried out explicitly. Nevertheless, understanding the process neces-
sary for deriving y(t) from Y(s) is important because it leads to insight
into the behavior of linear systems. Hence, given a general linear system
with transfer function H(s) and an input signal u(t), the procedure for
determining y(t) using the Laplace transform is given by the following
steps:

STEP 1. Determine the transfer function: H(s) = L{impulse
response of the system}. Compute H(s) by the following steps:

(a) Take the Laplace transform of the equations of motion.
A table of transform properties is frequently useful in this
process.

(b) Solve the resulting algebraic equations. Often this step
is greatly helped by drawing the corresponding block diagram
and solving the equations by graphical manipulation of the
blocks or using Matlab.

STEP 2. Determine the Laplace transform of the input
signal: U(s) = L{u(t)}.

STEP 3. Compute the Laplace transform of the output:
Y(s) = H(s) U(s).

STEP 4. Break up Y(s) by partial-fraction expansion.
STEP 5. Find the output of the system by computing the

inverse Laplace transform of Y(s) in Step 4, y(t) = L−1{Y(s)}
[that is, invert Y(s) to get y(t)]:

(a) Look up the components of y(t) in a table of
transform–time function pairs.

(b) Combine the components to give the total solution in
the desired form.

As mentioned above, Steps 4 and 5 are almost never carried out in
practice, and a modified solution for a qualitative rather than a quantita-
tive solution is often adequate and almost always used for control design
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purposes. The process begins with the first three steps as before. How-
ever, rather than inverting Y(s), one can use prior knowledge and intu-
ition about the effects of pole and zero locations in Y(s) on the response
y(t) to estimate key features of y(t). That is, we get information about
y(t) from the pole–zero constellation of Y(s) without actually inverting
it, as discussed in the rest of this chapter. We can also obtain equivalent
information from the Bode plot if that is available (see Chapter 6).

While it is possible to determine the transient response properties of
the system using Eq. (3.30), it is generally more useful to use a simpler
version of the Laplace transform based on the input beginning at time
zero.

EXAMPLE 3.7 Frequency Response (Example 3.6 continued)

To continue with the system in Example 3.6, determine the response to
an input that begins at t = 0 as u(t) = sin(10t)1(t), notice from Laplace
transform tables (see Appendix A, Table A.2), we have

L{u(t)} = L{sin(10t)} = 10
s2 + 100

,

where L denotes the Laplace transform, and the output of the system
using partial fraction expansion (see Section 3.1.5) is given by

Y(s) = H(s)U(s)

= 1
s+ 1

10
s2 + 100

,

= α1

s+ 1
+ α0

s+ j10
+ α∗0

s− j10
,

=
10
101

s+ 1
+

j
2(1−j10)

s+ j10
+

−j
2(1+j10)

s− j10
.

The inverse Laplace transform of the output is given by (see
Appendix A)

y(t) = 10
101

e−t + 1√
101

sin(10t+ ϕ)
= y1(t)+ y2(t),

where
ϕ = tan−1(−10) = −84.2◦.

The component y1(t) is called the transient response as it decays
to zero as time goes on, and the component y2(t) is called the steady
state and equals the response given by Eq. (3.29). Fig. 3.5(a) is a plot
of the time history of the output showing the different components (y1,
y2) and the composite (y) output response. The output frequency is 10
rad/sec and the steady-state phase difference measured from Fig. 3.5(b)
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Figure 3.5
(a) Complete transient
response; (b) phase lag
between output and
input

1 109876

Time (sec)

(a)

Transient response

54320
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

O
u
tp

u
t

y2y

y1

9.1 109.99.89.79.6

Time (sec)

(b)

Steady-state response

9.59.49.39.29
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
u
tp

u
t,

 i
n
p
u
t

dt

y(t)

u(t)

is approximately 10*δt = 1.47 rad = 84.2◦.6 Figure 3.5(b) shows
the output lags the input by 84.2◦. It also shows that the steady-state
amplitude of the output is the amplitude ratio 1√

101
= 0.0995 (that is,

the amplitude of the input signal times the magnitude of the transfer
function evaluated at ω = 10 rad/sec).

This example illustrates that the response of an LTI system to a
sinusoid of frequency ω is a sinusoid with the same frequency and with
an amplitude ratio equal to the magnitude of the transfer function

6The phase difference may also be determined by a Lissajous pattern.
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evaluated at the input frequency. Furthermore, the phase difference
between input and output signals is given by the phase of the trans-
fer function evaluated at the input frequency. The magnitude ratio and
phase difference can be computed from the transfer function as just dis-
cussed; they can also be measured experimentally quite easily in the
laboratory by driving the system with a known sinusoidal input and
measuring the steady-state amplitude and phase of the system’s output.
The input frequency is set to sufficiently many values so curves such as
the one in Fig. 3.4 are obtained.

3.1.3 TheL− Laplace Transform
In this book, it is useful to define a one-sided (or unilateral) Laplace
transform, which uses 0− (that is, a value just before t = 0) as the lower
limit of integration in Eq. (3.30). The L− Laplace transform of f (t),Definition of Laplace

transform denoted by L−{f (t)} = F(s), is a function of the complex variable s =
σ1 + jω, where

F(s) �=
∫ ∞

0−
f (t)e−st dt. (3.32)

The decaying exponential term in the integrand in effect provides a
built-in convergence factor if σ1 > 0. This means that even if f (t) does
not vanish as t → ∞, the integrand will vanish for sufficiently large
values of σ if f does not grow at a faster-than-exponential rate. The fact
that the lower limit of integration is at 0− allows the use of an impulse
function at t = 0, as illustrated in Example 3.3; however, this distinc-
tion between t = 0− and t = 0 does not usually come up in practice. We
will therefore, for the most part, drop the minus superscript on t = 0;
however, we will return to using the notation t = 0− when an impulse
at t = 0 is involved and the distinction is of practical value.

If Eq. (3.32) is a one-sided transform, then by extension, Eq. (3.30)
is a two-sided Laplace transform.7 We will use the L symbol from here
on to mean L−.

On the basis of the formal definition in Eq. (3.32), we can ascer-
tain the properties of Laplace transforms and compute the transforms
of common time functions. The analysis of linear systems by means
of Laplace transforms usually involves using tables of common prop-
erties and time functions, so we have provided this information in
Appendix A. The tables of time functions and their Laplace transforms,
together with the table of properties, permit us to find transforms of
complex signals from simpler ones. For a thorough study of Laplace
transforms and extensive tables, see Churchill (1972) and Campbell and
Foster (1948). For more study of the two-sided transform, see Van der
Pol and Bremmer (1955). These authors show that the time function can
be obtained from the Laplace transform by the inverse relation

7The other possible one-sided transform is, of course, L+, in which the lower limit of the
integral is 0+. This is sometimes used in other applications.



main_1 — 2019/2/5 — 10:43 — page 129 — #19

3.1 Review of Laplace Transforms 129

f (t) = 1
2π j

∫ σc+j∞

σc−j∞
F(s)est ds, (3.33)

where σc is a selected value to the right of all the singularities of F(s) in
the s-plane. In practice, this relation is seldom used. Instead, complex
Laplace transforms are broken down into simpler ones that are listed in
the tables along with their corresponding time responses.

Let us compute a few Laplace transforms of some typical time
functions.

EXAMPLE 3.8 Step and Ramp Transforms

Find the Laplace transform of the step a1(t) and ramp bt1(t) functions.

Solution. For a step of size a, f (t) = a1(t), and from Eq. (3.32), we
have

F(s) =
∫ ∞

0
ae−st dt = −ae−st

s

∣∣∣∣
∞

0
= 0− −a

s
= a

s
, Re(s) > 0.

For the ramp signal f (t) = bt1(t), again from Eq. (3.32), we have

F(s) =
∫ ∞

0
bte−st dt =

[
−bte−st

s
− be−st

s2

]∞
0
= b

s2 , Re(s) > 0,

where we employed the technique of integration by parts,∫
u dv = uv−

∫
v du,

with u = bt and dv = e−st dt. We can then extend the domain of the
validity of F(s) to the entire s-plane except at the pole location namely
the origin (see Appendix A).

A more subtle example is that of the impulse function.

EXAMPLE 3.9 Impulse Function Transform

Find the Laplace transform of the unit-impulse function.

Solution. From Eq. (3.32), we get

F(s) =
∫ ∞

0−
δ(t)e−st dt =

∫ 0+

0−
δ(t) dt = 1. (3.34)

It is the transform of the unit-impulse function that led us to choose
the L− transform rather than the L+ transform.

EXAMPLE 3.10 Sinusoid Transform

Find the Laplace transform of the sinusoid function.

Solution. Again, we use Eq. (3.32) to get

L{sinωt} =
∫ ∞

0
(sinωt)e−st dt. (3.35)
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If we substitute the relation from Eq. (WA.34) in Appendix WA (avai-
lable online at www.pearsonglobaleditions.com),

sinωt = e jωt − e−jωt

2j
into Eq. (3.35), we find that

L{sinωt} =
∫ ∞

0

(
e jωt − e−jωt

2j

)
e−st dt

= 1
2j

∫ ∞
0

(
e( jω−s)t − e−( jω+s)t

)
dt,

= 1
2j

[
1

jω − s
e( jω−s)t − 1

jω + s
e−( jω+s)t

]∣∣∣∣
∞

0
,

= ω

s2 + ω2 , Re(s) > 0.

We can then extend the domain of the validity of computed Laplace
transform to the entire s-plane except at the pole locations s = ±jω (see
Appendix A).

Table A.2 in Appendix A lists Laplace transforms for elementary
time functions. Each entry in the table follows from direct application of
the transform definition of Eq. (3.32), as demonstrated by Examples 3.8
through 3.10.

3.1.4 Properties of Laplace Transforms
In this section, we will address each of the significant properties of the
Laplace transform listed in Table A.1. For the proofs of these properties
and related examples as well as the Initial Value Theorem, the reader is
referred to Appendix A.

1. Superposition

One of the most important properties of the Laplace transform is that
it is linear, which means that the principle of superposition applies:

L{αf1(t)+ βf2(t)} = αF1(s)+ βF2(s). (3.36)

The amplitude scaling property is a special case of this; that is,

L{αf (t)} = αF(s). (3.37)

2. Time Delay

Suppose a function f (t) is delayed by λ > 0 units of time, f1(t) = f (t−
λ). Its Laplace transform is

F1(s) =
∫ ∞

0
f (t− λ)e−st dt = e−sλF(s). (3.38)

From this result, we see that a time delay of λ corresponds to multipli-
cation of the transform by e−sλ.

www.pearsonglobaleditions.com


main_1 — 2019/2/5 — 10:43 — page 131 — #21

3.1 Review of Laplace Transforms 131

3. Time Scaling

It is sometimes useful to time-scale equations of motion. For example,
in the control system of a disk drive, it is meaningful to measure time in
milliseconds (see also Chapter 10). If the time t is scaled by a factor a,
f1(t) = f (at), then the Laplace transform of the time-scaled signal is

F1(s) =
∫ ∞

0
f (at)e−st dt = 1

|a|F
( s

a

)
. (3.39)

4. Shift in Frequency

Multiplication (modulation) of f (t) by an exponential expression in the
time domain, f1(t) = e−atf (t), corresponds to a shift in the frequency
domain:

F1(s) =
∫ ∞

0
e−atf (t)e−st dt = F(s+ a). (3.40)

5. Differentiation

The transform of the derivative of a signal is related to its Laplace
transform and its initial condition as follows:

L
{

df
dt

}
=

∫ ∞
0−

(
df
dt

)
e−st dt = −f (0−)+ sF(s). (3.41)

Another application of Eq. (3.41) leads to

L{f̈ } = s2F(s)− sf (0−)− ḟ (0−). (3.42)

Repeated application of Eq. (3.41) leads to

L{ f m(t)} = smF(s)−sm−1f (0−)−sm−2 ḟ (0−)−· · ·−f (m−1)(0−), (3.43)

where f m(t) denotes the mth derivative of f (t) with respect to time.

6. Integration

The Laplace transform of the integral of a time function f (t); f1(t) =∫ t
0 f (ξ) dξ , is given by,

F1(s) = L
{∫ t

0
f (ξ) dξ

}
= 1

s
F(s), (3.44)

which means that we simply multiply the function’s Laplace transform
by 1

s .

7. Convolution

We have seen previously that the response of a system is determined
by convolving the input with the impulse response of the system, or by
forming the product of the transfer function and the Laplace transform
of the input. The discussion that follows extends this concept to various
time functions.
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Convolution in the time domain corresponds to multiplication in
the frequency domain. Assume L{ f1(t)} = F1(s) and L{ f2(t)} = F2(s).
Then,

L{ f1(t) ∗ f2(t)} =
∫ ∞

0
f1(t) ∗ f2(t)e−st dt = F1(s)F2(s). (3.45)

where ∗ is the convolution operator. This implies that

L−1{F1(s)F2(s)} = f1(t) ∗ f2(t). (3.46)

A similar, or dual, of this result is discussed next.

8. Time Product

Multiplication in the time domain corresponds to convolution in the
frequency domain:

L{ f1(t)f2(t)} = 1
2π j

F1(s) ∗ F2(s). (3.47)

9. Multiplication by Time

Multiplication by time f1(t) = tf (t) corresponds to differentiation in the
frequency domain:

F1(s) = L{tf (t)} = − d
ds

F(s). (3.48)

3.1.5 Inverse Laplace Transform by Partial-Fraction
Expansion

The easiest way to find f (t) from its Laplace transform F(s), if F(s) is
rational, is to expand F(s) as a sum of simpler terms that can be found in
the tables. The basic tool for performing this operation is called partial-
fraction expansion. Consider the general form for the rational function
F(s) consisting of the ratio of two polynomials:

F(s) = b1sm + b2sm−1 + · · · + bm+1

sn + a1sn−1 + · · · + an
. (3.49)

By factoring the polynomials, this same function could also be
expressed in terms of the product of factors as

F(s) = K
�m

i=1(s− zi)

�n
i=1(s− pi)

. (3.50)

We will discuss the simple case of distinct poles here. For a trans-
form F(s) representing the response of any physical system, m ≤ n.
When s = zi, s is referred to as a zero of the function, and when s = pi, sZeros and poles
is referred to as a pole of the function. Assuming for now the poles {pi}
are real or complex but distinct, we rewrite F(s) as the partial fraction

F(s) = C1

s− p1
+ C2

s− p2
+ · · · + Cn

s− pn
. (3.51)
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Next, we determine the set of constants {Ci}. We multiply both sides of
Eq. (3.51) by the factor s− p1 to get

(s− p1)F(s) = C1 + s− p1

s− p2
C2 + · · · + (s− p1)

s− pn
Cn. (3.52)

If we let s = p1 on both sides of Eq. (3.52), then all the Ci terms will
equal zero except for the first one. For this term,

C1 = (s− p1)F(s)|s=p1 . (3.53)

The other coefficients can be expressed in a similar form:

Ci = (s− pi)F(s)|s=pi .

This process is called the cover-up method because, in the factoredThe cover-up method of
determining coefficients form of F(s) [Eq. (3.50)], we can cover up the individual denomina-

tor terms, evaluate the rest of the expression with s = pi, and determine
the coefficients Ci. Once this has been completed, the time function
becomes

f (t) =
n∑

i=1

Cie pit1(t),

because, as entry 7 in Table A.2 shows, if

F(s) = 1
s− pi

,

then

f (t) = e pit1(t).

For the cases of quadratic factors or repeated roots in the denominator,
see Appendix A.

EXAMPLE 3.11 Partial-Fraction Expansion: Distinct Real Roots

Suppose you have computed Y(s) and found that

Y(s) = (s+ 4)(s+ 3)
s(s+ 9)(s+ 2)

.

Find y(t).

Solution. We may write Y(s) in terms of its partial-fraction expansion:

Y(s) = C1

s
+ C2

s+ 9
+ C3

s+ 2
.

Using the cover-up method, we get

C1 = (s+ 4)(s+ 3)
(s+ 9)(s+ 2)

∣∣∣∣
s=0
= 2

3
.
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In a similar fashion,

C2 = (s+ 4)(s+ 3)
s(s+ 2)

∣∣∣∣
s=−9
= 10

21
,

and

C3 = (s+ 4)(s+ 3)
s(s+ 9)

∣∣∣∣
s=−2
= −1

7
.

We can check the correctness of the result by adding the components
again to verify that the original function has been recovered. With the
partial fraction the solution can be looked up in the tables at once to be

y(t) = 2
3

1(t)+ 10
21

e−9t1(t)− 1
7

e−2t1(t).

The partial fraction expansion may be computed using the residue
function in Matlab:

num = conv([1 4],[1 3]); % form numerator polynomial
den = conv([1 9 0],[1 2]); % form denominator polynomial
[r,p,k] = residue(num,den); % compute the residues

which yields the result

r = [0.4762 -0.1429 0.6667]'; p = [-9 -2 0]'; k = [];

and agrees with the hand calculations. Note the conv function in Matlab
is used to multiply two polynomials. (The arguments of the functions
are the polynomials coefficients.)

3.1.6 The Final Value Theorem
An especially useful property of the Laplace transform in control
known as the Final Value Theorem allows us to compute the constant
steady-state value of a time function given its Laplace transform. The
theorem follows from the development of partial-fraction expansion.
Suppose we have a transform Y(s) of a signal y(t) and wish to know the
final value y(t) from Y(s). There are three possibilities for the limit. It
can be constant, undefined, or unbounded. If Y(s) has any poles (that
is, denominator roots, as described in Section 3.1.5) in the right half
of the s-plane—that is, if the real part of any pi > 0—then y(t) will
grow and the limit will be unbounded. If Y(s) has a pair of poles on the
imaginary axis of the s-plane (that is, pi = ±jω), then y(t) will contain
a sinusoid that persists forever, and the final value will not be defined.
Only one case can provide a nonzero constant final value: If all poles
of Y(s) are in the left half of the s-plane, except for one at s = 0, then
all terms of y(t) will decay to zero except the term corresponding to the
pole at s = 0, and that term corresponds to a constant in time. Thus, the
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final value is given by the coefficient associated with the pole at s = 0.
Therefore, the Final Value Theorem is as follows:

The Final Value Theorem If all poles of sY(s) are in the left half of the s-plane, then

lim
t→∞ y(t) = lim

s→0
sY(s). (3.54)

This relationship is proved in Appendix A.

EXAMPLE 3.12 Final Value Theorem

Find the final value of the system corresponding to

Y(s) = 7(s+ 5)
2s(s2 + 2s+ 3)

.

Solution. Applying the Final Value Theorem, we obtain

y(∞) = sY(s)|s=0 = 7 · 5
2 · 3 = 5.83.

Thus, after the transients have decayed to zero, y(t) will settle to a
constant value of 5.83.

Care must be taken to apply the Final Value Theorem only to stableUse the Final Value
Theorem on stable systems
only

systems (see Section 3.6). While one could use Eq. (3.54) on any Y(s),
doing so could result in erroneous results, as shown in the next example.

EXAMPLE 3.13 Incorrect Use of the Final Value Theorem

Find the final value of the signal corresponding to

Y(s) = 4
s(s2 − 5s+ 6)

.

Solution. If we blindly apply Eq. (3.54), we obtain

y(∞) = sY(s)|s=0 = 2
3

.

However,

y(t) = 2
3
− 2e2t + 4

3
e3t

which leads to an unbounded final value when t is equal to∞. This is
due to the presence of the unstable poles at s = 2 and s = 3.

The theorem can also be used to find the DC gain of a system. TheComputing DC gain by the
Final Value Theorem DC gain is the ratio of the output of a system to its input (presumed

constant) after all transients have decayed. To find the DC gain, we
assume there is a unit-step input [U(s) = 1/s] and we use the Final Value
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Theorem to compute the steady-state value of the output. Therefore, for
a system transfer function G(s),

DC gain = lim
s→0

sG(s)
1
s
= lim

s→0
G(s). (3.55)

EXAMPLE 3.14 DC Gain

A system whose transfer function is

G(s) = 4(s+ A)
s2 + 7s+ 5

has a DC gain of 2.5. Find the value of A.

Solution. Applying Eq. (3.55) we get

DC gain = G(s)|s=0 = 4A
5
= 2.5.

Therefore, A = 3.125.

3.1.7 Using Laplace Transforms to Solve Differential
Equations

Laplace transforms can be used to solve differential equations using the
properties described in Appendix A. First, we find the Laplace trans-
form of the differential equation using the differentiation properties in
Eqs. (A.12) and (A.13) in Appendix A. Then we find the Laplace trans-
form of the output; using partial-fraction expansion and Table A.2, this
can be converted to a time response function. We will illustrate this with
three examples.

EXAMPLE 3.15 Homogeneous Differential Equation

Find the solution to the differential equation

ÿ(t)+ y(t) = 0, where y(0) = α, ẏ(0) = β.

Solution. Using Eq. (3.42), the Laplace transform of the differential
equation is

s2Y(s)− αs− β + Y(s) = 0,

(s2 + 1)Y(s) = αs+ β,

Y(s) = αs
s2 + 1

+ β

s2 + 1
.

After looking up in the transform tables (see Appendix A, Table A.2)
the two terms on the right side of the preceding equation, we get

y(t) = [α cos t+ β sin t] 1(t),

where 1(t) denotes a unit-step function. We can verify this solution is
correct by substituting it back into the differential equation.
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Another example will illustrate the solution when the equations are
not homogeneous—that is, when the system is forced.

EXAMPLE 3.16 Forced Differential Equation

Find the solution to the differential equation ÿ(t) + 5ẏ(t) + 4y(t) = 3,
where y(0) = α, ẏ(0) = β.

Solution. Taking the Laplace transform of both sides using Eqs. (3.41)
and (3.42), we get

s2Y(s)− sα − β + 5 [sY(s)− α]+ 4Y(s) = 3
s

.

Solving for Y(s) yields

Y(s) = s(sα + β + 5α)+ 3
s(s+ 1)(s+ 4)

.

The partial-fraction expansion using the cover-up method is

Y(s) =
3
4

s
−

3−β−4α
3

s+ 1
+

3−4α−4β
12

s+ 4
.

Therefore, the time function is given by

y(t) =
(

3
4
+ −3+ β + 4α

3
e−t + 3− 4α − 4β

12
e−4t

)
1(t).

By differentiating this solution twice and substituting the result in the
original differential equation, we can verify this solution satisfies the
differential equation.

The solution is especially simple if the initial conditions are all zero.

EXAMPLE 3.17 Forced Equation Solution with Zero Initial Conditions

Find the solution to ẏ(t)+ 6y(t) = u(t), y(0) = 0, u(t) = 1− 0.3e−3t,

1. using partial-fraction expansion,
2. using Matlab.

Solution

1. Taking the Laplace transform of both sides, we get

sY(s)+ 6Y(s) = 1
s
− 0.3

s+ 3
Solving for Y(s) yields

Y(s) = 0.7s+ 3
s(s+ 3)(s+ 6)

The partial-fraction expansion using the cover-up method is

Y(s) =
1
6

s
+

1
10

s+ 3
+

2
30

s+ 6
.
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Therefore, the time function is given by

y(t) =
(

1
6
− 1

10
e−3t − 2

30
e−6t

)
1(t).

2. The partial-fraction expansion may also be computed using the
Matlab residue function,

num = [0.7 3]; % form numerator
den = poly([0;-3;-6]); % form denominator polynomial

% from its roots
[r,p,k] = residue(num,den); % compute the residues

which results in the desired answer

r = [-0.0667 -0.1000 0.1667]'; p = [-6 -3 0]'; k = [];

and agrees with the hand calculations.

The primary value of using the Laplace transform method of solv-
ing differential equations is that it provides information concerning the
qualitative characteristic behavior of the response. Once we know thePoles indicate response

character. values of the poles of Y(s), we know what kind of characteristic terms
will appear in the response. In the last example, the pole at s = −1 pro-
duced a decaying y = Ce−t term in the response. The pole at s = −4
produced a y = Ce−4t term in the response, which decays faster. If
there had been a pole at s = +1, there would have been a growing
y = Ce+t term in the response. Using the pole locations to under-
stand in essence how the system will respond is a powerful tool, and
will be developed further in Section 3.3. Control systems designers often
manipulate design parameters so that the poles have values that would
give acceptable responses, and they skip the steps associated with con-
verting those poles to actual time responses until the final stages of the
design. They use trial-and-error design methods (as will be described in
Chapter 5) that graphically present how changes in design parameters
affect the pole locations. Once a design has been obtained, with pole
locations predicted to give acceptable responses, the control designer
determines a time response to verify that the design is satisfactory. This
is typically done by computer, which solves the differential equations
directly by using numerical computer methods.

3.1.8 Poles and Zeros
A rational transfer function can be described either as a ratio of two
polynomials in s,

H(s) = b1sm + b2sm−1 + · · · + bm+1

sn + a1sn−1 + · · · + an
= N(s)

D(s)
, (3.56)

or as a ratio in factored zero pole form

H(s) = K

∏m
i=1(s− zi)∏n
i=1(s− pi)

. (3.57)
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K is called the transfer function gain. The roots of the numerator
z1, z2, . . . , zm are called the finite zeros of the system. The zeros areZeros
locations in the s-plane where the transfer function is zero. If s = zi, then

H(s)|s=zi = 0.
The zeros also correspond to the signal transmission-blocking

properties of the system and are also called the transmission zeros of
the system. The system has the inherent capability to block frequen-
cies coinciding with its zero locations. If we excite the system with the
nonzero input, u = u0es0t, where s0 is not a pole of the system, then
the output is identically zero,8 y ≡ 0, for frequencies where s0 = zi.
The zeros also have a significant effect on the transient properties of the
system (see Section 3.5).

The roots of the denominator, p1, p2, . . . , pn, are called the poles9 ofPoles
the system. The poles are locations in the s-plane where the magnitude
of the transfer function becomes infinite. If s = pi, then

|H(s)|s=pi = ∞.
The poles of the system determine its stability properties, as we shall

see in Section 3.6. The poles of the system also determine the natural or
unforced behavior of the system, referred to as the modes of the system.
The zeros and poles may be complex quantities, and we may display
their locations in a complex plane, which we refer to as the s-plane.
The locations of the poles and zeros lie at the heart of feedback con-
trol design and have significant practical implications for control system
design. The system is said to have n−m zeros at infinity if m < n because
the transfer function approaches zero as s approaches infinity. If the
zeros at infinity are also counted, the system will have the same number
of poles and zeros. No physical system can have n < m; otherwise, it
would have an infinite response at ω = ∞. If zi = pj, then there are can-
cellations in the transfer function, which may lead to undesirable system
properties as will be discussed in Chapter 7.

3.1.9 Linear System Analysis Using Matlab
The first step in analyzing a system is to write down (or generate) the set
of time-domain differential equations representing the dynamic behav-
ior of the physical system. These equations are generated from the
physical laws governing the system behavior—for example, rigid body
dynamics, thermo-fluid mechanics, and electromechanics, as described
in Chapter 2. The next step in system analysis is to determine and
designate inputs and outputs of the system then to compute the trans-
fer function characterizing the input–output behavior of the dynamic

8Identically zero means that the output and all of its derivatives are zero for t > 0.
9The meaning of the pole can also be appreciated by visualizing a 3-D plot of the transfer
function, where the real and imaginary parts of s are plotted on the x and y axes, and the
magnitude of the transfer function is plotted on the vertical z axis. For a single pole, the
resulting 3-D plot will look like a tent with the “tent-pole” being located at the pole of
the transfer function!
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system. Earlier in this chapter, we discussed that a linear dynamic
system may also be represented by the Laplace transform of its dif-
ferential equation—that is, its transfer function. The transfer function
may be expressed as a ratio of two polynomials as in Eq. (3.56) or
in factored zero–pole form as in Eq. (3.57). By analyzing the transfer
function, we can determine the dynamic properties of the system, both
in a qualitative and quantitative manner. One way of extracting useful
system information is simply to determine the pole–zero locations and
deduce the essential characteristics of the dynamic properties of the sys-
tem. Another way is to determine the time-domain properties of the
system by determining the response of the system to typical excitation
signals such as impulses, steps, ramps, and sinusoids. Yet another way is
to determine the time response analytically by computing the inverse
Laplace transform using partial-fraction expansions and Tables A.1
and A.2 in Appendix A. Of course, it is also possible to determine the
system response to an arbitrary input.

We will now illustrate this type of analysis by carrying out the pre-
ceding calculations for some of the physical systems addressed in the
examples in Chapter 2 in order of increasing degree of difficulty. We will
go back and forth between the different representations of the system,
transfer function, pole–zero, and so on, using Matlab as our compu-
tational engine. Matlab typically accepts the specification of a system
in several forms, including transfer function and zero–pole, and refers
to these two descriptions as tf and zp, respectively. Furthermore, it can
transform the system description from any one form to another.

EXAMPLE 3.18 Cruise Control Transfer Function Using Matlab

Find the transfer function between the input u and the position of the
car x in the cruise control system in Example 2.1 of Chapter 2.

Solution. From Example 2.1 of Chapter 2, we find the transfer function
of the system is

H(s) = 0.001
s2 + 0.05s

= 0.001
s(s+ 0.05)

.

In Matlab, the transfer function is specified as follows:

s=tf(’s’); % define Laplace variable
sysH=0.001/(s^2+0.05*s); % form transfer function

The pole–zero description is computed using the following Matlab
commands:

p=pole(sysH); % compute poles
[z,k]=zero(sysH); % compute zeros and transfer function gain

and would result in the transfer function in factored form, where z = [ ],
p = [0 − 0.05]′, and k = 0.001.
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EXAMPLE 3.19 DC Motor Transfer Function Using Matlab

In Example 2.15 of Chapter 2, assume that Jm = 0.02 kg · m2, b =
0.005N · m · sec , Kt = Ke = 0.5, Ra = 2.5 �, and La = 0.1H. Find
the transfer function between the input va and

1. the output θm,
2. the output ω = θ̇m.

Solution.

1. Substituting the preceding parameters into Example 2.15 of Chap-
ter 2, we find that the transfer function of the system is

H(s) = 250
s3 + 25.25s2 + 131.25s

= 250
s(s2 + 25.25s2 + 131.25)

.

In Matlab, the transfer function is specified as

s = tf (’s’); % define Laplace variable
sysH = 250/(s^3+25.25*s^2+131.25*s); % form transfer function

Again, the pole-zero description is computed using the Matlab
commands

p = pole(sysH); % compute poles
[z,k] = zero(sysH); % compute zeros and transfer function gain

which results in

z = [ ] , p = [0 − 17.9298 − 7.3202]′ , k = 250,

and yields the transfer function in factored form:

H(s) = 250
s(s+ 17.9298)(s+ 7.3202)

.

2. If we consider the velocity θ̇m as the output, the transfer function is

G(s) = 250s
s3 + 25.25s2 + 131.25s

= 250
s2 + 25.25s+ 131.25

.

This is as expected, because θ̇m is simply the derivative of θm; thus
L{θ̇m} = sL{θm}. For a unit-step command in va, we can com-
pute the step response in Matlab as follows (recall Example 2.1 of
Chapter 2):

s = tf(‘s’); % define Laplace variable
sysG = 250/(s^2+25.25*s+131.25); % form transfer function
t = 0:0.01:4; % form time vector
y = step(sysG,t); % compute step response;
plot(t,y); % plot step response

The system yields a steady-state constant angular velocity as shown
in Fig.3.6. Since the system does not have unity DC gain, this is not
unity.
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Figure 3.6
Transient response for
DC motor
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When a dynamic system is represented by a single differential equa-
tion of any order, finding the polynomial form of the transfer function
from that differential equation is usually easy. Therefore, you will find
it best in these cases to specify a system directly in terms of its transfer
function.

EXAMPLE 3.20 Transformations Using Matlab

Find the transfer function of the system whose differential equation is

2ÿ+ 5ẏ+ 6 = 7u+ 3u̇.

Solution. Using the differentiation rules given by Eqs. (3.41) and (3.42),
and considering zero initial conditions, we see by inspection that

G(s) = Y(s)
U(s)

= 3s+ 7
2s2 + 5s+ 6

.

The Matlab statements are as follows:
s = tf(’s’); % define Laplace variable
sysG = (3*s+7)/(2*s^2+5*s+6); % form transfer function

If the transfer function poles and zeros and transfer function gain are
desired they can be obtained by the following Matlab statements:

% compute poles, zeros, and transfer function gain
p= pole(sysG); % compute poles
[z,k]=zero(sysG); % compute zeros and transfer function gain
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would result in z = −2.333, p = [−1.25+ j1.199 − 1.25− j1.199]′,
k = 15. This means that the transfer function could also be written as

G(s) = Y(s)
U(s)

= 1.5(s+ 2.333)
(s+ 1.25+ j1.199)(s+ 1.25− j1.199)

.

EXAMPLE 3.21 Satellite Transfer Function Using Matlab

1. Find the transfer function between the input Fc and the satellite
attitude θ in Example 2.3, and;

2. Determine the response of the system to a 25-N pulse of 0.1-sec
duration, starting at t = 5 sec. Let d = 1 m and I = 5000 kg·m2.

Solution

1. From Example 2.3, d
I = 1

5000 = 0.0002
[

m
kg·m2

]
and this means that

the transfer function of the system is

H(s) = 0.0002
s2 ,

which can also be determined by inspection for this particular case.
We may display the coefficients of the numerator polynomial as the
row vector num and the denominator as the row vector den. The
results for this example are

numG = [0 0 0.0002] and denG = [1 0 0].

2. The following Matlab statements compute the response of the
system to a 25-N, 0.1-sec duration thrust pulse input:

s=tf('s'); % define Laplace variable
sysG=0.0002/s ^2; % define system by its transfer function
t=0:0.01:10; % set up time vector with dt = 0.01 sec

% pulse of 25N, at 5 sec, for 0.1 sec duration
u1=[zeros(1,500)
25*ones(1,10)

zeros(1,491)]; % pulse input
[y1]=lsim(sysG,u1,t); % linear simulation
ff=180/pi; % conversion factor from radians to degrees
y1=ff*y1; % output in degrees
plot(t,u1); % plot input signal
plot(t,y1); % plot output response

The system is excited with a short pulse (an impulse input) that
has the effect of imparting a nonzero angle θ0 at time t = 5 sec
on the system. Because the system is undamped, in the absence
of any control it drifts with constant angular velocity with a value
imparted by the impulse at t = 5 sec. The time response of the
input is shown in Fig. 3.7(a), along with the drift in angle θ in
Fig. 3.7(b).
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Figure 3.7
Transient response for
satellite: (a) thrust
input; (b) satellite
attitude
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We now excite the system with the same positive-magnitude
thrust pulse at time t = 5 sec, but follow that with a negative pulse
with the same magnitude and duration at time t = 6.1 sec. (See
Fig. 3.8(a) for the input thrust.) Then the attitude response of the
system is as shown in Fig. 3.8(b). This is actually how the satel-
lite attitude angle is controlled in practice. The additional relevant
Matlab statements are as follows:

% double pulse input
u2=[zeros(1,500) 25*ones(1,10) zeros(1,100) -25*ones(1,10)
zeros(1,381)];

[y2]=lsim(sysG,u2,t); % linear simulation
plot(t,u2); % plot input signal
ff=180/pi; % conversion factor from radians to degrees
y2=ff*y2; % output in degrees
plot(t,y2); % plot output response
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Figure 3.8
Transient response for
satellite (double pulse):
(a) thrust input;
(b) satellite attitude
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3.2 System Modeling Diagrams
3.2.1 The Block Diagram
To obtain the transfer function, we need to find the Laplace transform
of the equations of motion and solve the resulting algebraic equations
for the relationship between the input and the output. In many con-
trol systems, the system equations can be written so their components
do not interact except by having the input of one part be the output of
another part. In these cases, it is easy to draw a block diagram that rep-
resents the mathematical relationships in a manner similar to that used
for the component block diagram in Fig. 1.2. The transfer function of
each component is placed in a box, and the input–output relationships
between components are indicated by lines and arrows. We can then
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solve the equations by graphical simplification, which is often easier and
more informative than algebraic manipulation, even though the meth-
ods are in every way equivalent. Drawings of three elementary block
diagrams are shown in Fig. 3.9. It is convenient to think of each block
as representing an electronic amplifier with the transfer function printed
inside. The interconnections of blocks include summing points, where
any number of signals may be added together. These are represented
by a circle with the symbol � inside. In Fig. 3.9(a), the block with
transfer function G1(s) is in series with the block with transfer function
G2(s), and the overall transfer function is given by the product G2G1. In
Fig. 3.9(b) two systems are in parallel with their outputs added, and the
overall transfer function is given by the sum G1 + G2. These diagrams
derive simply from the equations that describe them.

Figure 3.9(c) shows a more complicated case. Here the two blocks
are connected in a feedback arrangement so each feeds into the other.
When the feedback Y2(s) is subtracted, as shown in the figure, we call it
negative feedback. As you will see, negative feedback is usually requiredNegative feedback
for system stability. For now, we will simply solve the equations then
relate them back to the diagram. The equations are

U1(s) = R(s)− Y2(s),

Y2(s) = G2(s)G1(s)U1(s),

Y1(s) = G1(s)U1(s),

and their solution is

Y1(s) = G1(s)
1+ G1(s)G2(s)

R(s). (3.58)

We can express the solution by the following rule:

The gain of a single-loop negative feedback system is given by
the forward gain divided by the sum of 1 plus the loop gain.

When the feedback is added instead of subtracted, we call it positive
feedback. In this case, the gain is given by the forward gain divided byPositive feedback
the sum of 1 minus the loop gain.

The three elementary cases given in Fig. 3.9 can be used in com-
bination to solve, by repeated reduction, any transfer function defined
by a block diagram. However, the manipulations can be tedious and
subject to error when the topology of the diagram is complicated.
Fig. 3.10 shows examples of block-diagram algebra that complement
those shown in Fig. 3.9. Figures 3.10(a) and (b) show how the inter-
connections of a block diagram can be manipulated without affecting
the mathematical relationships. Figure 3.10(c) shows how the manipu-
lations can be used to convert a general system (on the left) to a system
without a component in the feedback path, usually referred to as a unity
feedback system.Unity feedback system
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Figure 3.9
Three examples of elementary block diagrams: (a) series; (b) parallel; (c) feedback

Figure 3.10
Examples of
block-diagram algebra:
(a) moving a pickoff
point; (b) moving a
summer; (c) conversion
to unity feedback
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In all cases, the basic principle is to simplify the topology while
maintaining exactly the same relationships among the remaining vari-
ables of the block diagram. In relation to the algebra of the underlying
linear equations, block-diagram reduction is a pictorial way to solve
equations by eliminating variables.

EXAMPLE 3.22 Transfer Function from a Simple Block Diagram

Find the transfer function of the system shown in Fig. 3.11(a).

Solution. First we simplify the block diagram by reducing the paral-
lel combination of the controller path. This results in the diagram of
Fig. 3.11(b), and we use the feedback rule to obtain the closed-loop
transfer function:
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Figure 3.11
Block diagram of a
second-order system R
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T(s) = Y(s)
R(s)

=
2s+4

s2

1+ 2s+4
s2

= 2s+ 4
s2 + 2s+ 4

.

EXAMPLE 3.23 Transfer Function from the Block Diagram

Find the transfer function of the system shown in Fig. 3.12(a).

Solution. First, we simplify the block diagram. Using the principles
of Eq. (3.58), we replace the feedback loop involving G1 and G3 by its
equivalent transfer function, noting that it is a positive feedback loop.
The result is Fig. 3.12(b). The next step is to move the pick off point
preceding G2 to its output [see Fig. 3.12(a)], as shown in Fig. 3.12(c).
The negative feedback loop on the left is in series with the subsystem on
the right, which is composed of the two parallel blocks G5 and G6/G2.
The overall transfer function can be written using all three rules for
reduction given by Fig. 3.9:

T(s) = Y(s)
R(s)

=
G1G2

1−G1G3

1+ G1G2G4
1−G1G3

(
G5 + G6

G2

)
,

= G1G2G5 + G1G6

1− G1G3 + G1G2G4
.

As we have seen, a system of algebraic equations may be repre-
sented by a block diagram that represents individual transfer functions
by blocks, and has interconnections that correspond to the system equa-
tions. A block diagram is a convenient tool to visualize the system as a
collection of interrelated subsystems that emphasize the relationships
among the system variables.
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Figure 3.12
Example for
block-diagram
simplification

G1

+

-

+

+

G3

G4

G2

G6

G5

+ +
Y

(a)

G6

G4

G2 G5 +

+
Y

1- G1G3

G1
+

-

R

R

(b)

G4

G2 G5
+

+
Y

1- G1G3

G1
+

-
R

(c)

G2

G6

© © ©

© ©

©©

3.2.2 Block-Diagram Reduction Using Matlab
If the individual transfer functions are available for components in a
control system, it is possible to use Matlab commands to compute
the transfer functions of interconnected systems. The three commands
series, parallel, and feedback can be used for this purpose. They com-
pute the transfer functions of two component block transfer functions
in series, parallel, and feedback configurations, respectively. The next
simple example illustrates their use.

EXAMPLE 3.24 Transfer Function of a Simple System Using Matlab

Repeat the computation of the transfer function for the block diagram
in Fig. 3.11(a) using Matlab.

Solution. We label the transfer function of the separate blocks shown in
Fig. 3.11(a) as illustrated in Fig. 3.13. Then we combine the two parallel
blocks G1 and G2 by
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Figure 3.13
Example for
block-diagram
simplification

R
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G2 G4

+

-

++
Y©©

s=tf(’s’); % specify a transfer function using
a rational function in the Laplace
variable s

sysG1=2; % define subsystem G1
sysG2=4/s; % define subsystem G2
sysG3=parallel(sysG1,sysG2); % parallel combination of G1 and G2
sysG4=1/s; % define subsystem G4
sysG5=series(sysG3,sysG4); % series combination of G3 and G4
sysG6=1;
sysCL=feedback(sysG5,sysG6,-1); % feedback combination of G5 and G6

The Matlab results are sysCL of the form

Y(s)
R(s)

= 2s+ 4
s2 + 2s+ 4

,

and this is the same result as the one obtained by block-diagram
reduction.

3.2.3 Mason’s Rule and the Signal Flow Graph
An alternative to block-diagram reduction is the Mason’s rule that
is a useful technique for determining transfer functions of compli-
cated interconnected systems. See Appendix W3.2.3 online at www.
pearsonglobaleditions.com.

3.3 Effect of Pole Locations
Once the transfer function has been determined by any of the available
methods, we can start to analyze the response of the system it repre-
sents. When the system equations are simultaneous ordinary differential
equations (ODEs), the transfer function that results will be a ratio of
polynomials; that is,

H(s) = b(s)/a(s).

If we assume b and a have no common factors (as is usually the case),
then values of s such that a(s) = 0 will represent points where H(s) is
infinity. As discussed in Section 3.1.5, these s-values are called poles ofPoles
H(s). Values of s such that b(s) = 0 are points where H(s) = 0 and
the corresponding s-locations are called zeros. The effect of zeros onZeros
the transient response will be discussed in Section 3.5. These poles and

www.pearsonglobaleditions.com
www.pearsonglobaleditions.com
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zeros completely describe H(s) except for a constant multiplier. Because
the impulse response is given by the time function corresponding to the
transfer function, we call the impulse response the natural response ofThe impulse response is

the natural response. the system. We can use the poles and zeros to compute the correspond-
ing time response and thus identify time histories with pole locations in
the s-plane. For example, the poles identify the classes of signals con-
tained in the impulse response, as may be seen by a partial-fraction
expansion of H(s). For a first-order pole,

H(s) = 1
s+ σ .

Table A.2, Appendix A entry 7 indicates that the impulse response willFirst-order system impulse
response be an exponential function; that is,

h(t) = e−σ t1(t).

When σ > 0, the pole is located at s < 0, the exponential expression
decays, and we say the impulse response is stable. If σ < 0, the poleStability
is to the right of the origin. Because the exponential expression here
grows with time, the impulse response is referred to as unstable (see
Section 3.6). Fig. 3.14(a) shows a typical stable response and defines
the time constantTime constant τ

τ = 1/σ , (3.59)

as the time when the response is 1/e times the initial value. Hence, it
is a measure of the rate of decay. The straight line is tangent to the
exponential curve at t = 0 and terminates at t = τ . This characteristic of
an exponential expression is useful in sketching a time plot or checking
computer results.

Figure 3.14 (b) shows the impulse and step responses for a first-
order system computed using Matlab. It also shows the percentage rise
in the step response for integral multiples of the time constant, τ , which
is a metric for the speed of response of the system. In particular, we
observe that after one time constant (τ seconds), the system reaches
63% of its steady-state value, and after about 5 time constants (5τ
seconds), the system is at steady-state.

EXAMPLE 3.25 Response versus Pole Locations, Real Roots

Compare the time response with the pole locations for the system with
a transfer function between input and output given by

H(s) = 2s+ 1
s2 + 3s+ 2

. (3.60)

Solution. The numerator is

b(s) = 2
(

s+ 1
2

)
,

and the denominator is

a(s) = s2 + 3s+ 2 = (s+ 1)(s+ 2).
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Figure 3.14
First-order system
response: (a) impulse
response; (b) impulse
response and step
response using Matlab
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Figure 3.15
Sketch of s-plane
showing poles as
crosses and zeros as
circles

1-1-2

- j

j

Im(s)

Re(s)

= Zero

= Pole

The poles of H(s) are therefore at s = −1 and s = −2 and the one
(finite) zero is at s = − 1

2 . A complete description of this transfer func-
tion is shown by the plot of the locations of the poles and the zeros in
the s-plane (see Fig. 3.15) using the Matlab pzmap(num,den) function
with

num=[2 1];
den=[1 3 2];

A partial-fraction expansion of H(s) results in
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H(s) = − 1
s+ 1

+ 3
s+ 2

.

From Table A.2, in Appendix A, we can look up the inverse of each
term in H(s), which will give us the time function h(t) that would result
if the system input were an impulse. In this case,

h(t) =
{ −e−t + 3e−2t t ≥ 0,

0 t < 0.
(3.61)

We see that the shape of the component parts of h(t), which are e−t and
e−2t, are determined by the poles at s = −1 and−2. This is true of more
complicated cases as well: In general, the shapes of the components of
the natural response are determined by the locations of the poles of the
transfer function.

A sketch of these pole locations and corresponding natural res-“Fast poles” and “slow
poles” refer to relative rate
of signal decay

ponses is given in Fig. 3.16, along with other pole locations including
complex ones, which will be discussed shortly.

The role of the numerator in the process of partial-fraction expan-
sion is to influence the size of the coefficient that multiplies each com-
ponent. Because e−2t decays faster than e−t, the signal corresponding to
the pole at−2 decays faster than the signal corresponding to the pole at
−1. For brevity, we simply say that the pole at −2 is faster than the pole
at −1. In general, poles farther to the left in the s-plane are associated
with natural signals that decay faster than those associated with poles
closer to the imaginary axis. If the poles had been located with positive
values of s (in the right half of the s-plane), the response would have
been a growing exponential function and thus unstable. Figure 3.17
shows that the fast 3e−2t term dominates the early part of the time
history, and that the −e−t term is the primary contributor later on.

Figure 3.16
Time functions
associated with points
in the s-plane (LHP, left
half-plane; RHP, right
half-plane)

Im(s)

Re(s)

LHP RHP

Stable Unstable
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Figure 3.17
Impulse response
of Example 3.25
[Eq. (3.60)]
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The purpose of this example is to illustrate the relationship between
the poles and the character of the response, which can be done exactly
only by finding the inverse Laplace transform and examining each termImpulse response using

Matlab as before. However, if we simply wanted to plot the impulse response for
this example, the expedient way would be to use the following Matlab
sequence:

s=tf('s'); % define Laplace variable
sysH=(2*s+1)/(s ^2+3*s+2); % define system from its numerator

and denominator
impulse(sysH); % compute impulse response

The result is shown in Fig. 3.17.

Complex poles can be defined in terms of their real and imaginary
parts, traditionally referred to as

s = −σ ± jωd .
This means a pole has a negative real part if σ is positive. Since com-
plex poles always come in complex conjugate pairs, the denominator
corresponding to a complex pair will be

a(s) = (s+ σ − jωd)(s+ σ + jωd) = (s+ σ)2 + ω2
d . (3.62)

When finding the transfer function from second-order differential equa-
tions, we typically write the result in the polynomial form

H(s) = ω2
n

s2 + 2ζωns+ ω2
n

. (3.63)

By multiplying out the form given by Eq. (3.62) and comparing it with
the coefficients of the denominator of H(s) in Eq. (3.63), we find the
correspondence between the parameters to be

σ = ζωn and ωd = ωn

√
1− ζ 2, (3.64)

where the parameter ζ is the damping ratio10 and ωn is the undampedDamping ratio; damped
and undamped natural
frequency

natural frequency. The poles of this transfer function are located at

10In communications and filter engineering, the standard second-order transfer function
is written as H = 1/ [1+Q(s/ωn + ωn/s)]. Here, ωn is called the band center and Q is the
quality factor. Comparison with Eq. (3.63) shows that Q = 1/2ζ .
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Figure 3.18
s-plane plot for a pair of
complex poles

Im(s)

Re(s)

u = sin-1z

vn

vds

a radius ωn in the s-plane and at an angle θ = sin−1 ζ , as shown in
Fig. 3.18. Therefore, the damping ratio reflects the level of damping as
a fraction of the critical damping value where the poles become real. In
rectangular coordinates, the poles are at s = −σ ± jωd . When ζ = 0, we
have no damping, θ = 0, and the damped natural frequency ωd = ωn,
the undamped natural frequency.

For purposes of finding the time response from Table A.2 in
Appendix A, corresponding to a complex transfer function, it is easiest
to manipulate the H(s) so the complex poles fit the form of Eq. (3.62),
because then the time response can be found directly from the table.
Equation (3.63) can be rewritten as

H(s) = ω2
n

(s+ ζωn)2 + ω2
n(1− ζ 2)

. (3.65)

Therefore, from entry number 20 in Table A.2 and the definitions in
Eq. (3.64), we see that the impulse response isStandard second-order

system impulse response

h(t) = ωn√
1− ζ 2

e−σ t(sinωdt)1(t). (3.66)

Fig. 3.19(a) plots h(t) for several values of ζ such that time has been
normalized to the undamped natural frequency ωn. Note the actual fre-
quency ωd decreases slightly as the damping ratio increases. Note also
for very low damping the response is oscillatory, while for large damping
(ζ near 1) the response shows no oscillation. A few of these responses
are sketched in Fig. 3.16 to show qualitatively how changing pole loca-
tions in the s-plane affect impulse responses. You will find it useful as a
control designer to commit the image of Fig. 3.16 to memory so you can
understand instantly how changes in pole locations influence the time
response.

Three pole locations are shown in Fig. 3.20 for comparison withStability depends on
whether natural response
grows or decays

the corresponding impulse responses in Fig. 3.19(a). The negative real
part of the pole, σ , determines the decay rate of an exponential envelope
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Figure 3.19
Responses of
second-order systems
versus ζ : (a) impulse
responses; (b) step
responses
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that multiplies the sinusoid, as shown in Fig. 3.21. Note if σ < 0 (and
the pole is in the RHP), then the natural response will grow with time,
so, as defined earlier, the system is said to be unstable. If σ = 0, the
natural response neither grows nor decays, so stability is open to debate.
If σ > 0, the natural response decays, so the system is stable.

It is also interesting to examine the step response of H(s)—that is,Step response
the response of the system H(s) to a unit-step input u = 1(t), where
U(s) = 1/s. The step-response transform is given by Y(s) = H(s)U(s),
which is found in Appendix A, Table A.2, entry 21. Figure 3.19(b),
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Figure 3.20
Pole locations
corresponding to three
values of ζ
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which plots y(t) for several values of ζ , shows the basic transient
response characteristics from the impulse response carry over quite well
to the step response; the difference between the two responses is that the
step response’s final value is the commanded unit step.

EXAMPLE 3.26 Oscillatory Time Response

Discuss the correlation between the poles of

H(s) = 2s+ 1
s2 + 2s+ 5

, (3.67)

and the impulse response of the system, then find the exact impulse
response.

Solution. From the form of H(s) given by Eq. (3.63), we see that

ω2
n = 5⇒ ωn =

√
5 = 2.24 rad/sec

and

2ζωn = 2⇒ ζ = 1√
5
= 0.447.
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This indicates that we should expect a frequency of around 2 rad/sec
with very little oscillatory motion. In order to obtain the exact response,
we manipulate H(s) until the denominator is in the form of Eq. (3.62):

H(s) = 2s+ 1
s2 + 2s+ 5

= 2s+ 1
(s+ 1)2 + 22 .

From this equation, we see the poles of the transfer function are com-
plex, with real part−1 and imaginary parts±2j. Table A.2 in Appendix
A has two entries, numbers 19 and 20, that match the denominator. The
right side of the preceding equation needs to be broken into two parts
so they match the numerators of the entries in the table:

H(s) = 2s+ 1
(s+ 1)2 + 22 = 2

s+ 1
(s+ 1)2 + 22 −

1
2

2
(s+ 1)2 + 22 .

Thus, the impulse response is

h(t) =
(

2e−t cos 2t− 1
2

e−t sin 2t
)

1(t).

Fig. 3.22 is a plot of the response and shows how the envelope attenuates
the sinusoid, the domination of the 2 cos 2t term, and the small phase
shift caused by the − 1

2 sin 2t term.
As in the previous example, the expedient way of determining theImpulse response by

Matlab impulse response would be to use the following Matlab sequence:

s=tf('s'); % define Laplace variable
sysH=(2*s+1)/(s^2+2*s+5); % define system by its numerator

and denominator
t=0:0.1:6; % form time vector
y=impulse(sysH,t); % compute impulse response
plot(t,y); % plot impulse response

as shown in Fig. 3.22.

Figure 3.22
System response for
Example 3.26
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3.4 Time-Domain Specifications
Performance specifications for a control system design often involve cer-Definitions of rise time,

settling time, overshoot,
and peak time

tain requirements associated with the time response of the system. The
requirements for a step response are expressed in terms of the standard
quantities illustrated in Fig. 3.23:

1. The rise time tr is the time it takes the system to reach the vicinity
of its new set point.

2. The settling time ts is the time it takes the system transients to decay.
3. The overshoot Mp is the maximum amount the system overshoots

its final value divided by its final value (and is often expressed as a
percentage).

4. The peak time tp is the time it takes the system to reach the
maximum overshoot point.

3.4.1 Rise Time
For a second-order system, the time responses shown in Fig. 3.19(b)
yield information about the specifications that is too complex to be
remembered unless converted to a simpler form. By examining these
curves in light of the definitions given in Fig. 3.23, we can relate the
curves to the pole-location parameters ζ and ωn. For example, all the
curves rise in roughly the same time. If we consider the curve for ζ = 0.5
to be an average, the rise time11 from y = 0.1 to y = 0.9 is approximately
ωntr = 1.8. Thus, we can say

tr ∼= 1.8
ωn

. (3.68)

Although this relationship could be embellished by including the effect
of the damping ratio, it is important to keep in mind how Eq. (3.68)
is typically used. It is accurate only for a second-order system with
no zeros; for all other systems, it is a rough approximation to the

Figure 3.23
Definition of rise time
tr , settling time ts, and
overshoot Mp

t

Mptp

ts

tr

1
0.9

0.1

;1%

11Rise time tr.
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relationship between tr and ωn. Most systems being analyzed for con-
trol systems design are more complicated than the pure second-order
system, so designers use Eq. (3.68) with the knowledge that it is only a
rough approximation.

3.4.2 Overshoot and Peak Time
For the overshoot Mp, we can be more analytical. This value occurs
when the derivative is zero, which can be found from calculus. The time
history of the curves in Fig. 3.19(b), found from the inverse Laplace
transform of H(s)/s, is

y(t) = 1− e−σ t
(

cosωdt+ σ

ωd
sinωdt

)
, (3.69)

where ωd = ωn
√

1− ζ 2 and σ = ζωn. We may rewrite the preceding
equation using the trigonometric identity

A sin(α)+ B cos(α) = C cos(α − β),
or

C =
√

A2 + B2 = 1√
1− ζ 2

,

β = tan−1
(

A
B

)
= tan−1

(
ζ√

1− ζ 2

)
= sin−1(ζ ),

with A = σ
ωd

, B = 1, and α = ωdt, in a more compact form asStandard second-order
system step response

y(t) = 1− e−σ t
√

1− ζ 2
cos(ωdt− β). (3.70)

When y(t) reaches its maximum value, its derivative will be zero:

ẏ(t) = σe−σ t
(

cosωdt+ σ

ωd
sinωdt

)
− e−σ t(−ωd sinωdt+ σ cosωdt) = 0,

= e−σ t

(
σ 2

ωd
+ ωd

)
sinωdt = 0.

This occurs when sinωdt = 0, so

ωdtp = π
and thus,

Peak time tp
tp = π

ωd
. (3.71)

Substituting Eq. (3.71) into the expression for y(t), we compute

y(tp)
�= 1+Mp = 1− e−σπ/ωd

(
cosπ + σ

ωd
sinπ

)
,

= 1+ e−σπ/ωd .

Thus, we have the formulaOvershoot Mp

Mp = e−πζ/
√

1−ζ 2
, 0 ≤ ζ < 1, (3.72)
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Figure 3.24
Overshoot versus
damping ratio for the
second-order system
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which is plotted in Fig. 3.24. Two frequently used values from this curve
are Mp = 0.16 for ζ = 0.5 and Mp = 0.05 for ζ = 0.7, that is, 16% and
5% overshoot, respectively.

3.4.3 Settling Time
The final parameter of interest from the transient response is the set-
tling time ts. This is the time required for the transient to decay to a
small value so that y(t) is almost in the steady state. Various measures
of smallness are possible. For illustration, we will use 1% as a reasonable
measure; in other cases, 2% or 5% are used. As an analytic computation,
we notice that the deviation of y from 1 is the product of the decaying
exponential e−σ t and the circular functions sine and cosine. The dura-
tion of this error is essentially decided by the transient exponential, so
we can define the settling time as that value of ts when the decayingSettling time ts
exponential reaches 1%:

e−ζωnts = 0.01.

Therefore,
ζωnts = 4.6,

or

ts = 4.6
ζωn
= 4.6

σ
, (3.73)

where σ is the negative real part of the pole, as may be seen in Fig. 3.18.
Equations (3.68), (3.72), and (3.73) characterize the transient

response of a system having no finite zeros and two complex poles and
with undamped natural frequency ωn, damping ratio ζ , and negative
real part σ . In analysis and design, they are used to estimate rise time,
overshoot, and settling time, respectively, for just about any system. In
design synthesis, we wish to specify tr, Mp, and ts and to ask where theDesign synthesis
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Figure 3.25
Graphs of regions in the s-plane delineated by certain transient requirements: (a) rise time;
(b) overshoot; (c) settling time; (d) composite of all three requirements

poles need to be so that the actual responses are less than or equal to
these specifications. For specified values of tr, Mp, and ts, the synthesis
form of the equation is then

ωn ≥ 1.8
tr

, (3.74)

ζ ≥ ζ(Mp) (from Fig. 3.24), (3.75)

σ ≥ 4.6
ts

. (3.76)

These equations, which can be graphed in the s-plane as shown in
Fig. 3.25(a–c), will be used in later chapters to guide the selection of pole
and zero locations to meet control system specifications for dynamic
response.

It is important to keep in mind that Eqs. (3.74)–(3.76) are qualita-
tive guides and not precise design formulas. They are meant to provide
only a starting point for the design iteration. After the control design
is complete, the time response should always be checked by an exact
calculation, usually by numerical simulation, to verify whether the time
specifications have actually been met. If not, another iteration of the
design is required.

For a first-order system,First-order system step
response H(s) = σ

s+ σ ,

and the transform of the step response is

Y(s) = σ

s(s+ σ) .

We see from entry 11 in Table A.2 (see Appendix A) that Y(s) corre-
sponds to

y(t) = (1− e−σ t)1(t). (3.77)
Comparison with the development for Eq. (3.73) shows the value of ts
for a first-order system is the same:
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ts = 4.6
σ

.

No overshoot is possible, so Mp = 0. The rise time from y = 0.1 to
y = 0.9 can be seen from Fig. 3.14 to

tr = ln 0.9− ln 0.1
σ

= 2.2
σ

.

However, it is more typical to describe a first-order system in terms ofTime constant τ
its time constant, which was defined in Fig. 3.14 to be τ = 1/σ .

EXAMPLE 3.27 Transformation of the Specifications to the s-Plane

Find the allowable regions in the s-plane for the poles of the transfer
function of the system if the system response requirement is tr ≤ 0.6
sec, Mp ≤ 10%, and ts ≤ 3 sec.

Solution. Without knowing whether or not the system is second order
with no zeros, it is impossible to find the allowable region accurately.
Regardless of the system, we can obtain a first approximation using the
relationships for a second-order system. Equation (3.74) indicates that

ωn ≥ 1.8
tr
= 3.0 rad/sec,

Eq. (3.75) and Fig. 3.24 indicate that

ζ ≥ 0.6,

and Eq. (3.76) indicates that

σ ≥ 4.6
3
= 1.5 sec.

The allowable region is anywhere to the left of the solid line in Fig. 3.26.
Note any pole meeting the ζ and ωn restrictions will automatically meet
the σ restriction.

Figure 3.26
Time domain
specifications region
in s-plane for
Example 3.27
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3.5 Effects of Zeros and Additional Poles
Relationships such as those shown in Fig. 3.25 are correct for the sim-
ple second-order system; for more complicated systems, they can be
used only as guidelines. If a certain design has an inadequate rise time
(is too slow), we must raise the natural frequency; if the transient has
too much overshoot, then the damping needs to be increased; if the
transient persists too long, the poles need to be moved to the left in the
s-plane.

Thus far only the poles of H(s) have entered into the discussion.
There may also be zeros of H(s).12 At the level of transient analysis, theEffect of zeros
zeros exert their influence by modifying the coefficients of the exponen-
tial terms whose shape is decided by the poles, as seen in Example 3.25.The effect of zeros near

poles To illustrate this further, consider the following two transfer functions,
which have the same poles but different zeros:

H1(s) = 2
(s+ 1)(s+ 2)

= 2
s+ 1

− 2
s+ 2

, (3.78)

H2(s) = 2(s+ 1.1)
1.1(s+ 1)(s+ 2)

= 2
1.1

(
0.1

s+ 1
+ 0.9

s+ 2

)

= 0.18
s+ 1

+ 1.64
s+ 2

. (3.79)

They are normalized to have the same DC gain (that is, gain at s = 0).
Notice the coefficient of the (s + 1) term has been modified from 2 in
H1(s) to 0.18 in H2(s). This dramatic reduction is brought about by the
zero at s = −1.1 in H2(s), which almost cancels the pole at s = −1. If
we put the zero exactly at s = −1, this term will vanish completely. In
general, a zero near a pole reduces the amount of that term in the total
response. From the equation for the coefficients in a partial-fraction
expansion, Eq. (3.51),

C1 = (s− p1)F(s)|s=p1 ,

we can see that if F(s) has a zero near the pole at s = p1, the value
of F(s) will be small because the value of s is near the zero. Therefore,
the coefficient C1, which reflects how much of that term appears in the
response, will be small.

12We assume b(s) and a(s) have no common factors. If this is not so, it is possible for
b(s) and a(s) to be zero at the same location and for H(s) to not equal zero there. The
implications of this case will be discussed in Chapter 7, when we have a state-space
description.
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In order to take into account how zeros affect the transient response
when designing a control system, we consider transfer functions with
two complex poles and one zero. To expedite the plotting for a wide
range of cases, we write the transform in a form with normalized time
and zero locations:

H(s) = (s/αζωn)+ 1
(s/ωn)2 + 2ζ(s/ωn)+ 1

. (3.80)

The zero is located at s = −αζωn = −ασ . If α is large, the zero will
be far removed from the poles, and the zero will have little effect on the
response. If α ∼= 1, the value of the zero will be close to that of the real
part of the poles, and can be expected to have a substantial influence on
the response. The step-response curves for ζ = 0.5 and ζ = 0.707 for
several values of α are plotted in Figs. 3.27 and 3.28. We see that the
major effect of the zero is to increase the overshoot Mp and reduce rise
time, tr, whereas it has very little influence on the settling time. A plot of
Mp versus α is given in Fig. 3.29. The plot shows the zero has very little
effect on Mp if α > 3, but as α decreases below 3, it has an increasing
effect, especially when α = 1 or less.

Figure 3.27 can be explained in terms of Laplace-transform analy-
sis. First, we replace s/ωn with s:

H(s) = s/αζ + 1
s2 + 2ζ s+ 1

.

This has the effect of normalizing frequency in the transfer function and
normalizing time in the corresponding step responses; thus τ = ωnt. We
then rewrite the transfer function as the sum of two terms:

H(s) = 1
s2 + 2ζ s+ 1

+ 1
αζ

s
s2 + 2ζ s+ 1

. (3.81)

Figure 3.27
Plots of the step
response of a
second-order system
with a zero (ζ = 0.5)
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Figure 3.28
Plots of the step
response of a
second-order system
with a zero (ζ = 0.707) a 51
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Figure 3.29
Plot of overshoot Mp as
a function of normalized
zero location α. At
α = 1, the real part of
the zero equals the real
part of the poles

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Mp

0 2 4 6 8 10

a

z = 0.3

0.5

0.7

The first term, which we shall call H0(s), is the original term (having no
finite zero), and the second term Hd(s), which is introduced by the zero,
is a product of a constant (1/αζ ) times s times the original term. The
Laplace transform of df /dt is sF(s), so Hd(s) corresponds to a product
of a constant times the derivative of the original term, that is,

y(t) = y0(t)+ yd(t) = y0(t)+ 1
αζ

.
y0(t).

The step responses of H0(s) denoted by y0(t) and Hd(s) denoted by yd(t)
are plotted in Fig. 3.30. Looking at these curves, we can see why the zero
increased the overshoot: The derivative has a large hump in the early
part of the curve, and adding this to the H0(s) response lifts up the total
response of H(s) to produce the overshoot. This analysis is also very
informative for the case when α < 0 and the zero is in the RHP whereRHP or

nonminimum-phase zero s > 0. (This is typically called an RHP zero and is sometimes referred
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Figure 3.30
Second-order step
responses y(t) of the
transfer functions H(s),
H0(s), and Hd(s)
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Figure 3.31
Step responses y(t) of a
second-order system
with a zero in the RHP:
a nonminimum-phase
system
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to as a nonminimum-phase zero, a topic to be discussed in more detail in
Section 6.1.1.) In this case, the derivative term is subtracted rather than
added. A typical case is sketched in Fig. 3.31.

EXAMPLE 3.28 Effect of the Proximity of the Zero to the Pole Locations
on the Transient Response

Consider the second-order system with a finite zero and unity DC gain,

H(s) = 24
z

(s+ z)
(s+ 4)(s+ 6)

.

Determine the effect of the zero location (s = −z) on the unit-step
response when z = {1, 2, 3, 4, 5, 6}.



main_1 — 2019/2/5 — 10:43 — page 168 — #58

168 Chapter 3 Dynamic Response

Solution. The step response is the inverse Laplace transform of

H1(s) = H(s)
1
s
= 24

z
(s+ z)

s(s+ 4)(s+ 6)
= 24

z
s

s(s+ 4)(s+ 6)

+ 24
s(s+ 4)(s+ 6)

and is the sum of the two parts,

y(t) = y1(t)+ y2(t),

where

y1(t) = 12
z

e−4t − 12
z

e−6t,

y2(t) = z
∫ t

0
y1(τ )dτ = −3e−4t + 2e−6t + 1,

and

y(t) = 1+
(

12
z
− 3

)
e−4t +

(
2− 12

z

)
e−6t.

If z = 4 or z = 6, one of the modes of the system is absent from the
output, and the response is first order due to the pole–zero cancellations.
The step responses of the system is shown in Fig. 3.32 (z = 4, dashed,
z = 6 dot dashed). The effect of the zero is most pronounced in terms of
the additional overshoot for z = 1 (zero location closest to the origin).
The system also has overshoot for z = 2, 3. For z = 4 or z = 6 the
responses are first order as expected. It is interesting that for z = 5,
where the zero is located between the two poles, there is no overshoot.

Figure 3.32
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This is generally the case because the zero effectively compensates for
the effect of the second pole, rendering the system as first order at any
given frequency.

EXAMPLE 3.29 Effect of the Proximity of the Complex Zeros
to the Lightly Damped Poles

Consider the third-order feedback system with a pair of lightly damped
poles and a pair of complex zeros with the transfer function,

H(s) = (s+ α)2 + β2

(s+ 1)
[
(s+ 0.1)2 + 1

] .

Determine the effect of the complex zero locations (s = −α± jβ) on
the unit-step response of the system for the three different zero locations
(α, β) = (0.1, 1.0), (α, β) = (0.25, 1.0), and (α, β) = (0.5, 1.0), as
shown in Fig. 3.33.

Solution. We plot the three unit-step responses using Matlab as shown
in Fig. 3.34. The effect of the lightly damped modes are clearly seen as
oscillations in the step responses for the cases where (α, β) = (0.25, 1.0)
or (α, β) = (0.5, 1.0), that is, when the complex zeros are not close to
the locations of the lightly damped poles as shown in Fig. 3.33. On
the other hand, if the complex zeros cancel the lightly damped poles
exactly as is the case for (α, β) = (0.1, 1.0), the oscillations are com-
pletely eliminated in the step response. In practice, the locations of the
lightly damped poles are not known precisely, and exact cancellation is

Figure 3.33
Locations of complex
zeros
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Figure 3.34
Effect of complex zeros
on transient response
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not really possible. However, placing the complex zeros near the loca-
tions of the lightly damped poles may provide sufficient improvement in
step response performance. We will come back to this technique later in
Chapters 5, 7, and 10 in the context of dynamic compensator design.

EXAMPLE 3.30 Aircraft Response Using Matlab

The transfer function between the elevator and altitude of the Boeing
747 aircraft described in Section 10.3.2 can be approximated as

h(s)
δe(s)

= 30(s− 6)
s(s2 + 4s+ 13)

.

1. Use Matlab to plot the altitude time history for a 1◦ impulsive ele-
vator input. Explain the response, noting the physical reasons for
the nonminimum-phase nature of the response.

2. Examine the accuracy of the approximations for tr, ts, and Mp
[see Eqs. (3.68) and (3.73) and Fig. 3.24].

Solution

1. The Matlab statements to create the impulse response for this
case are as follows:

u = -1; % u = delta e
sysG=u*30*(s-6)/ % define system by its transfer function
(s^3+4*s^2+13*s)

y=impulse(sysG); % compute impulse response; y = h
plot(y); % plot impulse response
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The result is the plot shown in Fig. 3.35. Notice how the alti-
tude drops initially and then rises to a new final value. The final
value is predicted by the Final Value Theorem:

h(∞) = s
30(s− 6)(−1)
s(s2 + 4s+ 13)

∣∣∣∣
s=0
= 30(−6)(−1)

13
= +13.8.

The fact that the response has a finite final value for an impulsiveResponse of a
nonminimum-phase
system

input is due to the s-term in the denominator. This represents a
pure integration, and the integral of an impulse function is a finite
value. If the input had been a step, the altitude would have con-
tinued to increase with time; in other words the integral of a step
function is a ramp function.

The initial drop is predicted by the RHP zero in the transfer
function. The negative elevator deflection is defined to be upward
by convention (see Fig. 10.30). The upward deflection of the ele-
vators drives the tail down, which rotates the craft nose up and
produces the climb. The deflection at the initial instant causes a
downward force before the craft has rotated; therefore, the ini-
tial altitude response is down. After rotation, the increased lift
resulting from the increased angle of attack of the wings causes
the airplane to climb.

2. The rise time from Eq. (3.68) is

tr = 1.8
ωn
= 1.8√

13
= 0.5 sec.

We find the damping ratio ζ from the relation

2ζωn = 4⇒ ζ = 2√
13
= 0.55.

From Fig. 3.24 we find the overshoot Mp to be 0.14. Because
2ζωn = 2σ = 4, Eq. (3.73) shows that

ts = 4.6
σ
= 4.6

2
= 2.3 sec.

Detailed examination of the time history h(t) from Matlab output
shows that tr ∼= 0.43 sec, Mp ∼= 0.14, and ts ∼= 2.6 sec, which are

Figure 3.35
Response of an
airplane’s altitude to an
impulsive elevator input
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reasonably close to the estimates. The only significant effect of the
nonminimum-phase zero was to cause the initial response to go in
the “wrong direction” and make the response somewhat sluggish.

In addition to studying the effects of zeros, it is useful to considerEffect of extra pole
the effects of an extra pole on the standard second-order step response.
In this case, we take the transfer function to be

H(s) = 1

(s/αζωn + 1)
[
(s/ωn)2 + 2ζ(s/ωn)+ 1

] . (3.82)

Plots of the step response for this case are shown in Fig. 3.36 for ζ = 0.5,
and in Fig. 3.37 for ζ = 0.707 for several values of α. In this case, the

Figure 3.36
Step responses for
several third-order
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Figure 3.38
Normalized rise time for
several locations of an
additional pole

a

9

8

7

6

5

4

3

2

1

vntr

0 1 2 3 4 5 6 7 8 9 10

z = 1.0

0.7

0.5

major effect is to increase the rise time. A plot of the rise time versus α
is shown in Fig. 3.38 for several values of ζ .

From this discussion, we can draw several conclusions about the
dynamic response of a simple system as revealed by its pole–zero
patterns:

Effects of Pole–Zero Patterns on Dynamic Response

1. For a second-order system with no finite zeros, the transient
response parameters are approximated as follows:

Rise time: tr ∼= 1.8
ωn

,

Overshoot: Mp ∼=
⎧
⎨
⎩

5%, ζ = 0.7,
16%, ζ = 0.5 (see Fig. 3.24),
35%, ζ = 0.3,

Settling time: ts ∼= 4.6
σ

.

2. A zero in the left half-plane (LHP) will increase the overshoot if the
zero is within a factor of 4 of the real part of the complex poles. A
plot is given in Fig. 3.29.

3. A zero in the RHP will depress the overshoot (and may cause the
step response to start out in the wrong direction).

4. An additional pole in the LHP will increase the rise time signifi-
cantly if the extra pole is within a factor of 4 of the real part of the
complex poles. A plot is given in Fig. 3.38.
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3.6 Stability
For nonlinear and time-varying systems, the study of stability is a com-
plex and often difficult subject. In this section, we will consider only LTI
systems for which we have the following condition for stability:

An LTI system is said to be stable if all the roots of the trans-
fer function denominator polynomial have negative real parts
(that is, they are all in the left hand s-plane), and is unstable
otherwise.

A system is stable if its initial conditions decay to zero and is unsta-
ble if they diverge. As just stated, an LTI (constant parameter) system is
stable if all the poles of the system are strictly inside the left half s-planeStable system
[that is, all the poles have negative real parts (s = −σ + jω, σ > 0)].
If any pole of the system is in the right half s-plane (that is, has a pos-
itive real part, s = −σ + jω, σ < 0), then the system is unstable, asUnstable system
shown in Fig. 3.16. With any simple pole on the jω axis (σ = 0), small
initial conditions will persist. For any other pole with σ = 0, oscillatory
motion will persist. Therefore, a system is stable if its transient response
decays and unstable if it does not. Figure 3.16 shows the time response
of a system due to its pole locations.

In later chapters, we will address more advanced notions of stabil-
ity, such as Nyquist’s frequency-response stability test (see Chapter 6)
and Lyapunov stability (see Chapter 9).

3.6.1 Bounded Input–Bounded Output Stability
A system is said to have bounded input–bounded output (BIBO) stability
if every bounded input results in a bounded output (regardless of what
goes on inside the system). A test for this property is readily available
when the system response is given by convolution. If the system has
input u(t), output y(t), and impulse response h(t), then

y(t) =
∫ ∞
−∞

h(τ )u(t− τ)dτ . (3.83)

If u(t) is bounded, then there is a constant M such that |u| ≤ M < ∞,
and the output is bounded by

|y| =
∣∣∣∣
∫

hu dτ

∣∣∣∣

≤
∫
|h||u| dτ

≤M
∫ ∞
−∞
|h(τ )| dτ .

Thus, the output will be bounded if
∫∞
−∞ |h| dτ is bounded.
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On the other hand, suppose the integral is not bounded and the
bounded input u(t− τ) = +1 if h(τ ) > 0 and u(t− τ) = −1 if h(τ ) < 0.
In this case,

y(t) =
∫ ∞
−∞
|h(τ )|dτ , (3.84)

and the output is not bounded. We conclude that

Mathematical definition
of BIBO stability

The system with impulse response h(t) is BIBO-stable if and
only if the integral

∫ ∞
−∞
|h(τ )|dτ <∞.

EXAMPLE 3.31 BIBO Stability for a Capacitor

As an example, determine the capacitor driven by a current source
sketched in Fig. 3.39. The capacitor voltage is the output and the
current is the input.

Solution. The impulse response of this setup is h(t) = 1(t), the unit
step. Now for this response,

∫ ∞
−∞
|h(τ )|dτ =

∫ ∞
0

dτ (3.85)

is not bounded. The capacitor is not BIBO-stable. Notice the transfer
function of the system is 1/s and has a pole on the imaginary axis. Phys-
ically, we can see that constant input current will cause the voltage to
grow, and thus the system response is neither bounded nor stable. In
general, if an LTI system has any pole13 on the imaginary axis or in
the RHP, the response will not be BIBO-stable; if every pole is inside
the LHP, then the response will be BIBO-stable. Thus for these systems,
pole locations of the transfer function can be used to check for stability.

An alternative to computing the integral of the impulse response
or even to locating the roots of the characteristic equation is given by
Routh’s stability criterion, which we will discuss in Section 3.6.3.

Figure 3.39
Capacitor driven by
current source u(t)

y(t)
+

-

C

13Determination of BIBO stability by pole location.
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3.6.2 Stability of LTI Systems
Consider the LTI system whose transfer function denominator polyno-
mial leads to the characteristic equation

sn + a1sn−1 + a2sn−2 + · · · + an = 0. (3.86)

Assume the roots {pi} of the characteristic equation are real or complex,
but are distinct. Note Eq. (3.86) shows up as the denominator in the
transfer function for the system as follows before any cancellation of
poles by zeros is made:

T(s) = Y(s)
R(s)

= b0sm + b1sm−1 + · · · + bm

sn + a1sn−1 + · · · + an

= K
∏m

i=1(s− zi)∏n
i=1(s− pi)

, m ≤ n. (3.87)

The solution to the differential equation whose characteristic equation
is given by Eq. (3.86) may be written using partial-fraction expansion as

y(t) =
n∑

i=1

Kiepit, (3.88)

where {pi} are the roots of Eq. (3.86) and {Ki} depend on the initial
conditions and zero locations. If a zero were to cancel a pole in the
RHP for the transfer function, the corresponding Ki would equal zero
in the output, but the unstable transient would appear in some internal
variable.

The system is stable if and only if (necessary and sufficient condi-
tion) every term in Eq. (3.88) goes to zero as t→∞:

epit→ 0 for all pi.

This will happen if all the poles of the system are strictly in the LHP,
where

Re{pi} < 0. (3.89)

If any poles are repeated, the response must be changed from that of
Eq. (3.88) by including a polynomial in t in place of Ki, but the conclu-
sion is the same. This is called internal stability. Therefore, the stabilityInternal stability occurs

when all poles are strictly
in the LHP.

of a system can be determined by computing the location of the roots
of the characteristic equation and determining whether they are all in
the LHP. If the system has any poles in the RHP, it is unstable. Hence
the jω axis is the stability boundary between asymptotically stable andThe jω axis is the stability

boundary. unstable response. If the system has nonrepeated jω axis poles, then it
is said to be neutrally stable. For example, a pole at the origin (an inte-
grator) results in a nondecaying transient. A pair of complex jω axis
poles results in an oscillating response (with constant amplitude). If the
system has repeated poles on the jω axis, then it is unstable [as it results
in te±jωit terms in Eq. (3.88)]. For example, a pair of poles at the origin
(double integrator) results in an unbounded response. Matlab software
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makes the computation of the poles, and therefore determination of the
stability of the system, relatively easy.

An alternative to locating the roots of the characteristic equation is
given by Routh’s stability criterion, which we will discuss next.

3.6.3 Routh’s Stability Criterion
There are several methods of obtaining information about the locations
of the roots of a polynomial without actually solving for the roots. These
methods were developed in the 19th century and were especially useful
before the availability of Matlab software. They are still useful for deter-
mining the ranges of coefficients of polynomials for stability, especially
when the coefficients are in symbolic (nonnumerical) form. Consider
the characteristic equation of an nth-order system14:

a(s) = sn + a1sn−1 + a2sn−2 + · · · + an−1s+ an. (3.90)

It is possible to make certain statements about the stability of the sys-
tem without actually solving for the roots of the polynomial. This is a
classical problem, and several methods exist for the solution.

A necessary condition for stability of the system is that all of theA necessary condition for
Routh stability roots of Eq. (3.90) have negative real parts, which in turn requires that

all the {ai} be positive.15

A necessary (but not sufficient) condition for stability is that all
the coefficients of the characteristic polynomial be positive.

If any of the coefficients are missing (are zero) or are negative, then
the system will have poles located outside the LHP. This condition can
be checked by inspection. Once the elementary necessary conditions
have been satisfied, we need a more powerful test. Equivalent tests were
independently proposed by Routh in 1874 and Hurwitz in 1895; we will
discuss the former. Routh’s formulation requires the computation of a
triangular array that is a function of the {ai}. He showed that a neces-A necessary and sufficient

condition for stability sary and sufficient condition for stability is that all of the elements in the
first column of this array be positive.

A system is stable if and only if all the elements in the first
column of the Routh array are positive.

To determine the Routh array, we first arrange the coefficients
of the characteristic polynomial in two rows, beginning with the first

14Without loss of generality, we can assume the polynomial to be monic (that is, the
coefficient of the highest power of s is 1).
15This is easy to see if we construct the polynomial as a product of first- and second-order
factors.
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and second coefficients, then followed by the even-numbered and
odd-numbered coefficients:Routh array

sn : 1 a2 a4 · · ·
sn−1 : a1 a3 a5 . . .

We then add subsequent rows to complete the Routh array:

Row n sn: 1 a2 a4 · · ·
Row n− 1 sn−1: a1 a3 a5 · · ·
Row n− 2 sn−2: b1 b2 b3 · · ·
Row n− 3 sn−3: c1 c2 c3 · · ·

...
...

...
...

...
Row 2 s2: ∗ ∗
Row 1 s1: ∗
Row 0 s0: ∗

We compute the elements from the (n−2)th and (n−3)th rows as follows:

b1 = −
det

[
1 a2
a1 a3

]

a1
= a1a2 − a3

a1
,

b2 = −
det

[
1 a4
a1 a5

]

a1
= a1a4 − a5

a1
,

b3 = −
det

[
1 a6
a1 a7

]

a1
= a1a6 − a7

a1
,

c1 = −
det

[
a1 a3
b1 b2

]

b1
= b1a3 − a1b2

b1
,

c2 = −
det

[
a1 a5
b1 b3

]

b1
= b1a5 − a1b3

b1
,

c3 = −
det

[
a1 a7
b1 b4

]

b1
= b1a7 − a1b4

b1
.

Note the elements of the (n−2)th row and the rows beneath it are formed
from the two previous rows using determinants, with the two elements in
the first column and other elements from successive columns. Normally,
there are n+1 elements in the first column when the array terminates. If
these are all positive, then all the roots of the characteristic polynomial
are in the LHP. However, if the elements of the first column are not all
positive, then the number of roots in the RHP equals the number of
sign changes in the column. A pattern of +, −, + is counted as two
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sign changes: one change from + to −, and another from − to +. For a
simple proof of the Routh test, the reader is referred to Ho et al. (1998).

EXAMPLE 3.32 Routh’s Test

The polynomial

a(s) = s6 + s5 + s4 + 2s3 + 5s2 + 2s+ 3

satisfies the necessary condition for stability since all the {ai} are positive
and nonzero. Determine whether any of the roots of the polynomial are
in the RHP.

Solution. The Routh array for this polynomial is

s6: 1 1 5 3

s5: 1 2 2 0

s4: −1 = 1 · 1− 1 · 2
4

3 = 1 · 5− 1 · 2
1

3 = 1 · 3− 1 · 0
1

s3: 5 = −1 · 2− 1 · 3
−1

5 = −1 · 2− 1 · 3
−1

0

s2: 4 = 5 · 3+ 1 · 5
5

3 = 5 · 3+ 1 · 0
5

s:
5
4
= 4 · 5− 5 · 3

4
0

s0: 3 =
5
4
· 3− 4.0

5
4

We conclude that the polynomial has RHP roots, since the elements of
the first column are not all positive. In fact, there are two poles in the
RHP because there are two sign changes.

Note, in computing the Routh array, we can simplify the rest of
the calculations by multiplying or dividing a row by a positive constant.
Also note the last two rows each have one nonzero element.

Routh’s method is also useful in determining the range of parame-
ters for which a feedback system remains stable.
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Figure 3.40
A feedback system for
testing stability

©
 + 

-
r K

s + 1
s(s + 1)(s + 6)

y

EXAMPLE 3.33 Stability versus Parameter Range

Consider the system shown in Fig. 3.40. The stability properties of the
system are a function of the proportional feedback gain K. Determine
the range of K over which the system is stable.

Solution. The characteristic equation for the system is given by

1+ K
s+ 1

s(s− 1)(s+ 6)
= 0,

or
s3 + 5s2 + (K − 6)s+ K = 0.

The corresponding Routh array is

s3 : 1 K − 6
s2 : 5 K
s : (4K − 30)/5
s0 : K.

For the system to be stable, it is necessary that

4K − 30
5

> 0 and K > 0,

or
K > 7.5 and K > 0.

Thus, Routh’s method provides an analytical answer to the stability
question. Although any gain satisfying this inequality stabilizes the sys-
tem, the dynamic response could be quite different depending on the
specific value of K. Given a specific value of the gain, we may compute
the closed-loop poles by finding the roots of the characteristic polyno-
mial. The characteristic polynomial has the coefficients represented by
the row vector (in descending powers of s)

denT = [1 5 K–6 K]

and we may compute the roots using the Matlab functionComputing roots by Matlab

roots(denT).

For K = 7.5 the roots are at −5 and ±1.22j, and the system is neu-
trally stable. Note that Routh’s method predicts the presence of poles
on the jω axis for K = 7.5. If we set K = 13, the closed-loop poles
are at −4.06 and −0.47 ± 1.7j, and for K = 25, they are at −1.90
and −1.54 ± 3.27j. In both these cases, the system is stable as pre-
dicted by Routh’s method. Fig. 3.41 shows the transient responses for
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Figure 3.41
Transient responses for
the system in Fig. 3.40
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K = 7.5

K = 13

K = 25

the three gain values. To obtain these transient responses, we compute
the closed-loop transfer function

T(s) = Y(s)
R(s)

= K(s+ 1)
s3 + 5s2 + (K − 6)s+ K

,

s=tf('s'); % define the Laplace variable
sysT=K*(s+1)/(s^3+5*s^2+(K-6)*s+K); % define transfer function
step(sysT); % compute the step response

produce a plot of the (unit) step response.

EXAMPLE 3.34 Stability versus Two Parameter Ranges

Find the range of the controller gains (K, KI ) so the PI (proportional–
integral; see Chapter 4) feedback system in Fig. 3.42 is stable.

Solution. The characteristic equation of the closed-loop system is

1+
(

K + KI

s

)
1

(s+ 1)(s+ 2)
= 0,

which we may rewrite as

s3 + 3s2 + (2+ K)s+ KI = 0.

Figure 3.42
System with
proportional-integral
(PI) control

R © + 

-
K  + 

1

(s + 1)(s + 2)
YKI

s
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The corresponding Routh array is

s3 : 1 2+ K
s2 : 3 KI
s : (6+ 3K − KI )/3
s0 : KI .

For internal stability we must have

KI > 0 and K >
1
3

KI − 2.

The allowable region can be plotted in Matlab using the following
commands

fh=@(KI,K) 6+3*K−KI;
ezplot(fh)
hold on;
f=@(KI, K) KI;
ezplot(f);

and is the shaded area in the (KI , K) plane shown in Fig. 3.43, which
represents an analytical solution to the stability question. This example
illustrates the real value of Routh’s approach and why it is superior to
the numerical approaches. It would have been more difficult to arrive
at these bounds on the gains using numerical search techniques. The
closed-loop transfer function is

T(s) = Y(s)
R(s)

= Ks+ KI

s3 + 3s2 + (2+ K)s+ KI
.

As in Example 3.33, we may compute the closed-loop poles for different
values of the dynamic compensator gains by using the Matlab function
roots on the denominator polynomial:Matlab roots

denT = [1 3 2+K KI]; % form denominator

Figure 3.43
Allowable region for
stability

KI

K

0 6

-2

-1
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Figure 3.44
Transient response for
the system in Fig. 3.42
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Similarly, we may find the zero by finding the roots of the numerator
polynomial

numT = [K KI]; % form numerator

The closed-loop zero of the system is at −KI/K. Fig. 3.44 shows
the transient response for three sets of feedback gains. For K = 1 and
KI = 0, the closed-loop poles are at 0 and −1.5 ± 0.86j, and there is
a zero at the origin. For K = KI = 1, the poles and zeros are all at
−1. For K = 10 and KI = 5, the closed-loop poles are at −0.46 and
−1.26 ± 3.3j and the zero is at −0.5. The step responses were obtained
using the following Matlab function:

sysT=tf(numT,denT); % define system by its numerator and denominator
step(sysT) % compute step response

There is a large steady-state error in this case when KI = 0. (See
Chapter 4.)

If the first term in one of the rows is zero or if an entire row is zero,
then the standard Routh array cannot be formed, so we have to use one
of the special techniques described next.

Special Cases

If only the first element in one of the rows of the Routh array is zero
or an entire row of the Routh array is zero, special modifications to
the Routh array computations are necessary. For details, see Appendix
W.3.6.3 available online at www.pearsonglobaleditions.com.

The Routh–Hurwitz result assumes the characteristic polynomial
coefficients are known precisely. It is well known the roots of a polyno-
mial can be very sensitive to even slight perturbations in the polynomial
coefficients. If the range of variation on each one of the polynomial
coefficients is known, then a remarkable result called the Kharitonov

www.pearsonglobaleditions.com
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Theorem (1978) allows one to test just four so-called Kharitonov poly-
nomials, using the Routh test, to see if the polynomial coefficient
variations result in instability.

3.7 Obtaining Models from Experimental Data:
System Identification

There are several reasons for using experimental data to obtain a

�

model of the dynamic system to be controlled. The available infor-
mation and related techniques in this area are under the banner
of system identification. See Appendix W3.7 available online at
www.pearsonglobaleditions.com.

3.8 Amplitude and Time Scaling
In some cases in practice, due to extreme variations in magnitudes of

�
real data, amplitude scaling is necessary. See Appendix W3.8 available
online at www.pearsonglobaleditions.com.

3.9 Historical Perspective
Oliver Heaviside (1850–1925) was an eccentric English electrical engi-
neer, mathematician, and physicist. He was self-taught and left school
at the age of 16 to become a telegraph operator. He worked mostly
outside the scientific community that was hostile to him. He reformu-
lated Maxwell’s equations into the form that is used today. He also laid
down the foundations of telecommunication and hypothesized the exis-
tence of the ionosphere. He developed the symbolic procedure known
as Heaviside’s operational calculus for solving differential equations.
The Heaviside calculus was widely popular among electrical engineers
in the 1920s and 1930s. This was later shown to be equivalent to the
more rigorous Laplace transform named after the French mathemati-
cian Pierre-Simon Laplace (1749–1827) who had earlier worked on
operational calculus.

Laplace was also an astronomer and a mathematician who is some-
times referred to as the “The Newton of France.” He studied the origin
and dynamical stability of the solar system completing Newton’s work
in his five-volume Méchanique céleste (Celestial Mechanics). Laplace
invented the general concept of potential as in a gravitational or electric
field and described by Laplace’s equation. Laplace had a brief politi-
cal career as Napoleon’s Interior Minister. During a famous exchange
with Napoleon who asked Laplace why he had not mentioned God in
Méchanique céleste, Laplace is said to have replied “Sir, there was no
need for that hypothesis.” He was an opportunist and changed sides as
the political winds shifted. Laplace’s operational property transforms
a differential equation into an algebraic operation that is much eas-
ier to manipulate in engineering applications. It is also applicable to

www.pearsonglobaleditions.com
www.pearsonglobaleditions.com


main_1 — 2019/2/5 — 10:43 — page 185 — #75

Summary 185

solutions of partial differential equations, the original problem that
Laplace was concerned with while developing the transform. Laplace
formulated the Laplace’s equation with applications to electromagnetic
theory, fluid dynamics, and astronomy. Laplace also made fundamental
contributions to probability theory.

Laplace and Fourier transforms are intimately related (see
Appendix A). The Fourier series and the Fourier transform, developed
in that order, provide methods for representing signals in terms of expo-
nential functions. Fourier series are used to represent a periodic signal
with discrete spectra in terms of a series. Fourier transforms are used to
represent a non-periodic signal with continuous spectra in terms of an
integral. The Fourier transform is named after the French mathemati-
cian Jean Batiste Joseph Fourier (1768–1830) who used Fourier series to
solve the heat conduction equation expressed in terms of Fourier series.
Laplace and Fourier were contemporaries and knew each other very
well. In fact, Laplace was one of Fourier’s teachers. Fourier accompa-
nied Napoleon on his Egyptian expedition in 1798 as a science advisor,
and is also credited with the discovery of the greenhouse effect.

Transform methods provide a unifying method in applications to
solving many engineering problems. Linear transforms such as the
Laplace transform and Fourier transform are useful for studying linear
systems. While Fourier transforms are useful to study the steady-state
behavior, Laplace transforms are used for studying the transient and
closed-loop behavior of dynamic systems. The book by Gardner and
Barnes in 1942 was influential in popularizing the Laplace transform in
the United States.

SUMMARY

• The Laplace transform is the primary tool used to determine
the behavior of linear systems. The Laplace transform of a time
function (t) is given by

L [ f (t)] = F(s) =
∫ ∞

0−
f (t)e−st dt. (3.91)

• This relationship leads to the key property of Laplace transforms,
namely,

L [
ḟ (t)

] = sF(s)− f (0−). (3.92)
• This property allows us to find the transfer function of a lin-

ear ODE. Given the transfer function G(s) of a system and the
input u(t), with transform U(s), the system output transform is
Y(s) = G(s)U(s).

• Normally, inverse transforms are found by referring to tables,
such as Table A.2 in Appendix A, or by computer. Properties of
Laplace transforms and their inverses are summarized in Table A.1
in Appendix A.
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• The Final Value Theorem is useful in finding steady-state errors for
stable systems: If all the poles of s Y(s) are in the LHP, then

lim
t→∞ y(t) = lim

s→0
s Y(s). (3.93)

• Block diagrams are a convenient way to show the relationships
between the components of a system. They can usually be simplified
using the relations in Fig. 3.10 and Eq. (3.58); that is, the transfer
function of the block diagram

G1(s) Y1(s)

G2(s)

R1(s) ©
+

-

is equivalent to

Y1(s) = G1(s)
1+ G1(s)G2(s)

R1(s). (3.94)

• The locations of poles in the s-plane determine the character of the
response, as shown in Fig. 3.16.

• The location of a pole in the s-plane is defined by the parameters
shown in Fig. 3.18. These parameters are related to the time-
domain quantities of rise time tr, settling time ts, and overshoot
Mp, which are defined in Fig. 3.23. The correspondences between
them, for a second-order system with no zeros, are given by

tr ∼= 1.8
ωn

, (3.95)

Mp = e−πζ/
√

1−ζ 2
, (3.96)

ts = 4.6
ζωn

. (3.97)

• When a zero in the LHP is present, the overshoot increases. This
effect is summarized in Figs. 3.27, 3.28 and 3.29.

• When a real RHP is present, the step response starts off in the
“wrong direction,” and the response is more sluggish. This effect
is summarized in Fig. 3.31, and is called the nonminimum phase
behavior.

• When an additional stable pole is present, the system response is
more sluggish. This effect is summarized in Figs. 3.36, 3.37 and
3.38.

• For a stable system, all the closed-loop poles must be in
the LHP.

• A system is stable if and only if all the elements in the first column
of the Routh array are positive. To determine the Routh array, refer
to the formulas in Section 3.6.3.
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REVIEW QUESTIONS

3.1 What is the definition of a “transfer function”?

3.2 What are the properties of systems whose responses can be described by
transfer functions?

3.3 What is the Laplace transform of f (t−λ)1(t−λ) if the transform of f (t)
is F(s)?

3.4 State the Final Value Theorem (FVT).

3.5 What is the most common use of the FVT in control?

3.6 Given a second-order transfer function with damping ratio ζ and natural
frequency ωn, what is the estimate of the step response rise time? What
is the estimate of the percent overshoot in the step response? What is the
estimate of the settling time?

3.7 What is the major effect of a zero in the left half-plane on the second-
order step response?

3.8 What is the most noticeable effect of a zero in the right half-plane on the
step response of the second-order system?

3.9 What is the main effect of an extra real pole on the second-order step
response?

3.10 Why is stability an important consideration in control system design?

3.11 What is the main use of Routh’s criterion?

3.12 Under what conditions might it be important to know how to estimate a
transfer function from experimental data?

PROBLEMS

Problems for Section 3.1: Review of Laplace Transforms

3.1 Show that, in a partial-fraction expansion, complex conjugate poles have
coefficients that are also complex conjugates. (The result of this relation-
ship is that whenever complex conjugate pairs of poles are present, only
one of the coefficients needs to be computed.)

3.2 Find the Laplace transform of the following time functions:

(a) f (t) = 0.5+ 2.5t

(b) f (t) = 1.5+ 9t+ 0.3t2 + δ(t), where δ(t) is the unit impulse function
(c) f (t) = 5.5e−t + 3e−2t + 2.5t2e−3t

(d) f (t) = (2t+ 1)2

(e) f (t) = cosh 0.2t

3.3 Find the Laplace transform of the following time functions:

(a) f (t) = 8 sin 0.75t

(b) f (t) = cos 1.5t+ 4 sin 1.5t+ 1.7e−0.5t cos 1.5t

(c) f (t) = 0.4t3 + 1.8et sin 2.2t

3.4 Find the Laplace transform of the following time functions:

(a) f (t) = t cos t

(b) f (t) = t sin 0.9t
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(c) f (t) = te−0.1t + 2t cos 0.6t

(d) f (t) = 3t2 − 2t sin 1.3t+ 5t cos 7.2t

(e) f (t) = t2 cos t+ t2 sin 0.9t

3.5 Find the Laplace transform of the following time functions (* denotes
convolution):

(a) f (t) = sin 5t cos t

(b) f (t) = 2+ 3 sin2 4t+ 5 cos2 t

(c) f (t) = (sin t)/t

(d) f (t) = sin t ∗ cos 2t

(e) f (t) =
t∫

0
sin(t− τ) sin τdτ

3.6 Given the Laplace transform of f (t) is F(s), find the Laplace transform
of the following:

(a) g(t) = f (t) cos t

(b) g(t) =
t∫

0

t1∫
0

f (τ )dτdt1

3.7 Find the time function corresponding to each of the following Laplace
transforms using partial-fraction expansions:

(a) F(s) = 5
s(s+7)

(b) F(s) = 6
s(s+1)(s+2)

(c) F(s) = 8s+2
s2+s+20

(d) F(s) = 5s+3
(s+1)(s2+2s+30)

(e) F(s) = s+4
s2+2

(f) F(s) = s+1
s(s2+4)

(g) F(s) = s+9
s2(s+1)

(h) F(s) = 5
s5

(i) F(s) = 18
s4+9

(j) F(s) = e−3

s3

3.8 Find the time function corresponding to each of the following Laplace
transforms:

(a) F(s) = 1
s(s+2)2

(b) F(s) = s2+s+1
s3−1

(c) F(s) = 2(s2+s+1)
s(s+1)2

(d) F(s) = s3+2s+4
s4−16

(e) F(s) = 2(s+2)(s+5)2

(s+1)(s2+4)2

(f) F(s) = s2−1
(s2+1)2

(g) F(s) = tan−1
(

1
s

)
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3.9 Solve the following ODEs using Laplace transforms:

(a) ÿ(t)+ ẏ(t)+ 3y(t) = 0; y(0) = 1, ẏ(0) = 2
(b) ÿ(t)− 2ẏ(t)+ 4y(t) = 0; y(0) = 1, ẏ(0) = 2
(c) ÿ(t)+ ẏ(t) = sin t; y(0) = 1, ẏ(0) = 2
(d) ÿ(t)+ 3y(t) = sin t; y(0) = 1, ẏ(0) = 2
(e) ÿ(t)+ 2ẏ(t) = et; y(0) = 1, ẏ(0) = 2
(f) ÿ(t)+ y(t) = t; y(0) = 1, ẏ(0) = −1

3.10 Using the convolution integral, find the step response of the system
whose impulse response is given below and shown in Fig. 3.45:

h(t) =
{

te−t t ≥ 0,
0 t < 0.

Figure 3.45
Impulse response for
Problem 3.10
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3.11 Using the convolution integral, find the step response of the system
whose impulse response is given below and shown in Fig. 3.46:

h(t) =
{

t/3, 0 ≤ t ≤ 3
0, t < 0 and t > 3.

Figure 3.46
Impulse response for
Problem 3.11

1.5

1.0

h(
t)

0.5

0.0
-1.0 -0.5 0.0 3.53.02.52.0

Time (sec)

1.51.00.5 4.0

3.12 Consider the standard second-order system

G(s) = ω2
n

s2 + 2ζωns+ ω2
n

.
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(a) Write the Laplace transform of the signal in Fig. 3.47.
(b) What is the transform of the output if this signal is applied to G(s)?
(c) Find the output of the system for the input shown in Fig. 3.47.

Figure 3.47
Plot of input signal for
Problem 3.12

u(t)

1

1 2 3

Time (sec)

3.13 A rotating load is connected to a field-controlled DC motor with negli-
gible field inductance. A test results in the output load reaching a speed
of 1 rad/sec within 1/2 sec when a constant input of 100 V is applied to
the motor terminals. The output steady-state speed from the same test
is found to be 2 rad/sec. Determine the transfer function �(s)

Vf (s)
of the

motor.

3.14 For the system in Fig. 2.57, compute the transfer function from the motor
voltage to position θ2.

3.15 Compute the transfer function for the two-tank system in Fig. 2.61 with
holes at A and C.

3.16 For a second-order system with transfer function

G(s) = 5

s2 + s+ 4
,

Determine the following:

(a) The DC gain and whether the system is stable.
(b) The final value of the output if the input is applied with a step of 2

units or R(s) = 2
s .

3.17 Consider the continuous rolling mill depicted in Fig. 3.48. Suppose the
motion of the adjustable roller has a damping coefficient b, and the force
exerted by the rolled material on the adjustable roller is proportional to
the material’s change in thickness: Fs = c(T − x). Suppose further the
DC motor has a torque constant Kt and a back emf constant Ke, and the
rack-and-pinion has effective radius of R.

(a) What are the inputs to this system? The output?
(b) Without neglecting the effects of gravity on the adjustable roller,

draw a block diagram of the system that explicitly shows the follow-
ing quantities: Vs(s), I0(s), F(s) (the force the motor exerts on the
adjustable roller), and X(s).

(c) Simplify your block diagram as much as possible while still identify-
ing each output and input separately.
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+

-

io(t)

-

+

ya(t) ys(t)

1 : N
Gear ratio

Rack and

pinion

Motion of

material

out of rollers

Thickness T
Thickness x

Vertically

adjustable

roller

Fixed

roller

La Ra

Fm

Figure 3.48
Continuous rolling mill

Problems for Section 3.2: System Modeling Diagrams

3.18 Consider the block diagram shown in Fig. 3.49. Note ai and bi are
constants. Compute the transfer function for this system. This special
structure is called the “control canonical form”, and will be discussed
further in Chapter 7.

Figure 3.49
Block diagram for
Problem 3.18 ©

+

++

©
+

+ +
+

U(s)

-a1

X1

b1

-a2

-a3

b2

b3

Y(s)

1
s

1
s

X2 X31
s

3.19 Find the transfer functions for the block diagrams in Fig. 3.50.
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Figure 3.50
Block diagrams for
Problem 3.19 G1S

2

G2

S YR

(a)
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(b)

G3
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1

1
1
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(c)

1

1 1
1

1
1

3.20 Find the transfer functions for the block diagrams in Fig. 3.51,
using the ideas of block-diagram simplification. The special structure in
Fig. 3.51(b) is called the “observer canonical form”, and will be discussed
in Chapter 7.

3.21 Use block-diagram algebra to determine the transfer function between
R(s) and Y(s) in Fig. 3.52.

3.22 Find the transfer functions for the block diagrams in Fig. 3.51, using�
Mason’s rule.

3.23 Use Mason’s rule to determine the transfer function between R(s) and�
Y(s) in Fig. 3.52.

Problems for Section 3.3: Effect of Pole Locations

3.24 For the electric circuit shown in Fig. 3.53, find the following:

(a) The time-domain equation relating i(t) and v1(t);
(b) The time-domain equation relating i(t) and v2(t);

(c) Assuming all initial conditions are zero, the transfer function v2(s)
v1(s)

and the damping ratio ζ and undamped natural frequency ωn of the
system;

(d) The range of C values that will result in v2(t) having an overshoot of
no more than 20%, assuming v1(t) is a unit step, L = 1.5 mH, and
R = 5�.
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Figure 3.51
Block diagrams for Problem 3.20

Figure 3.52
Block diagram for
Problem 3.21
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Figure 3.53
Circuit for Problem 3.24

L R

C y2(t)y1(t) i(t)

+

-

+

-

3.25 For the unit feedback system shown in Fig. 3.54, specify the gain K of
the proportional controller so that the output y(t) has an overshoot of
no more than 12% in response to a unit step.

Figure 3.54
Unity feedback system
for Problem 3.25

K©
+

-
s(s + 5)

1R(s) Y(s)

3.26 For the unity feedback system shown in Fig. 3.55, specify the gain and
pole location of the compensator so that the overall closed-loop response
to a unit-step input has an overshoot of no more than 18% and a 1%
settling time of no more than 0.01 sec. Verify your design using Matlab.

Figure 3.55
Unity feedback system
for Problem 3.26

©
+

-
0.5s + 150

150R(s) Y(s)
s + a

K

Compensator Plant

Problems for Section 3.4: Time-Domain Specification

3.27 Suppose you desire the peak time of a given second-order system to be
less than t′p. Draw the region in the s-plane that corresponds to values of
the poles that meet the specification tp < t′p.

3.28 A certain servomechanism system has dynamics dominated by a pair of
complex poles and no finite zeros. The time-domain specifications on the
rise time (tr), percent overshoot (Mp), and settling time (ts) are given by:

tr ≤ 0.6 sec ,

Mp ≤ 17%,

ts ≤ 9.2 sec .

(a) Sketch the region in the s-plane where the poles could be placed so
that the system will meet all three specifications.

(b) Indicate on your sketch the specific locations (denoted by ×) that
will have the smallest rise time and also meet the settling time
specification exactly.

3.29 A feedback system has the following response specifications:
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• Percent overshoot Mp ≤ 16%
• Settling time ts ≤ 6.9 sec
• Rise time tr ≤ 1.8 sec

(a) Sketch the region of acceptable closed-loop poles in the s-plane for
the system, assuming the transfer function can be approximated as
simple second order.

(b) What is the expected overshoot if the rise time and settling time
specifications are met exactly?

3.30 Suppose you are to design a unity feedback controller for a first-order
plant depicted in Fig. 3.56. (As you will learn in Chapter 4, the config-
uration shown is referred to as a proportional–integral controller.) You
are to design the controller so that the closed-loop poles lie within the
shaded regions shown in Fig. 3.57.

Figure 3.56
Unity feedback system
for Problem 3.30

K©
+

-

s
KI

R Y©
+

+
s + a
Ka

e(t)

Figure 3.57
Desired closed-loop
pole locations for
Problem 3.30

Re(s)

Im(s)

-2-4

2

4
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-2

(a) What values of ωn and ζ correspond to the shaded regions in Fig.
3.57? (A simple estimate from the figure is sufficient.)

(b) Let Kα = α = 2. Find values for K and KI so the poles of the
closed-loop system lie within the shaded regions.

(c) Prove that no matter what the values of Kα and α are, the controller
provides enough flexibility to place the poles anywhere in the complex
(left-half) plane.

3.31 The open-loop transfer function of a unity feedback system is

G(s) = K
s(s+ 2)

.

The desired system response to a step input is specified as peak time tp =
1 sec and overshoot Mp = 5%.



main_1 — 2019/2/5 — 10:43 — page 196 — #86

196 Chapter 3 Dynamic Response

(a) Determine whether both specifications can be met simultaneously by
selecting the right value of K.

(b) Sketch the associated region in the s-plane where both specifications
are met, and indicate what root locations are possible for some likely
values of K.

(c) Relax the specifications in part (a) by the same factor and pick a suit-
able value for K, and use Matlab to verify that the new specifications
are satisfied.

3.32 A simple mechanical system is shown in Fig. 3.58(a). The parameters are
k = spring constant, b = viscous friction constant, m = mass. A step of
2 N force is applied as F = 2 × 1(t) and the resulting step response is
shown in Fig. 3.58(b). What are the values of the system parameters k, b,
and m?

Figure 3.58
(a) Mechanical system
for Problem 3.32;
(b) step response for
Problem 3.32

x

No friction
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b

k

(a)

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (sec)

x(
t)

(b)

3.33 A mechanical system is shown in Fig. 3.59. The mass M = 18 kg and the
control force, u, is proportional to the reference input, u = Ar.

(a) Derive the transfer function from R to Y .
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Figure 3.59
Simple mechanical
system for Problem 3.33 k

b

y

uM

(b) Determine the values of the parameters k, b, A such that the system
has a rise time of tr = 0.7 s and overshoot of Mp = 14%, and zero
steady-state error to a step in r.

3.34 The equations of motion for the DC motor shown in Fig. 2.33 were given
in Eqs (2.65) as

Jmθ̈m +
(

b+ KtKe

Ra

)
θ̇m = Kt

Ra
va.

Assume that

Jm = 0.05 kg·m2,

b = 0.009 N·m·sec,

Ke = 0.07 V·sec,

Kt = 0.07 N·m/A,

Ra = 12 �.

(a) Find the transfer function between the applied voltage va and the
motor speed θ̇m.

(b) What is the steady-state speed of the motor after a voltage va = 15 V
has been applied?

(c) Find the transfer function between the applied voltage va and the
shaft angle θm.

(d) Suppose feedback is added to the system in part (c) so it becomes a
position servo device such that the applied voltage is given by

va = K(θr − θm)
where K is the feedback gain. Find the transfer function between θr
and θm.

(e) What is the maximum value of K that can be used if an overshoot
M < 16% is desired?

(f) What values of K will provide a rise time of less than 5.2 sec? (Ignore
the Mp constraint.)

(g) Use Matlab to plot the step response of the position servo system
for values of the gain K = 0.6, 1, and 2. Find the overshoot and
rise time for each of the three step responses by examining your
plots. Are the plots consistent with your calculations in parts (e)
and (f)?

3.35 You wish to control the elevation of the satellite-tracking antenna shown
in Fig. 3.60 and Fig. 3.61. The antenna and drive parts have a moment
of inertia J and a damping B; these arise to some extent from bearing
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Figure 3.60
Satellite-tracking
antenna
Source:
fstockfoto/Shutterstock

Figure 3.61
Schematic of antenna
for Problem 3.35

u

and aerodynamic friction, but mostly from the back emf of the DC drive
motor. The equations of motion are

J θ̈ + Bθ̇ = Tc,

where Tc is the torque from the drive motor. Assume

J = 600,000 kg·m2 B = 20,000 N·m·sec.

(a) Find the transfer function between the applied torque Tc and the
antenna angle θ .

(b) Suppose the applied torque is computed so θ tracks a reference
command θr according to the feedback law

Tc = K(θr − θ),
where K is the feedback gain. Find the transfer function between θr
and θ .

(c) What is the maximum value of K that can be used if you wish to have
an overshoot Mp < 10%?

(d) What values of K will provide a rise time of less than 80 sec? (Ignore
the Mp constraint.)
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(e) Use Matlab to plot the step response of the antenna system for K =
200, 400, 1000, and 2000. Find the overshoot and rise time of the
four step responses by examining your plots. Do the plots to confirm
your calculations in parts (c) and (d)?

3.36 Show that the second-order system

ÿ+ 2ζωnẏ+ ω2
ny = 0, y(0) = yo, ẏ(0) = 0,

has the initial condition response

y(t) = yo
e−σ t

√
1− ζ 2

sin(ωdt+ cos−1 ζ ).

Prove that, for the underdamped case (ζ < 1), the response oscilla-
tions decay at a predictable rate (see Fig. 3.62) called the logarithmic
decrement, δ.

δ = ln
yo

y1
= ln eστd = στd =

2πζ√
1− ζ 2

∼= ln
�y1
y1
∼= ln

�yi

yi
,

where

τd =
2π
ωd
= 2π

ωn
√

1− ζ 2
,

is the damped natural period of vibration. The damping coefficient in
terms of the logarithmic decrement is then

ζ = δ√
4π2 + δ2

.

Problems for Section 3.5: Effects of Zeros and Additional Poles

3.37 In aircraft control systems, an ideal pitch response (qo) versus a pitch
command (qc) is described by the transfer function

Qo(s)
Qc(s)

= τω2
n(s+ 1

τ )

s2 + 2ζωns+ ω2
n

.

Figure 3.62
Definition of
logarithmic decrement

t

¢y1

¢y2

td

y0

y1

y2
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The actual aircraft response is more complicated than this ideal transfer
function: nevertheless, the ideal model is used as guide for autopilot
design. Assume that tr is the desired rise time and

ωn = 1.789
tr

,

1
τ
= 2

tr
,

ζ = 0.89.

Show that this ideal response possesses fast transient response with
minimal overshoot by plotting the step response for tr = 1.0 and 1.5 sec.

3.38 Approximate each of the following transfer functions with a second-order
transfer function.

G1(s) = (0.6s+ 1)(0.35s+ 1)

(0.38s+ 1)(0.55s+ 1)(s2 + 1.1s+ 1)
,

G2(s) = (0.6s+ 1)(0.35s+ 1)

(0.38s+ 1)(0.55s+ 1)(s2 + 0.2s+ 1)
,

G3(s) = (0.6s+ 1)(−0.35s+ 1)

(0.08s+ 1)(0.55s+ 1)(s2 + 1.1s+ 1)
,

G4(s) = (0.6s+ 1)(0.35s+ 1)

(0.08s+ 1)(0.55s+ 1)(s2 + 1.1s+ 1)
,

G5(s) = (0.01s+ 1)(0.35s+ 1)

(0.38s+ 1)(0.55s+ 1)(s2 + 1.1s+ 1)
.

3.39 A system has the closed-loop transfer function

Y(s)
R(s)

= T(s) = 1500(s+ 30)
(s+ 1.5)(s+ 16)(s+ 31)(s+ 10s+ 50)

,

where R is a step of size 5.

(a) Given an expression for the form of the output time history as
a sum of terms showing the shape of each component of the
response.

(b) Given an estimate of the settling time of this step response.

3.40 Consider the system shown in Fig. 3.63, where

G(s) = 1
s(s+ 3)

and Dc(s) = K(s+ z)
s+ p

.
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Find K, z, and p so the closed-loop system has a 10% overshoot to a step
input and a settling time of 1.5 sec (1% criterion).

Figure 3.63
Unity feedback system
for Problem 3.40

Dc(s)R(s) Y(s)©
-

+
G(s)

3.41 Sketch the step response of a system with the transfer function�

G(s) = s/2+ 1

(s/40+ 1)
[
(s/4)2 + s/4+ 1

] .

Justify your answer on the basis of the locations of the poles and zeros.
(Do not find the inverse Laplace transform.) Then compare your answer
with the step response computed using Matlab.

3.42 A closed-loop transfer function is given:

H(s) =
[( s

10
)2 + 0.1

( s
10

)+ 1
] [ s

2 + 1
] [ s

0.1 + 1
]

[( s
4
)2 + ( s

4
)+ 1

] [( s
10

)2 + 0.09
( s

10
)+ 1

] [ s
0.02 + 1

] .

Estimate the percent overshoot, Mp, and the transient settling time, ts,
for this system.

3.43 A transfer function, G(s), is given:

G(s) =
[( s

100
)2 + 0.01

( s
100

)+ 1
]

[( s
10

)2 + ( s
10

)+ 1
] [ s

5 + 1
] [( s

100
)2 + 0.1

( s
100

)+ 1
] .

If a step input is applied to this plant, what do you estimate the rise-time,
settling time, and overshoot to be? Give a brief statement of your reasons
in each case.

3.44 Three closed-loop transfer functions are given below.

Y(s)
R(s)

= T1(s) = 2.7

s2 + 1.64s+ 2.7
,

Y(s)
R(s)

= T2(s) = 2(s+ 1.5)

1.11(s2 + 1.64s+ 2.7)
,

Y(s)
R(s)

= T3(s) = 4.1

(s+ 1.5)(s2 + 1.64s+ 2.7)
.

In each case, provide estimates of the rise-time, settling time, and
percent overshoot to a unit step input in r.
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3.45 Six transfer functions with unity DC gain are given below.

(a) Which transfer function(s) will meet an overshoot specification of
Mp ≤ 17%?

(b) Which transfer function(s) will meet a rise time specification of tr ≤
0.3 sec?

(c) Which transfer function(s) will meet a settling time specification of
ts ≤ 1.3 sec?

G1(s) = 53.5

(s2 + 7.31s+ 53.5)
,

G2(s) = 313

(s+ 5.85)(s2 + 7.31s+ 53.5)
,

G3(s) = 313

0.5319(s+ 11)(s2 + 7.31s+ 53.5)
,

G4(s) = 5.9(s+ 9.1)

(s2 + 7.31s+ 53.5)
,

G5(s) = 9.8(s2 + 8s+ 60)

(s+ 11)(s2 + 7.31s+ 53.5)
,

G6(s) = 1.78(s2 + 8s+ 60)

(s+ 2)(s2 + 7.31s+ 53.5)
.

3.46 Consider the following two nonminimum-phase systems:

G1(s) = − 2(s− 1)
(s+ 1)(s+ 2)

, (3.98)

G2(s) = 3(s− 1)(s− 2)
(s+ 1)(s+ 2)(s+ 3)

. (3.99)

(a) Sketch the unit-step responses for G1(s) and G2(s), paying close
attention to the transient part of the response.

(b) Explain the difference in the behavior of the two responses as it
relates to the zero locations.

(c) Consider a stable, strictly proper system (that is, m zeros and n poles,
where m < n). Let y(t) denote the step response of the system. The
step response is said to have an undershoot if it initially starts off in
the “wrong” direction. Prove that a stable, strictly proper system has
an undershoot if and only if its transfer function has an odd number
of real RHP zeros.

3.47 Find the relationships for the impulse response and the step response
corresponding to Eq. (3.65) for the cases where

(a) the roots are repeated.
(b) the roots are both real. Express your answers in terms of hyper-

bolic functions (sinh, cosh) to best show the properties of the system
response.

(c) the value of the damping coefficient, ζ , is negative.

3.48 Consider the following second-order system with an extra pole:

H(s) = ω2
np

(s+ p)(s2 + 2ζωns+ ω2
n)

.
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Show the unit-step response is

y(t) = 1+ Ae−pt + Be−σ t sin(ωdt− θ),
where

A = −ω2
n

ω2
n − 2ζωnp+ p2

,

B = p√
(p2 − 2ζωnp+ ω2

n)(1− ζ 2)

,

θ = tan−1

(√
1− ζ 2

−ζ

)
+ tan−1

(
ωn

√
1− ζ 2

p− ζωn

)
.

(a) Which term dominates y(t) as p gets large?
(b) Give approximate values for A and B for small values of p.
(c) Which term dominates as p gets small? (Small with respect to what?)
(d) Using the preceding explicit expression for y(t) or the step command

in Matlab, and assuming ωn = 1 and ζ = 0.7, plot the step response
of the preceding system for several values of p ranging from very
small to very large. At what point does the extra pole cease to have
much effect on the system response?

3.49 Consider the second-order unity DC gain system with an extra zero:

H(s) = ω2
n(s+ z)

z(s2 + 2ζωns+ ω2
n)

.

(a) Show that the unit-step response for the system is given by

y(t) = 1−

√
1+ ω2

n
z2 − 2ζωn

z√
1− ζ 2

e−σ t cos(ωdt+ β1),

where

β1 = tan−1

(
−ζ + ωn

z√
1− ζ 2

)
.

(b) Derive an expression for the step response overshoot, Mp, of this
system.

(c) For a given value of overshoot, Mp, how do we solve for ζ and ωn?

3.50 The block diagram of an autopilot designed to maintain the pitch atti-
tude θ of an aircraft is shown in Fig. 3.64. The transfer function relating
the elevator angle δe and the pitch attitude θ is

�(s)
δe(s)

= G(s) = 50(s+ 1)(s+ 2)

(s2 + 5s+ 40)(s2 + 0.03s+ 0.06)
,

where θ is the pitch attitude in degrees and δe is the elevator angle in
degrees. The autopilot controller uses the pitch attitude error e to adjust
the elevator according to the transfer function

δe(s)
E(s)

= Dc(s) = K(s+ 3)
s+ 10

.
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Using Matlab, find a value of K that will provide an overshoot of less
than 10% and a rise time faster than 0.5 sec for a unit-step change in
θr. After examining the step response of the system for various values
of K, comment on the difficulty associated with meeting rise time and
overshoot specifications for complicated systems.

Figure 3.64
Block diagram of
autopilot for
Problem 3.50

©
+

-
G(s)

Aircraft

Dc(s)

Control dee
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Problems for Section 3.6: Stability

3.51 A measure of the degree of instability in an unstable aircraft response
is the amount of time it takes for the amplitude of the time response to
double (see Fig. 3.65), given some nonzero initial condition.

(a) For a first-order system, show that the time to double is

τ2 = ln 2
p

where p is the pole location in the RHP.
(b) For a second-order system (with two complex poles in the RHP),

show that

τ2 = ln 2
−ζωn

.

Figure 3.65
Time to double

Time

Amplitude

2A
A
0

-A

2

3.52 Suppose that unity feedback is to be applied around the listed open-
loop systems. Use Routh’s stability criterion to determine whether the
resulting closed-loop systems will be stable.

(a) K(s)G(s) = 5(s+5)
(s+1)(s3+2s+5)

(b) K(s)G(s) = 0.2(s2+0.95s+0.11)
s(s2+0.36s+0.72)

(c) K(s)G(s) = (s3+15.5s2+12.2s+100)
(s+1)2(47.7s3+23.4s2+20.3s+1)

3.53 Use Routh’s stability criterion to determine how many roots with positive
real parts the following equations have:

(a) s4 + 5.2s3 + 18.9s2 + 43.2s+ 45.4
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(b) s5 + 0.102s4 + 1.123s3 + 0.686s2 + 0.154s+ 2
(c) s4 + 152s3 + 12s2 − 1932s− 4921
(d) 99s3 − s2 − 6s− 7
(e) s4 + 8s2 + 36

3.54 Find the range of K for which all the roots of the following polynomial
are in the LHP:

s5 + 5s4 + 10s3 + 10s2 + 5s+ K = 0.

Use Matlab to verify your answer by plotting the roots of the polynomial
in the s-plane for various values of K.

3.55 The transfer function of a typical tape-drive system is given by

KG(s) = K(s+ 6)

s
[
(s+ 0.7)(s+ 1.2)(s2 + 0.8s+ 6)

] ,

where time is measured in milliseconds. Using Routh’s stability crite-
rion, determine the range of K for which this system is stable when the
characteristic equation is 1+ KG(s) = 0.

3.56 Consider the closed-loop magnetic levitation system shown in Fig. 3.66.
Determine the conditions on the system parameters (a, K, z, p, K◦) to
guarantee closed-loop system stability.

Figure 3.66
Magnetic levitation
system for Problem 3.56

Ko
Y

(s2 - a2)
©

+

-
R

e u(s + z)

(s + p)
K

3.57 Consider the system shown in Fig. 3.67.

(a) Compute the closed-loop characteristic equation.
(b) For what values of (T , A) is the system stable? Hint: An approximate

answer may be found using

e−Ts ∼= 1− Ts,

or

e−Ts ∼= 1− T
2 s

1+ T
2 s

,

for the pure delay. As an alternative, you could use the computer
Matlab (Simulink) to simulate the system or to find the roots of the
system’s characteristic equation for various values of T and A.

Figure 3.67
Control system for
Problem 3.57

©
+

-
e-sTR  Y

s(s + 1)

A
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3.58 Modify the Routh criterion so that it applies to the case in which all the
poles are to be the left −α when α > 0. Apply the modified test to the
polynomial

s3 + (0.5+ K)s2 + (1+ 2K)s+ 3K = 0,

finding those values of K for which all poles have a real part less than
−0.7.

3.59 Suppose the characteristic polynomial of a given closed-loop system is
computed to be

s4+(11+K2)s3+(121+K1)s2+(K1+K1K2+110K2+210)s+11K1+100 = 0.

Find constraints on the two gains K1 and K2 that guarantee a stable
closed-loop system, and plot the allowable region(s) in the (K1, K2) plane.
You may wish to use the computer to help solve this problem.

3.60 Overhead electric power lines sometimes experience a low-frequency,
high-amplitude vertical oscillation, or gallop, during winter storms when
the line conductors become covered with ice. In the presence of wind,
this ice can assume aerodynamic lift and drag forces that result in a gal-
lop up to several meters in amplitude. Large-amplitude gallop can cause
clashing conductors and structural damage to the line support structures
caused by the large dynamic loads. These effects in turn can lead to power
outages. Assume the line conductor is a rigid rod, constrained to ver-
tical motion only, and suspended by springs and dampers as shown in
Fig. 3.68. A simple model of this conductor galloping is

mÿ+ D(α)ẏ− L(α)v

(ẏ2 + v2)1/2
+ T

(nπ
�

)
y = 0,

where

m = mass of conductor,

y = conductor’s vertical displacement,

D = aerodynamic drag force,

L = aerodynamic lift force,

v = wind velocity,

α = aerodynamic angle of attack = − tan−1(ẏ/v),

Figure 3.68
Electric power-line
conductor
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x
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T = conductor tension,

n = number of harmonic frequencies,

� = length of conductor.

Assume L(0) = 0 and D(0) = D0 (a constant), and linearize the equation
around the value y = ẏ = 0. Use Routh’s stability criterion to show that
galloping can occur whenever

∂L
∂α
+D0 < 0.
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4
A First Analysis of Feedback

A Perspective on the Analysis of Feedback
In the next three chapters, we will introduce three techniques for
the design of controllers. Before doing so, it is useful to develop the
assumptions to be used and to derive the equations that are com-
mon to each of the design approaches we will describe. As a general
observation, the dynamics of systems to which control is applied are
nonlinear and very complex. However, in this initial analysis, we
assume the plant to be controlled as well as the controller can be
represented as dynamic systems which are linear and time invariant
(LTI). We also assume they have only single inputs and single out-
puts, for the most part, and may thus be represented by simple scalar
transfer functions. As we mentioned in Chapter 1, our basic concerns
for control are stability, tracking, regulation, and sensitivity. The
goal of the analysis in this chapter is to revisit each of these require-
ments in a linear dynamic setting, and to develop equations that will
expose constraints placed on the controller and identify elementary
objectives to be suggested for the controllers.

The two fundamental structures for realizing controls are the
open-loop structure, as shown in Fig. 4.1, and the closed-loop struc-
ture, also known as feedback control, as shown in Fig. 4.2. The
definition of open-loop control is that there is no closed signal
path whereby the output influences the control effort. In the struc-
ture shown in Fig. 4.1, the controller transfer function modifies the

208
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reference input signal before it is applied to the plant. This controller
might cancel the unwanted dynamics of the plant and replace them
with the more desirable dynamics of the controller. In other cases,
open-loop control actions are taken on the plant as the environment
changes, actions that are calibrated to give a good response but are
not dependent on measuring the actual response. An example of this
would be an aircraft autopilot whose parameters are changed with
altitude or speed but not by feedback of the craft’s motion. Feedback
control, on the other hand, uses a sensor to measure the output and
by feedback indirectly modifies the dynamics of the system. Although
it is possible that feedback may cause an otherwise stable system to
become unstable (a vicious circle), feedback gives the designer more
flexibility and a preferable response to each of our objectives when
compared to open-loop control.

Chapter Overview
The chapter begins with consideration of the basic equations of a sim-
ple open-loop structure and of an elementary feedback structure. In
Section 4.1, the equations for the two structures are presented in gen-
eral form and compared in turn with respect to stability, tracking,
regulation, and sensitivity. In Section 4.2, the steady-state errors
in response to polynomial inputs will be analyzed in more detail. As
part of the language of steady-state performance, control systems
are assigned a type number according to the maximum degree of the
input polynomial for which the steady-state error is a finite constant.
For each type, an appropriate error constant is defined, which allows
the designer to easily compute the size of this error.

Although Maxwell and Routh developed a mathematical basis for
assuring stability of a feedback system, design of controllers from
the earliest days was largely trial and error based on experience.
From this tradition, there emerged an almost universal controller,
the proportional–integral–derivative (PID) structure considered in
Section 4.3. This device has three elements: a Proportional term to
close the feedback loop, an Integral term to assure zero error to con-
stant reference and disturbance inputs, and a Derivative term to
improve (or realize!) stability and good dynamic response. In this
section, these terms will be considered and their respective effects
illustrated. As part of the evolution of the PID controller design, a
major step was the development of a simple procedure for selecting
the three parameters, a process called “tuning the controller.” Ziegler
and Nichols developed and published a set of experiments to be run,
characteristics to bemeasured, and tuning values to be recommended
as a result. These procedures are discussed in this section. The con-
cept of feedforward control by plant model inversion will be discussed
in Section 4.4. In the optional Section 4.5, a brief introduction to
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the increasingly common digital implementation of controllers will be
given. Sensitivity of time response to parameter changes will be dis-
cussed in Section 4.6. Finally, Section 4.7 will provide the historical
perspective for the material in this chapter.

4.1 The Basic Equations of Control
We begin by collecting a set of equations and transfer functions that
will be used throughout the rest of the text. For the open-loop system
of Fig. 4.1, if we take the disturbance to be at the input of the plant, the
output is given by

Yol = GDolR+ GW , (4.1)

and the error, the difference between reference input and system output,
is given by

Eol = R− Yol , (4.2)

= R− [GDolR+ GW ] , (4.3)

= [1− GDol ] R− GW . (4.4)

The open-loop transfer function in this case is Tol(s) = G(s)Dol(s).
For feedback control, Fig. 4.2 gives the basic unity feedback struc-

ture of interest. There are three external inputs: the reference, R, which
the output is expected to track; the plant disturbance, W , which the
control is expected to counteract so it does not disturb the output; and
the sensor noise, V , which the controller is supposed to ignore.

For the feedback block diagram of Fig. 4.2, the equations for the
output and the control are given by the superposition of the responses
to the three inputs individually, as follows:

Ycl = GDcl

1+ GDcl
R+ G

1+ GDcl
W − GDcl

1+ GDcl
V , (4.5)

U = Dcl

1+ GDcl
R− GDcl

1+ GDcl
W − Dcl

1+ GDcl
V . (4.6)

Figure 4.1
Open-loop system
showing reference, R,
control, U, disturbance,
W, and output Y
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Figure 4.2
Closed-loop system
showing the reference,
R, control, U,
disturbance, W, output,
Y , and sensor noise, V
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Perhaps more important than these is the equation for the error,
Ecl = R− Ycl.

Ecl = R−
[

GDcl

1+ GDcl
R+ G

1+ GDcl
W − GDcl

1+ GDcl
V
]

, (4.7)

= 1
1+ GDcl

R− G
1+ GDcl

W + GDcl

1+ GDcl
V . (4.8)

We can rewrite Eqs. (4.5), (4.6) and (4.8) in a nice compact form:

Ycl = T R+ GSW − T V , (4.9)

U = DclSR− T W −DclSV , (4.10)

Ecl = SR− GSW + T V , (4.11)

where we define the two transfer functions

S = 1
1+ GDcl

, (4.12)

and

T = GDcl

1+ GDcl
. (4.13)

In this case, the closed-loop transfer function is Tcl = T = GDcl

1+ GDcl
.

The significance of these two transfer functions will become apparent
later in this section.

With these equations, we will explore the four basic objectives of
stability, tracking, regulation, and sensitivity for both the open-loop and
the closed-loop cases.

4.1.1 Stability
As we discussed in Chapter 3, the requirement for stability is simply
stated: All poles of the transfer function must be in the left half-plane
(LHP). In the open-loop case described by Eq. (4.1), these are the poles
of GDol . To see the restrictions this requirement places on the controller,
we define the polynomials a(s), b(s), c(s), and d(s) so G(s) = b(s)

a(s) and

Dol(s) = c(s)
d(s) . Therefore GDol = bc

ad . With these definitions, the stability
requirement is that neither a(s) nor d(s)may have roots in the right half-
plane (RHP). A naive engineer might believe that if the plant is unstable
with a(s) having a root in the RHP, the system might be made stable
by canceling this pole with a zero of c(s). However, the unstable pole
remains and the slightest noise or disturbance will cause the output to
grow until stopped by saturation or system failure. Likewise, if the plant
shows poor response because of a zero of b(s) in the RHP, an attempt
to fix this by cancellation using a root of d(s) will similarly result in
an unstable system. We conclude that an open-loop structure cannot be
used to make an unstable plant to be stable, and therefore cannot be
used if the plant is already unstable.
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For the feedback system, from Eq. (4.8), the system poles are the
roots of 1 + GDcl = 0. Again using the polynomials defined above, the
system characteristic equation is

1+ GDcl = 0, (4.14)

1+ b(s)c(s)
a(s)d(s)

= 0, (4.15)

a(s)d(s)+ b(s)c(s) = 0. (4.16)

From this equation, it is clear that the feedback case grants consid-
erably more freedom to the controller design than does the open-loop
case. However, one must still avoid unstable cancellations. For exam-
ple, if the plant is unstable and therefore a(s) has a root in the RHP,
we might cancel this pole by putting a zero of c(s) at the same place.
However, Eq. (4.16) shows that as a result, the unstable pole remains
a pole of the system and this method will not work. However, unlike
the open-loop case, having a pole of a(s) in the RHP does NOT prevent
the design of a feedback controller that will make the system stable. For
example, in Chapter 2, we derived the transfer function for the inverted
pendulum, which, for simple values, might be G(s) = 1

s2−1
for which

we have b(s) = 1 and a(s) = s2 − 1 = (s + 1)(s − 1). Suppose we
try Dcl(s) = K(s+γ )

s+δ . The characteristic equation that results for the
system is

(s+ 1)(s− 1)(s+ δ)+ K(s+ γ ) = 0. (4.17)

This is the problem that Maxwell faced in his study of governors: Under
what conditions on the parameters will all the roots of this equation be
in the LHP? The problem was solved by Routh. In our case, a sim-
ple solution is to take γ = 1 and the common (stable) factor cancels.
Note the cancellation is fine in this case, because (s+ 1) is a stable pole.
The resulting second-order equation can be easily solved to place the
remaining two poles at any point desired.

Exercise. If we wish to force the characteristic equation to be s2 +
2ζωns+ ω2

n = 0, solve for K and δ in terms of ζ and ωn.

4.1.2 Tracking
The tracking problem is to cause the output to follow the reference input
as closely as possible. In the open-loop case, if the plant is stable and has
neither poles nor zeros in the RHP, then in principle, the controller can
be selected to cancel the transfer function of the plant and substitute
whatever desired transfer function the engineer wishes. This apparent
freedom, however, comes with three caveats. First, in order to physi-
cally build it, the controller transfer function must be proper, meaning
that it cannot be given more zeros than it has poles. Second, the engi-
neer must not get greedy and request an unrealistically fast design. This
entire analysis has been based on the assumption that the plant is linear
and a demand for a fast response will demand large inputs to the plant,
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inputs that will be sure to saturate the system if the demand is too great.
Again, it is the responsibility of the engineer to know the limits of the
plant and to set the desired overall transfer function to a reasonable
value with this knowledge. Third and finally, although one can, in prin-
ciple, stably cancel any pole in the LHP, the next section on sensitivity
faces up to the fact that the plant transfer function is subject to change
and if one tries to cancel a pole that is barely inside the LHP, there is a
good chance of disaster as that pole moves a bit and exposes the system
response to unacceptable transients.

Exercise. For a plant having the transfer function G(s) = 1
s2+3s+9

it is
proposed to use a controller in a unity feedback system and having the

transfer function Dcl(s) = c2s2+c1s+c0
s(s+d1)

. Solve for the parameters of this
controller so the closed loop will have the characteristic equation (s+ 6)
(s+ 3)(s2 + 3s+ 9) = 0.1

{Answer: c2 = 18, c1 = 54, c0 = 162, d1 = 9}.

Exercise. Show that if the reference input to the system of the above
exercise is a step of amplitude A, the steady-state error will be zero.

4.1.3 Regulation
The problem of regulation is to keep the error small when the reference
is at most a constant setpoint and disturbances are present. A quick
look at the open-loop block diagram reveals that the controller has no
influence at all on the system response to either of the disturbances, w,
or v, so this structure is useless for regulation. We turn to the feedback
case. From Eq. (4.8), we find a conflict between w and v in the search
for a good controller. For example, the term giving the contribution of
the plant disturbance to the system error is G

1+GDcl
W . To select Dcl to

make this term small, we should make Dcl as large as possible and infi-
nite if that is feasible. On the other hand, the error term for the sensor
noise is GDcl

1+GDcl
V . In this case, unfortunately, if we select Dcl to be large,

the transfer function tends to unity and the sensor noise is not reduced
at all! What are we to do? The resolution of the dilemma is to observe
that each of these terms is a function of frequency so one of them can
be large for some frequencies and small for others. With this in mind,
we also note the frequency content of most plant disturbances occurs
at very low frequencies and, in fact, the most common case is a bias,
which is all at zero frequency! On the other hand, a good sensor will
have no bias and can be constructed to have very little noise over the
entire range of low frequencies of interest. Thus, using this information,
we design the controller transfer function to be large at the low frequen-
cies, where it will reduce the effect of w, and we make it small at the
higher frequencies, where it will reduce the effects of the high frequency
sensor noise. The control engineer must determine in each case the best

1This process is called “pole placement,” a technique to be discussed in Chapter 7.
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place on the frequency scale to make the crossover from amplification
to attenuation.

Exercise. Show that if w is a constant bias and if Dcl has a pole at s = 0,
then the error due to this bias will be zero. However, show that if G has
a pole at zero, the error due to this bias will not be zero.

4.1.4 Sensitivity
Suppose a plant is designed with gain G at a particular frequency, but
in operation it changes to be G + δG. This represents a fractional or
percent change of gain of δG/G. For the purposes of this analysis, we set
the frequency at zero and take the open-loop controller gain to be fixed
at Dol(0). In the open-loop case, the nominal overall gain is thus Tol =
GDol, and with the perturbed plant gain, the overall gain would be

Tol + δTol = Dol(G + δG) = DolG +DolδG = Tol +DolδG.

Therefore, the gain change is δTol = DolδG. The sensitivity, ST
G , of a

transfer function, Tol , to a plant gain, G, is defined to be the ratio of the

fractional change in Tol defined as δTol
Tol

to the fractional change in G. In
equation form,

ST
G =

δTol

Tol
δG
G

, (4.18)

= G
Tol

δTol

δG
. (4.19)

Substituting the values, we find that

δTol

Tol
= DolδG

DolG
= δG

G
. (4.20)

This means that a 10% error in G would yield a 10% error in Tol . In the
open-loop case, therefore, we have computed that S = 1.

From Eq. (4.5), the same change in G in the feedback case yields
the new steady-state feedback gain as

Tcl + δTcl = (G + δG)Dcl

1+ (G + δG)Dcl
,

where Tcl is the closed-loop gain. We can compute the sensitivity of this
closed-loop gain directly using differential calculus. The closed-loop
steady-state gain is

Tcl = GDcl

1+ GDcl
.

The first-order variation is proportional to the derivative and is given
by

δTcl = dTcl

dG
δG.
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The general expression for sensitivity from Eq. (4.18) is given by

STcl
G � sensitivity of Tcl with respect to G,

STcl
G � G

Tcl

dTcl

dG
, (4.21)

so

STcl
G =

G
GDcl/(1+ GDcl)

(1+ GDcl)Dcl −Dcl(GDcl)

(1+ GDcl)
2 ,

= 1
1+ GDcl

. (4.22)

This result exhibits a major advantage of feedback2:Advantage of feedback

In feedback control, the error in the overall transfer function
gain is less sensitive to variations in the plant gain by a factor
of S = 1

1+GDcl
compared to errors in open-loop control gain.

If the gain is such that 1+ GDcl = 100, a 10% change in plant gain
G will cause only a 0.1% change in the steady-state gain. The open-loop
controller is 100 times more sensitive to gain changes than the closed-
loop system with loop gain of 100. The example of the unity feedback
case is so common that we will refer to the result of Eq. (4.22) simply as
the sensitivity, S, without subscripts or superscripts. Hence, we define
the sensitivity function for a feedback system as

S �= 1
1+ GDcl

. (4.23)

Its usefulness will be demonstrated for dynamic feedback controller
design in Chapter 6. The complementary sensitivity function is defined as

Sensitivity function

(a fancy alternative name for the closed-loop transfer function!)

T �= GDcl

1+ GDcl
= 1− S. (4.24)

These two transfer functions are very important for feedback con-
trol design, and they illustrate the fundamental relationship of feedbackA fundamental

relationship of feedback
systems

systems (that also will be explored further in Chapter 6)

S + T = 1. (4.25)

The results in this section so far have been computed under the
assumption of the steady-state error in the presence of constant inputs,
either reference or disturbance. Very similar results can be obtained for
the steady-state behavior in the presence of a sinusoidal reference or
disturbance signal. This is important because there are times when such

2Bode, who developed the theory of sensitivity as well as many other properties of
feedback, defined sensitivity as S = 1+ GDcl , the inverse of our choice.
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signals naturally occur as, for example, with a disturbance of 60 Hz due
to power-line interference in an electronic system. The concept is also
important because more complex signals can be described as containing
sinusoidal components over a band of frequencies and analyzed using
superposition of one frequency at a time. For example, it is well known
that human hearing is restricted to signals in the frequency range of
about 60 to 15,000 Hz. A feedback amplifier and loudspeaker system
designed for high-fidelity sound must accurately track any sinusoidal
(pure tone) signal in this range. If we take the controller in the feedback
system shown in Fig. 4.2 to have the transfer function Dcl(s), and we
take the process to have the transfer function G(s), then the steady-
state open-loop gain at the sinusoidal signal of frequency ωo will be
|G( jωo)Dcl( jωo)|, and the error of the feedback system will be

|E( jωo)| = |R( jωo)|
∣∣∣∣

1
1+ G( jωo)Dcl( jωo)

∣∣∣∣ . (4.26)

Thus, to reduce errors to 1% of the input at the frequency ωo, we must
make |1 + GDcl | ≥ 100 or, effectively, |G( jωo)Dcl ( jωo)| � 100 and a
good audio amplifier must have this loop gain over the range 2π60 ≤
ω ≤ 2π15, 000. We will revisit this concept in Chapter 6 as part of the
design based on frequency-response techniques.

The Filtered Case

For the case where there is a non-unity pre filter F(s) following the
reference input, R(s), and non-unity sensor dynamics H(s), the equa-
tions for the system output and the various sensitivity functions need to
be re-derived. The details are available in Appendix W4.1.4.1 online at
www.pearsonglobaleditions.com.

4.2 Control of Steady-State Error to Polynomial
Inputs: System Type

In studying the regulator problem, the reference input is taken to be a
constant. It is also the case that the most common plant disturbance
is a constant bias. Even in the general tracking problem, the reference
input is often constant for long periods of time or may be adequately
approximated as if it were a polynomial in time, usually one of low
degree. For example, when an antenna is tracking the elevation angle
to a satellite, the time history as the satellite approaches overhead is an
S-shaped curve as sketched in Fig. 4.3. This signal may be approximated

Figure 4.3
Signal for satellite
tracking

Time (sec)

us

www.pearsonglobaleditions.com
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by a linear function of time (called a ramp function or velocity input)
for a significant time relative to the speed of response of the servomech-
anism. As another example, the position control of an elevator has a
ramp function reference input, which will direct the elevator to move
with constant speed until it comes near the next floor. In rare cases, the
input can even be approximated over a substantial period as having a
constant acceleration. Consideration of these cases leads us to consider
steady-state errors in stable systems with polynomial inputs.

As part of the study of steady-state errors to polynomial inputs, a
terminology has been developed to express the results. For example, we
classify systems as to “type” according to the degree of the polynomialSystem type
that they can reasonably track. For example, a system that can track a
polynomial of degree 1 with a constant error is called Type 1. Also, to
quantify the tracking error, several “error constants” are defined. In all
of the following analysis, it is assumed that the systems are stable, else
the analysis makes no sense at all.

4.2.1 System Type for Tracking
In the unity feedback case shown in Fig. 4.2, the system error is given
by Eq. (4.8). If we consider tracking the reference input alone and set
W = V = 0, then the equation for the error is simply

E = 1
1+ GDcl

R = SR, where S = 1
1+ GDcl

. (4.27)

To consider polynomial inputs, we let r(t) = tk/k!1(t) for which the
transform is R = 1

sk+1 . We take a mechanical system as the basis for
a generic reference nomenclature, calling step inputs for which k = 0
“position” inputs, ramp inputs for which k = 1 are called “velocity”
inputs, and if k = 2, the inputs are called “acceleration” inputs, regard-
less of the units of the actual signals. Application of the Final Value
Theorem to the error formula gives the result

lim
t→∞e(t) = ess = lim s

s→0
E(s), (4.28)

= lim
s→0

s
1

1+ GDcl
R(s), (4.29)

= lim
s→0

s
1

1+ GDcl

1
sk+1

. (4.30)

We consider first a system for which GDcl has no pole at the origin, that
is, no integrator, and a unit-step input for which R(s) = 1/s. Thus, r(t)
is a polynomial of degree 0. In this case, Eq. (4.30) reduces to

ess = lim
s→0

s
1

1+ GDcl

1
s

, (4.31)

ess

rss
= ess

1
= ess = 1

1+ GDcl(0)
, (4.32)



main_1 — 2019/2/5 — 11:33 — page 218 — #11

218 Chapter 4 A First Analysis of Feedback

where rss = limt→∞ r(t) = 1. We define this system to be Type 0 and we
define the constant, GDcl(0) � Kp, as the “position error constant.”
Notice the above equation yields the relative error and if the input
should be a polynomial of degree higher than 1, the resulting error
would grow without bound. A polynomial of degree 0 is the highest
degree a system of Type 0 can track at all. If GDcl(s) has one pole at the
origin, we could continue this line of argument and consider first-degree
polynomial inputs but it is quite straightforward to evaluate Eq. (4.30)
in a general setting. For this case, it is necessary to describe the behav-
ior of the controller and plant as s approaches 0. For this purpose, we
collect all the terms except the pole (s) at the origin into a function
GDclo(s), which is finite at s = 0 so that we can define the constant
GDclo(0) = Kn and write the loop transfer function as

GDcl(s) = GDclo(s)
sn . (4.33)

For example, if GDcl has no integrator, then n = 0. If the system has
one integrator, then n = 1, and so forth. Substituting this expression
into Eq. (4.30),

ess = lim
s→0

s
1

1+ GDclo(s)
sn

1
sk+1

, (4.34)

= lim
s→0

sn

sn + Kn

1
sk

. (4.35)

From this equation, we can see at once that if n > k then e = 0 and if
n < k then e → ∞. If n = k = 0, then ess = 1

1+K0
and if n = k �= 0,

then ess = 1/Kn. As we discussed above, if n = k = 0, the input is a
zero-degree polynomial otherwise known as a step or position, the con-
stant Ko is called the “position constant” written as Kp, and the system
is classified as “Type 0.” If n = k = 1, the input is a first-degree poly-
nomial otherwise known as a ramp or velocity input and the constant
K1 is called the “velocity constant” written as Kv. This system is classi-
fied “Type 1” (read “type one”). In a similar way, systems of Type 2 and
higher types may be defined. A clear picture of the situation is given by
the plot in Fig. 4.4 for a system of Type 1 having a ramp reference input.
The error between input and output of size 1

Kv
is clearly marked.

Using Eq. (4.33), these results can be summarized by the following
equations:Error constants

Kp = lim
s→0

GDcl(s), n = 0, (4.36)

Kv = lim
s→0

sGDcl(s), n = 1, (4.37)

Ka = lim
s→0

s2GDcl(s), n = 2. (4.38)

The type information can also be usefully gathered in a table of
error values as a function of the degree of the input polynomial and the
type of the system, as shown in Table 4.1.
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Figure 4.4
Relationship between
ramp response and Kv
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TABLE 4.1 Errors as a Function of System Type

Type Input Step (position) Ramp (velocity) Parabola (acceleration)

Type 0
1

1+ Kp
∞ ∞

Type 1 0
1
Kv

∞
Type 2 0 0

1
Ka

EXAMPLE 4.1 System Type for Speed Control

Determine the system type and the relevant error constant for speed
control with proportional feedback given by Dcl(s) = kP. The plant
transfer function is G = A

τ s+1 .

Solution. In this case, GDcl = kPA
τ s+1 and applying Eq. (4.36), we see

n = 0 as there is no pole at s = 0. Thus, the system is Type 0, and the
error constant is a position constant given by Kp = kPA.

EXAMPLE 4.2 System Type Using Integral Control

Determine the system type and the relevant error constant for the
speed-control example with proportional plus integral control having
controller given by Dcl = kP + kI/s. The plant transfer function is
G = A

τ s+1 .

Solution. In this case, the loop transfer function is GDcl(s) = A(kPs+kI )
s(τ s+1)

and, as a unity feedback system with a single pole at s = 0, the system is
immediately seen as Type 1. The velocity constant is given by Eq. (4.37)
to be Kv = lim

s→0
sGDcl(s) = AkI .
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The definition of system type helps us to identify quickly the ability
of a system to track polynomials. In the unity feedback structure, if the
process parameters change without removing the pole at the origin in
a Type 1 system, the velocity constant will change but the system will
still have zero steady-state error in response to a constant input and will
still be Type 1. Similar statements can be made for systems of Type 2
or higher. Thus, we can say that system type is a robust property withRobustness of system type
respect to parameter changes in the unity feedback structure. Robust-
ness is a major reason for preferring unity feedback over other kinds of
control structure.

Another form of the formula for the error constants can be devel-
oped directly in terms of the closed-loop transfer function T (s). From
Fig. 4.5, the transfer function including a sensor transfer function is

Y(s)
R(s)

= T (s) = GDc

1+ GDcH
, (4.39)

and the system error is

E(s) = R(s)− Y(s) = R(s)− T (s)R(s). (4.40)

The reference-to-error transfer function is thus
E(s)
R(s)

= 1− T (s), (4.41)

and the system error transform is

E(s) = [1− T (s)] R(s). (4.42)

We assume the conditions of the Final Value Theorem are satisfied,
namely that all poles of sE(s) are in the LHP. In that case, the
steady-state error is given by applying the Final Value Theorem to get

ess = lim
t→∞ e(t) = lim

s→0
sE(s) = lim

s→0
s [1− T (s)] R(s). (4.43)

If the reference input is a polynomial of degree k, the error transform
becomes

E(s) = 1
sk+1

[1− T (s)] , (4.44)

and the steady-state error is given again by the Final Value Theorem:

ess = lim
s→0

s
1− T (s)

sk+1
= lim

s→0

1− T (s)
sk

. (4.45)

As before, the result of evaluating the limit in Eq. (4.45) can be zero,
a nonzero constant, or infinite, and if the solution to Eq. (4.45) is a
nonzero constant, the system is referred to as Type k. Notice a system
of Type 1 or higher has a closed-loop DC gain of 1.0, which means that
T(0) = 1 in these cases.

EXAMPLE 4.3 System Type for a Servo with Tachometer Feedback

Consider an electric motor position control problem including a non-
unity feedback system caused by having a tachometer fixed to the motor
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Figure 4.5
Closed-loop system with
sensor dynamics. R =
reference, U = control, Y
= output, V = sensor
noise
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shaft and its voltage (which is proportional to shaft speed) is fed back
as part of the control as shown in Fig. 4.5. The parameters are

G(s) = 1
s(τ s+ 1)

,

Dc(s) = kP,

H(s) = 1+ kts.

Determine the system type and relevant error constant with respect to
reference inputs.

Solution. The system error is

E(s) = R(s)− Y(s),

= R(s)− T (s)R(s),

= R(s)− Dc(s)G(s)
1+H(s)Dc(s)G(s)

R(s),

= 1+ (H(s)− 1)Dc(s)G(s)
1+H(s)Dc(s)G(s)

R(s).

The steady-state system error from Eq. (4.45) is

ess = lim
s→0

sR(s) [1− T (s)] .

For a polynomial reference input, R(s) = 1/sk+1 and hence

ess = lim
s→0

[1− T (s)]
sk

= lim
s→0

1
sk

s(τ s+ 1)+ (1+ kts− 1)kP

s(τ s+ 1)+ (1+ kts)kP
,

= 0 , k = 0,

= 1+ ktkP

kP
, k = 1;

therefore the system is Type 1 and the velocity constant is Kv = kP
1+ktkP

.
Notice if kt > 0, perhaps to improve stability or dynamic response, the
velocity constant is smaller than with simply the unity feedback value
of kP. The conclusion is that if tachometer feedback is used to improve
dynamic response, the steady-state error is usually increased, that is,
there is a trade-off between improving stability and reducing steady-
state error.
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4.2.2 System Type for Regulation and Disturbance
Rejection

A system can also be classified with respect to its ability to reject polyno-
mial disturbance inputs in a way analogous to the classification scheme
based on reference inputs. The transfer function from the disturbance
input W(s) to the error E(s) is

E(s)
W(s)

= − Y(s)
W(s)

= Tw(s), (4.46)

because, if the reference is equal to zero, the output is the error. In a sim-
ilar way as for reference inputs, the system is Type 0 if a step disturbance
input results in a nonzero constant steady-state error, and is Type 1 if a
ramp disturbance input results in a steady-state value of the error that is
a nonzero constant, and so on. In general, following the same approach
used in developing Eq. (4.35), we assume a constant n and a function
To,w(s) can be defined with the properties that To,w(0) = 1/Kn,w and the
disturbance-to-error transfer function can be written as

Tw(s) = snTo,w(s). (4.47)

Then, the steady-state error to a disturbance input, which is a polyno-
mial of degree k, is

yss = lim
s→0

[
sTw(s)

1
sk+1

]
,

= lim
s→0

[
To,w(s)

sn

sk

]
. (4.48)

From Eq. (4.48), if n > k, then the error is zero and if n < k, then the
error is unbounded. If n = k, then the system is type k and the error is
given by 1/Kn,w.

EXAMPLE 4.4 System Type for a DC Motor Position Control

Consider the simplified model of a DC motor in unity feedback as
shown in Fig. 4.6, where the disturbance torque is labeled W(s). This
case was considered in Example 2.11.

(a) Use the controller

Dc(s) = kP, (4.49)

and determine the system type and steady-state error properties with
respect to disturbance inputs.

(b) Let the controller transfer function be given by

Dc(s) = kP + kI

s
, (4.50)

and determine the system type and the steady-state error properties for
disturbance inputs.
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Figure 4.6
DC motor with unity
feedback
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Solution. (a) The closed-loop transfer function from W to E (where
R = 0) is

Tw(s) = − B
s(τ s+ 1)+ AkP

,

= s0To,w,

n = 0,

Ko,w = −AkP

B
.

Applying Eq. (4.48), we see that the system is Type 0 and the steady-
state error to a unit-step torque input is ess = −B/AkP. From the earlier
section, this system is seen to be Type 1 for reference inputs, and illus-
trates that system type can be different for different inputs to the same
system.

(b) For this controller the disturbance error transfer function is

Tw(s) = − Bs
s2(τ s+ 1)+ (kPs+ kI )A

, (4.51)

n = 1, (4.52)

Kn,w = −AkI

B
, (4.53)

therefore the system is Type 1, and the error to a unit-ramp disturbance
input will be

ess = − B
AkI

. (4.54)

Truxal’s Formula

Truxal (1955) derived a formula for the velocity constant of a Type 1 sys-
tem in terms of the closed-loop poles and zeros. See Appendix W4.2.2.1
online at www.pearsonglobaleditions.com.

www.pearsonglobaleditions.com
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4.3 The Three-Term Controller: PID Control
In later chapters, we will study three general analytic and graphical
design techniques based on the root locus, the frequency response, and
the state-space formulation of the equations. Here, we describe a con-
trol method having an older pedigree that was developed through long
experience and by trial and error. Starting with simple proportional
feedback, engineers early discovered integral control action as a means
of eliminating bias offset. Then, finding poor dynamic response in many
cases, an “anticipatory” term based on the derivative was added. The
result is called the three-term or PID controller, and has the transfer
function

Dc(s) = kP + kI

s
+ kDs, (4.55)

where kP is the proportional term, kI is the integral term, and kD is the
derivative term. We will discuss them in turn.

4.3.1 Proportional Control (P)
When the feedback control signal is linearly proportional to the system
error

u(t) = kPe(t), (4.56)

we call the result proportional feedback. Hence, the control signal isProportional control
related to the system error instantaneously. This was the case for the
feedback used in the controller of speed in Section 4.1, for which the
controller transfer function is

U(s)
E(s)

= Dcl(s) = kP. (4.57)

The controller is purely algebraic with no dynamics and kP is called
the proportional gain. We can view the proportional controller as an
amplifier with a “knob” that can be adjusted up or down. If the
plant is second order, as, for example, for a motor with non-negligible
inductance,3 then the plant transfer function can be written as

G(s) = A
s2 + a1s+ a2

. (4.58)

In this case, the characteristic equation for the closed-loop system with
proportional control is

1+ kPG(s) = 0, (4.59)

that results in
s2 + a1s+ a2 + kPA = 0. (4.60)

The designer can control the constant term, (a2 + kPA), in this equa-
tion by selecting kP, which determines the natural frequency but cannot
control the damping term a1 since it is independent of kP. The system is

3See Section 2.3.
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Type 0 and if kP is made large to get adequately small steady-state error,
the damping may be much too low for satisfactory transient response
with proportional control alone. To illustrate these features of pro-
portional control, assume we have the plant G(s) under proportional
control as shown in Fig. 4.2 and assume a1 = 1.4, a2 = 1, and A = 1.
The proportional controller is indicated by Eq. (4.57). Figure 4.7 shows
the closed-loop response of

Y(s)
R(s)

= T (s) = kPG(s)
1+ kPG(s)

, (4.61)

for a unit-step command input, r = 1(t), with kP = 1.5 and kP = 6.
The output, y, of the system exhibits a steady-state tracking error that
decreases as the proportional feedback gain is increased. Furthermore,
the response also clearly exhibits a decrease in damping as the gain is
increased and an increase in the speed of response. Using the Final
Value Theorem would also show that the steady-state error decreases
as the gain, kP, is increased as well as the fact that the control value,
u(t), reaches a steady non zero value.

The output and the control signal due to a disturbance are given by

Y(s)
W(s)

= G(s)
1+ kPG(s)

,
U(s)
W(s)

= − kPG(s)
1+ kPG(s)

.

By comparing the closed-loop transfer functions between the distur-
bance response and the command response, it can be seen that a step
disturbance, w, will also yield a steady-state tracking error and con-
trol value in a similar manner to the reference input shown in Fig. 4.7.

Figure 4.7
Illustration of the
steady-state tracking
error and the effect of
the different
proportional feedback
gain values on the
system damping
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The error due to the disturbance will also decrease as the gain, kP, is
increased and the damping will degrade.

For systems beyond second order, the situation is more compli-
cated than that illustrated above. The damping of some of the poles
might increase while decreasing in others as the gain is increased. Also,
a higher gain will increase the speed of response but typically at the cost
of a larger transient overshoot and less overall damping. For systems of
large order, increasing proportional gain will typically lead to instability
for a high enough gain. Any Type 0 system with proportional control
will have a nonzero steady-state offset in response to a constant refer-
ence input, and will not be capable of completely rejecting a constant
disturbance input. One way to improve the steady-state accuracy of
control without using extremely high proportional gain is to introduce
integral control, which we will discuss next.

4.3.2 Integral Control (I)
When a feedback control signal is linearly proportional to the integral
of the system error, we call the result integral feedback. The goal ofIntegral control
integral control is to minimize the steady-state tracking error and the
steady-state output response to disturbances. This control law is of the
form

u(t) = kI

∫ t

t0

e(τ ) dτ , (4.62)

and kI is called the integral gain. This means that the control signal at
each instant of time is a summation of all past values of the tracking
error; therefore, the control action is based on the “history” of the sys-
tem error. Figure 4.8 illustrates that the control signal at any instant of
time is proportional to the area under the system error curve (shown
here for time t1). The controller becomes

U(s)
E(s)

= Dcl(s) = kI

s
, (4.63)

which is dynamic and we see it has infinite gain at DC (that is, for s = 0).
Hence, we would certainly expect superior performance in the steady-
state from such a controller. That is indeed the case as illustrated shortly.
This feedback has the primary virtue that it can provide a finite value
of control with zero system error. This comes about because u(t) is a
function of all past values of e(t) rather than just the current value, as
in the proportional case. This feature means that constant disturbances
can be canceled with zero error because e(t) no longer has to be finite to
produce a control signal that will counteract the constant disturbance.

Again, assume we have the plant G(s) under integral control as
shown in Fig. 4.2, and G(s) is for the same motor that we used in
Section 4.3.1. This simple system can be stabilized by integral control
alone. From Fig. 4.2 and using the controller in Eq. (4.63), we see the
tracking error, the control signal, and the output due to a reference input
are given by
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Figure 4.8
Integral control is
based on the history of
the system error
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(4.64)
Y(s)
R(s)

= T (s) =
kI
s G(s)

1+ kI
s G(s)

= kI G(s)
s+ kI G(s)

. (4.65)

Now assume a unit-step reference input r(t) = 1(t) with R(s) =
1/s. From Eqs. (4.64) and (4.65) and using the Final Value Theorem
(noting G(0) = 1), we have

y(∞) = kI G(0)
0+ kI G(0)

= 1, e(∞) = 0
0+ kI G(0)

= 0, (4.66)

u(∞) = kI

0+ kI G(0)
= G(0)−1 = 1. (4.67)

Note the steady-state tracking error will be zero no matter what the
value of kI is, whereas there was always a tracking error with the propor-
tional controller no matter what the value of kP was. The integral gain
kI can be selected purely to provide an acceptable dynamic response;
however, typically it will cause instability if raised sufficiently high. Note
also the steady-state control is a constant and is equal to the inverse DC
gain of the plant, which makes a lot of sense intuitively.

The output and the control signal due to a disturbance input are
given by

Y(s)
W(s)

= sG(s)
s+ kI G(s)

,
U(s)
W(s)

= − kI G(s)
s+ kI G(s)

. (4.68)
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Now assume a unit-step disturbance input w(t) = 1(t)with W(s) = 1/s.
From Eq. (4.68) and using the Final Value Theorem we have

y(∞) = 0 · G(0)
0+ kI G(0)

= 0, u(∞) = − kI G(0)
0+ kI G(0)

= −1. (4.69)

These two equations show a zero steady-state error in the output and
a final value of the control signal that cancels the disturbance exactly.
Figure 4.9 illustrates the responses for kI = 0.5. The conclusion is
that in this case, integral feedback results in zero steady-state output
error in both tracking and disturbance rejection. Furthermore, plant
parameter changes can be tolerated; that is, the results above are inde-
pendent of the plant parameter values. Also, regardless of the value of
the integral gain, kI , the asymptotic tracking and disturbance rejection
properties are preserved, provided that the closed-loop system remains
stable. These properties of integral control are referred to as robust. TheRobustness property

of integral control addition of integral control to the G(s) above caused the closed-loop
system to become Type 1 and those features will occur for any Type 1
system. However, as already discussed in Section 4.2.2, Type 1 systems
do have a constant tracking error to a ramp reference input as will this
example of integral control.

Given these remarkable properties of integral control, it is certainly
worth the additional cost in implementation complexity. Whenever an
actuator is used that can saturate (which is almost always the case), extra
care is required in implementing integral control. The controller must

Figure 4.9
Illustration of constant
disturbance rejection
property of integral
control: (a) system
output; (b) control
effort

1

0.5

0

y(
t)

0 5 10 15

Time (sec)

20 25 30
-0.5

0

-0.5

-1

u(
t)

0 5 10 15

Time (sec)

20 25 30
-1.5

(a)

(b)



main_1 — 2019/2/5 — 11:33 — page 229 — #22

4.3 The Three-Term Controller: PID Control 229

be augmented with an anti-windup feature to deal with the actuator
saturation (see Chapter 9).

4.3.3 Derivative Control (D)
The final term in the classical controller is derivative feedback, alsoDerivative control
called rate feedback. The goal of derivative feedback is to improve
closed-loop system stability as well as speeding up the transient
response and reducing overshoot. Therefore, whenever increased sta-
bility is desired, the use of derivative feedback is called for. In derivative
feedback, the control law is

u(t) = kDė(t), (4.70)
where kD is the derivative gain and the control signal is proportional to
the rate of change (or derivative) of the system error for which the Dcl(s)
in Fig. 4.2 becomes

U(s)
E(s)

= Dcl(s) = kDs. (4.71)

Derivative control is almost never used by itself; it is usually augmented
by proportional control. The key reason is that the derivative does not
supply information on the desired end state. In addition, if e(t) were to
remain constant, the output of a derivative controller would be zero and
a proportional or integral control would be needed to provide a control
signal at this time. A key feature of derivative control is that deriva-
tive control “knows” the slope of the error signal, so it takes control
action based on the trend in the error signal. Hence, it is said to have an
“anticipatory” behavior. One disadvantage of derivative control is that
it tends to amplify noise, a subject that will be discussed in more depth
in Chapter 6.

An important effect of the derivative term is that it gives a sharp
response to suddenly changing signals. Because of this, the deriva-
tive term is sometimes introduced into the feedback path as shown in
Fig. 4.10(a) in order to eliminate an excessive response to a step in the
reference input. This could be either a part of the standard controller,
or could describe a velocity sensor such as a tachometer on the shaft
of a motor. The closed-loop characteristic equation is the same as if
the term were in the forward path as given by Eq. (4.55) and drawn in
Fig. 4.10(b). It is important to notice the zeros from the reference to the
output are different in the two cases. With the derivative in the feedback
path, the reference is not differentiated, which is how the undesirable
response to sudden changes is avoided.

4.3.4 Proportional Plus Integral Control (PI)
Adding an integral term to the proportional controller to achieve the
lower steady-state errors results in the proportional plus integral (PI)
control equation in the time domain:Proportional plus integral

control
u(t) = kPe(t)+ kI

∫ t

t0

e(τ ) dτ , (4.72)
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Figure 4.10
Block diagram of the
PID controller: (a) with
the D-term in the
feedback path; (b) with
the D-term in the
forward path
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for which the Dcl(s) in Fig. 4.2 becomes

U(s)
E(s)

= Dcl(s) = kP + kI

s
. (4.73)

Most controllers implemented in practice, if they have an integral term,
will also have a proportional term. This combination generally allows
for a faster response than a pure integral control alone. Introduction
of the integral term raises the type to Type 1, and the system can there-
fore reject completely constant bias disturbances. If the system is second
order or higher the use of PID control is required if we wish to have
arbitrary dynamics.

EXAMPLE 4.5 PI Control of a Thermal System4

Consider the thermal system consisting of the lumped second-order
model of two thermal masses connected by conduction, as shown in
Figure 2.38 of Chapter 2. The transfer function from the heater to the
sensed output was derived to be of the form

G(s) = Ko

(τ1s+ 1)(τ2s+ 1)

where

τ1 = C1

Hx +H1
, τ2 = C2

Hx +H1
, Ko = Hx

(Hx +H1)(Hx +H2)

4This Example was suggested by Dr. Jon L. Ebert.
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and we select realistic values for the system parameters so τ1 = 1,
τ2 = 10, and Ko = 1000. The goal is to design a PI controller to
track the reference input temperature signal, r(t), which is a ramp with
a slope of 30◦C/sec and a steady-state value of 300◦C and a duration
of 30 seconds as shown in Figure 4.11. It is desired that the system
exhibit negligible overshoot. Robustness with respect to perturbations
in system parameters Ko, τ1, and τ2 is also desired as usually the exact
values of these parameters are not known. Explore the use of open-
loop control, P control, and PI control to achieve the goal of tracking
the reference signal accurately.

Solution. We will now discuss each controller design case separately.

Open-loop Control: One idea that comes to mind is to excite the sys-
tem with an input step of size 0.3 since the DC gain of the system is
1000. The response of the open-loop system is shown in Figure 4.11 and
exhibits a slow response with a settling time of ts = 47.1 sec and has zero
steady-state error. The system could be controlled with an open-loop
controller, but such a system is highly sensitive to errors in the plant
gain. In this case, a 5% error in plant gain would result in a steady-state
error of 5% in the output, which would typically be unacceptable.

P Control: A proportional gain of kP =0.03 corresponding to a closed-
loop damping ratio of ς = 0.3 results in a constant DC offset (bias)
of 10◦C as shown in Figure 4.12. Although the response is signifi-
cantly faster than open-loop control, this level of offset is unacceptable
in applications such as Rapid Thermal Processing (see Chapter 10).
Fig. 4.12 shows the response for the nominal case as well as±10% of the
gain value. The fact that the three responses are indistinguishable shows
that gain changes for the feedback case have little effect and the system
is robust. The associated control effort signals are shown in Figure 4.13.

Figure 4.11
Open-loop step
response
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Figure 4.12
Closed-loop response
for the P controller
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Figure 4.13
Closed-loop control
signals for the P
controller
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Note the fact that the effect of the gain changes are noticeable in the
associated control signals in Fig. 4.13.

PI Control: Let us use the same proportional gain as before, kP = 0.03,
and choose an integral gain that is an order of magnitude lower, kI =
0.003 to obtain the PI controller

Dc(s) = 0.03+ 0.003
s

.

The response of the closed-loop PI-controlled system is shown in Figure
4.14 and the bias is eliminated as expected. The response settles at ts =
13.44 sec, but there is some overshoot. The system is also robust with
respect to a ±10% change in the gain, Ko, as shown in Figure 4.14. The
associated control effort signals are shown in Figure 4.15. Note in this
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Figure 4.14
Closed-loop response
for the PI controller
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Figure 4.15
Closed-loop control
signals for the PI
controller
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case, the controller has a zero at -0.1 that cancels the open-loop stable
pole of the plant at -0.1, effectively rendering the closed-loop system as
second-order.

4.3.5 PID Control
Putting all the three terms together results in the proportional plus
integral plus derivative (PID) control equation in the time domain:PID control
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u(t) = kPe(t)+ kI

∫ t

t0

e(τ ) dτ + kDė(t), (4.74)

for which the Dcl(s) in Fig. 4.2 becomes

U(s)
E(s)

= Dcl(s) = kP + kI

s
+ kDs. (4.75)

To illustrate the effect of PID control, consider speed control but with
the second-order plant as in Eq. (4.58). In that case, the characteristic
equation from 1+ GDcl = 0 becomes

s2 + a1s+ a2 + A(kP + kI

s
+ kDs) = 0,

s3 + a1s2 + a2s+ A(kPs+ kI + kDs2) = 0. (4.76)

Collecting like powers of s terms results in

s3 + (a1 + AkD)s2 + (a2 + AkP)s+ AkI = 0. (4.77)

The point here is that this equation, whose three roots determine the
nature of the dynamic response of the system, has three free parameters
in kP, kI , and kD and that by selection of these parameters, the roots can
be uniquely and, in theory, arbitrarily determined. Without the deriva-
tive term, there would be only two free parameters, but with three roots,
the choice of roots of the characteristic equation would be restricted.
To illustrate the effect more concretely, a numerical example is
useful.

EXAMPLE 4.6 PID Control of Motor Speed

Consider the DC motor speed control with parameters5

Jm = 1.13× 10−2 b = 0.028 N·m·sec/rad, La = 10−1 H,
N·m· sec2 /rad,

Ra = 0.45 
, Kt = 0.067 N·m/amp, Ke = 0.067 V·sec/rad.
(4.78)

These parameters were defined in Example 2.15 in Chapter 2. Use the
controller parameters

kP = 3, kI = 15 sec, kD = 0.3 sec (4.79)

and discuss the responses of this system to steps in a disturbance torque
and steps in the reference input using the three different controllers: P,
PI, and PID. Let the unused controller parameters be zero.

Solution. Figure 4.16(a) illustrates the effects of P, PI, and PID feed-
back on the step disturbance response of the system. Note adding

5These values have been scaled to measure time in milliseconds by multiplying the true La
and Jm by 1000 each.
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Figure 4.16
Responses of P, PI, and PID control to: (a) step disturbance input; (b) step reference input

the integral term increases the oscillatory behavior, but eliminates the
steady-state error, and adding the derivative term reduces the oscilla-
tion while maintaining zero steady-state error. Figure 4.16(b) illustrates
the effects of P, PI, and PID feedback on the step reference response
with similar results. The step responses can be computed by forming the
numerator and denominator coefficient vectors (in descending powers
of s) and using the step function in Matlab.

EXAMPLE 4.7 PI Control for a DC-DC Voltage Converter

Consider the control of a DC-DC converter using the unity feedback
structure as shown in Fig. 4.5 where

G(s) = Vin
1

LCs2 + L
Rc

s+ 1
, (4.80)

H(s) = 1 and V(s) = 0. Assume the inductor L and capacitor C consti-
tute the output filter for the converter while the converter input voltage
is Vin and the load is Rc.

(a) Use the proportional controller

Dc(s) = kP, (4.81)

and determine the system type and steady-state error properties with
respect to disturbance inputs.

(b) Let the control be PI as given by

Dc(s) = kP + kI

s
, (4.82)
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and determine the system type and steady-state error properties with
respect for disturbance inputs.

Solution. (a) The closed-loop transfer function from W to E (where
Rc = 0) is

Tw(s) = − Vin(
LCs2 + L

Rc
s+ 1

)
+ VinKp

,

= s0To,w,

n = 0,

Ko,w = − (1+ VinKp)

Vin
.

Applying Eq. (4.48) we see the system is Type 0 and the steady-state
error to a unit-step disturbance input is

ess = − Vin

1+ Vinkp
. (4.83)

(b) If the controller is PI, the disturbance error transfer function is

Tw(s) = − Vins

s
(

LCs2 + L
Rc

s+ 1
)
+ Vin(kps+ kI )

, (4.84)

n = 1, (4.85)

K1,w = −kI , (4.86)

and therefore the system is Type 1. The error to a unit-ramp disturbance
input in this case will be

ess = − 1
kI

, (4.87)

which is independent of Vin.

EXAMPLE 4.8 Cone Displacement Control for a Loudspeaker

Consider the closed-loop control system for regulating the output cone
displacement of the loudspeaker discussed in Example 2.14. With a PD
controller, the block diagram for the system is shown in Fig. 4.17(a), and
with a PID controller, it is re-drawn as Fig. 4.17(b). N is the noise that
affects Va, the voltage applied to the loudspeaker, while B, b, L, l, M,
and R were defined in Examples 2.13 and 2.14 in Chapter 2. Assume
the control results in a stable system and determine the system types
and error responses to disturbances of the control system for

(a) System Fig. 4.17(a);
(b) System Fig. 4.17(b).
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Figure 4.17
Cone displacement
control for a
loudspeaker: (a) PD
control; (b) PID
control6
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Solution. (a) We see from inspection of Fig. 4.17(a), that with one
pole at the origin in the plant, the system is Type 1 with respect to the
reference inputs. The transfer function from disturbance to error is

Tw(s) = − Bl
s[(Ms+ b)(Ls+ R)+ (Bl)2]+ (kDs+ kp)Bl

, (4.88)

= To,w, (4.89)

for which n = 0, Ko,w = kP. The system is Type 0, and the error to a
unit disturbance step is −1/kP.

(b) With PID control, the forward gain has two poles at the origin,
so this system is Type 2 for reference inputs, but the disturbance transfer
function is

Tw(s) = − Bls
s2[(Ms+ b)(Ls+ R)+ (Bl)2]+ (kDs2 + kps+ kI )Bl

, (4.90)

n = 1, (4.91)

To,w(s) = Bl
s2[(Ms+ b)(Ls+ R)+ (Bl)2]+ (kDs2 + Kps+ kI )Bl

, (4.92)

6K. J. Åström and others have pointed out that a time constant, τ , can also be estimated
from the curve, and claim that a more effective tuning can be done by including that
parameter.
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from which the system is Type 1 and the error constant is kI ; the
error to a disturbance ramp of unit slope will be −1/kI .

4.3.6 Ziegler–Nichols Tuning of the PID Controller
When the PID controller was being developed, selecting values for the
several terms (known as “tuning” the controller) was often a hit and
miss affair. To bring order to the situation and make life easier for plant
operators, control engineers looked for ways to make the tuning more
systematic. Callender et al. (1936) proposed a design for PID controllers
by specifying satisfactory values for the terms based on estimates of the
plant parameters that an operating engineer could make from experi-
ments on the process itself. This approach was extended by Ziegler and
Nichols (1942, 1943) who recognized that the step responses of a large
number of process control systems exhibit a process reaction curve such
as that shown in Fig. 4.18, which can be generated from experimental
step response data. The S-shape of the curve is characteristic of many
systems and can be approximated by the step response of a plant withTransfer function for a

high-order system with a
characteristic process
reaction curve

transfer function

Y(s)
U(s)

= Ae−std

τ s+ 1
, (4.93)

which is a first-order system with a time delay or “transportation lag” of
td sec. The constants in Eq. (4.93) can be determined from the unit-step
response of the process. If a tangent is drawn at the inflection point of
the reaction curve, then the slope of the line is R = A/τ , the intersection
of the tangent line with the time axis identifies the time delay L = td and
the final value gives the value of A.

Figure 4.18
Process reaction curve
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Ziegler and Nichols gave two methods for tuning the PID controller
for such a model. In the first method, the choice of controller parame-
ters is designed to result in a closed-loop step response transient with a
decay ratio of approximately 0.25. This means that the transient decaysTuning by decay ratio of

0.25 to a quarter of its value after one period of oscillation, as shown in
Fig. 4.19. A quarter decay corresponds to ζ = 0.21 and, while low for
many applications, was seen as a reasonable compromise between quick
response and adequate stability margins for the process controls being
considered. The authors simulated the equations for the system on an
analog computer and adjusted the controller parameters until the tran-
sients showed the decay of 25% in one period. The regulator parameters
suggested by Ziegler and Nichols for the controller terms defined by

Dc(s) = kP

(
1+ 1

TI s
+ TDs

)
, (4.94)

are given in Table 4.2.

Figure 4.19
Quarter decay ratio

0.25

1 Period

t

y(t)

TABLE 4.2
Ziegler–Nichols Tuning for the Regulator
Dc(s) = kP(1 + 1/TIs + TDs), for a Decay Ratio of 0.25

Type of Controller Optimum Gain

P kP = 1/RL

PI
{

kP = 0.9/RL
TI = L/0.3

PID

⎧⎨
⎩

kP = 1.2/RL
TI = 2L
TD = 0.5L
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In the ultimate sensitivity method, the criteria for adjusting the para-Tuning by evaluation at
limit of stability, (ultimate
sensitivity method)

meters are based on evaluating the amplitude and frequency of the
oscillations of the system at the limit of stability, rather than on taking
a step response. To use the method, the proportional gain is increased
until the system becomes marginally stable and continuous oscillations
just begin with amplitude limited by the saturation of the actuator. The
corresponding gain is defined as Ku (called the ultimate gain) and the
period of oscillation is Pu (called the ultimate period). These are deter-
mined as shown in Figs. 4.20 and 4.21. Pu should be measured when
the amplitude of oscillation is as small as possible. Then, the tuning
parameters are selected as shown in Table 4.3.

Experience has shown that the controller settings according to
Ziegler–Nichols rules provide acceptable closed-loop response for many

Figure 4.20
Determination of
ultimate gain and
period
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Figure 4.21
Neutrally stable system
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TABLE 4.3
Ziegler-Nichols Tuning for the Regulator
Dc(s) = kP(1 + 1/TIs + TDs), Based on the Ultimate
Sensitivity Method

Type of Controller Optimum Gain

P kP = 0.5Ku

PI

{
kP = 0.45Ku
TI = Pu

1.2

PID

⎧⎨
⎩

kP = 1.6Ku
TI = 0.5Pu
TD = 0.125Pu
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Figure 4.22
Matlab’s pidTuner GUI
Source: Franklin, Gene F.
Feedback Control of Dynamic
Systems, 8E, 2019, Pearson
Education, Inc., New York, NY.

systems. As seen from the ensuing examples, the step response method
generally suggests gains that are higher than the ultimate sensitivity
method. The process operator will often perform final tuning of the
controller iteratively on the actual process to yield satisfactory control.

Several variations on Zeigler-Nichols tuning rules and automatic
tuning techniques have been developed for industrial applications by
several authors.7

PID tuning can also be done using Matlab’s PID Tuner App. The
pidTuner App is an interface that lets the user see how the time response
changes as you vary the gains of the PID controller. Matlab’s algorithm
for PID tuning meets the three-fold objectives of stability, performance,
and robustness by tuning the PID gains to achieve a good balance
between performance and robustness. Figure 4.22 shows the GUI inter-
face for the Matlab pidTuner App. PID tuning can be done using
optimization techniques (Hast et al., 2013).

EXAMPLE 4.9 Tuning of a Heat Exchanger: Quarter Decay Ratio

Consider the heat exchanger discussed in Chapter 2. The process
reaction curve of this system is shown in Fig. 4.23. Determine propor-
tional and PI regulator gains for the system using the Ziegler–Nichols

7Åström and Hägglund (2006), Luyben and Luyben (1997), Cohen-Coon (1953), and
Chien, Hrones and Reswick (1952).
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Figure 4.23
A measured process
reaction curve
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rules to achieve a quarter decay ratio. Plot the corresponding step
responses.

Solution. From the process reaction curve, we measure the maximum
slope to be R ∼= 1

90 and the time delay to be L ∼= 13 sec. According to
the Ziegler–Nichols rules of Table 4.2, the gains are

Proportional : kP = 1
RL
= 90

13
= 6.92,

PI : kP = 0.9
RL
= 6.22 and TI = L

0.3
= 13

0.3
= 43.3.
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Figure 4.24
Closed-loop step responses
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Figure 4.24(a) shows the step responses of the closed-loop system to
these two regulators. Note the proportional regulator results in a steady-
state offset, while the PI regulator tracks the step exactly in the steady
state. Both regulators are rather oscillatory and have considerable over-
shoot. If we arbitrarily reduce the gain kP by a factor of 2 in each case,
the overshoot and oscillatory behaviors are substantially reduced, as
shown in Fig. 4.24(b).

EXAMPLE 4.10 Tuning of a Heat Exchanger: Oscillatory Behavior

Proportional feedback was applied to the heat exchanger in the previous
example until the system showed nondecaying oscillations in response
to a short pulse (impulse) input, as shown in Fig. 4.25. The ultimate gain
is measured to be Ku = 15.3, and the period was measured at Pu =
42 sec. Determine the proportional and PI regulators according to the
Ziegler–Nichols rules based on the ultimate sensitivity method. Plot the
corresponding step responses.

Solution. The regulators from Table 4.3 are

Proportional : kP = 0.5Ku, kP = 7.65,

PI : kP = 0.45Ku, kP = 6.885, and TI = 1
1.2

Pu = 35.

The step responses of the closed-loop system are shown in Fig. 4.26(a).
Note the responses are similar to those in Example 4.9. If we reduce
kP by 50%, then the overshoot is substantially reduced, as shown in
Fig. 4.26(b). This shows that the tuning rules provide a good starting
point, but considerable fine tuning may still be needed.

Figure 4.25
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Figure 4.26
Closed-loop step responses

4.4 Feedforward Control by Plant Model Inversion
Section 4.3 showed that proportional control typically yields a steady-
state error in the output due to disturbances or input commands.
Integral control was introduced in order to reduce those errors to zero
for steady disturbances or constant reference commands; however, inte-
gral control typically decreases the damping or stability of a system.
One way to partly resolve this conflict is to provide some feedforward ofFeedforward
the control that will eliminate the steady-state errors due to command
inputs. This is possible because the command inputs are known and
can be determined directly by the controller; thus, we should be able
to compute the value of the control input that will produce the desired
outputs being commanded. Disturbances are not always measurable,
but can also be used for feedforward control whenever they are mea-
sured. The solution is simply to determine the inverse of the DC gain
of the plant transfer function model and incorporate that into the con-
troller as shown in Fig. 4.27. If this is done, the feedforward will provide
the control effort required for the desired command input, and the feed-
back takes care of the differences between the real plant and the plant
model plus the effects of any disturbances.

EXAMPLE 4.11 Feedforward Control for DC Motor

Consider the same DC motor speed-control system (Eq. 4.58) of Sec-
tion 4.3 with the two different values of proportional controller gain
kP = 1.5, 6. (a) Use feedforward control to eliminate the steady-state
tracking error for a step reference input. (b) Also use feedforward
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Figure 4.27
Feedforward control
structure for:
(a) tracking;
(b) disturbance
rejection
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control to eliminate the effect of a constant output disturbance signal
on the output of the system.

Solution. (a) In this case, the plant inverse DC gain is G−1(0) = 1. We
implement the closed-loop system as shown in Fig. 4.27(a) with G(s)
given by Eq. (4.58) and Dc(s) = kP. The closed-loop transfer function is

Y(s) = G(s)[kPE(s)+ R(s)],

E(s) = R(s)− Y(s),

Y(s)
R(s)

= T (s) = (1+ kP)G(s)
1+ kPG(s)

.

Note the closed-loop DC gain is unity (T (0) = 1). Figure 4.28 illus-
trates the effect of feedforward control in eliminating the steady-state
tracking error due to a step reference input for the two values of kP.
Addition of the feedforward control results in zero steady-state tracking
error.

(b) Similarly, we implement the closed-loop system as shown in
Fig. 4.27(b) with G(s) given by Eq. (4.58) and Dc(s) = kP. The
closed-loop transfer function is
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Figure 4.28
Tracking performance
with addition of
feedforward
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Y(s) =W(s)+ G(s)[kPE(s)−W(s)],

E(s) = R(s)− Y(s), with R(s) = 0,

Y(s)
W(s)

= Tw(s) = 1− G(s)
1+ kPG(s)

.

Note the closed-loop DC gain is zero (Tw(0) = 0). Figure 4.29 illustrates
the effect of feedforward control in eliminating the steady-state error
for a constant output disturbance, again for the two values of kP. We
observe that by using the inverse of the DC gain, this feedforward only
controls the steady-state effect of the reference and disturbance inputs.
More complex feedforward control can be used by inverting G(s) over
an entire frequency range.

4.5 Introduction to Digital Control
So far, we have assumed the systems and controllers are all continu-

�
ous time systems, and they obey differential equations. That implies
that the controllers would be implemented using analog circuits such
as those discussed in Section 2.2. In fact, most control systems today
are implemented in digital computers which are not able to implement
the continuous controllers exactly. Instead, they approximate the con-
tinuous control by algebraic equations called difference equations. A
very short description of how one would convert a continuous Dc(s) to
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Figure 4.29
Constant disturbance
rejection performance
with addition of
feedforward

Disturbance rejection response
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difference equations that can be coded directly into a computer is con-
tained in Appendix W4.5 online at www.pearsonglobaleditions.com.
For more details, see Chapter 8 in this text or see Digital Control of
Dynamic Systems, by Franklin, Powell, and Workman, 3rd ed, 1998,
for a complete discussion of the topic.

4.6 Sensitivity of Time Response to Parameter
Change

Since many control specifications are in terms of the step response,

�

the sensitivity of the time response to parameter changes is sometimes
very useful to explore. To learn more, see Appendix W4.6 online at
www.pearsonglobaleditions.com.

4.7 Historical Perspective
The field of control is characterized by two paths: theory and prac-
tice. Control theory is basically the application of mathematics to solve
control problems, whereas control practice, as used here, is the prac-
tical application of feedback in devices where it is found to be useful.
Historically, practical applications have come first with control being
introduced by trial and error. Although the applicable mathematics is
often known, the theory describing how the control works and pointing
the way to improvements has typically been applied later. For exam-
ple, James Watt’s company began manufacturing steam engines using

www.pearsonglobaleditions.com
www.pearsonglobaleditions.com


main_1 — 2019/2/5 — 11:33 — page 248 — #41

248 Chapter 4 A First Analysis of Feedback

the fly-ball governor in 1788, but it was not until 1840 that G. B. Airy
described instability in a similar device, and not until 1868 when J. C.
Maxwell published “On Governors” with a theoretical description of
the problem. Then it was not until 1877, almost 100 years after the
steam engine control was introduced, that E. J. Routh published a solu-
tion giving the requirements for stability. This situation has been called
the “Gap between Theory and Practice” and continues to this day as a
source of creative tension that stimulates both theory and practice.

Regulation is central to the process industries, from making beer to
making gasoline. In these industries, there are a host of variables that
need to be kept constant. Typical examples are temperature, pressure,
volume, flow rates, composition, and chemical properties such as pH
level. However, before one can regulate by feedback, one must be able
to measure the variable of interest. Before there was control, there were
sensors. In 1851, George Taylor and David Kendall founded the com-
pany that later became the Taylor Instrument Company in Rochester,
NY, to make thermometers and barometers for weather forecasting. In
1855, they were making thermometers for several industries, includ-
ing the brewing industry where they were used for manual control.
Other early entries into the instrument field were the Bristol Company,
founded in Naugatuck, CT, in 1889 by William Bristol, and the Foxboro
Company, founded in Foxboro, MA, in 1908 by William’s father and
two of his brothers. For example, one of Bristol’s instruments was used
by Henry Ford to measure (and presumably control) steam pressure
while he worked at the Detroit Edison Company. The Bristol Com-
pany pioneered in telemetry that permitted instruments to be placed
at a distance from the process so a plant manager could monitor several
variables at once. As the instruments became more sophisticated, and
devices such as motor-driven valves became available, they were used
in feedback control often using simple on–off methods, as described
in Chapter 1 for the home furnace. An important fact was that the
several instrument companies agreed upon standards for the variables
used so a plant could mix and match instruments and controllers from
different suppliers. In 1920, Foxboro introduced a controller based on
compressed air that included reset or integral action. Eventually, each
of these companies introduced instruments and controllers that could
implement full PID action. A major step was taken for tuning PID
controllers in 1942 when Ziegler and Nichols, working for Taylor Instru-
ments, published their method for tuning based on experimental data.

The poster child for the tracking problem was that of the anti-
aircraft gun, whether on land or at sea. The idea was to use radar to
track the target and to have a controller that would predict the path of
the aircraft and aim the gun to a position such that the projectile would
hit the target when it got there. The Radiation Laboratory was set up
at MIT during World War II to develop such radars, one of which was
the SCR-584. Interestingly, one of the major contributors to the control
methods developed for this project was none other than Nick Nichols
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who had earlier worked on tuning PID controllers. When the record of
the Rad Lab was written, Nichols was selected to be one of the editors
of volume 25 on control.

H. S. Black joined Bell Laboratories in 1921 and was assigned to
find a design for an electronic amplifier suitable for use as a repeater on
the long lines of the telephone company. The basic problem was that the
gain of the vacuum tube components he had available drifted over time
and he needed a design that, over the audio frequency range, maintained
a specific gain with great precision in the face of these drifts. Over the
next few years he tried many approaches, including a feed forward tech-
nique designed to cancel the tube distortion. While this worked in the
laboratory, it was much too sensitive to be practical in the field. Finally,
in August of 1927,8 while on the ferry boat from Staten Island to Man-
hattan, he realized that negative feedback might work and he wrote the
equations on the only paper available, a page of the New York Times.
He applied for a patent in 1928 but it was not issued until December
1937.9 The theory of sensitivity and many other theories of feedback
were worked out by H. W. Bode.

SUMMARY

• The most important measure of the performance of a control
system is the system error to all inputs.

• Compared to open-loop control, feedback can be used to stabilize
an otherwise unstable system, to reduce errors to plant distur-
bances, to improve the tracking of reference inputs, and to reduce
the system’s transfer function sensitivity to parameter variations.

• Sensor noise introduces a conflict between efforts to reduce the
error caused by plant disturbances and efforts to reduce the errors
caused by the sensor noise.

• Classifying a system as Type k indicates the ability of the system to
achieve zero steady-state error to polynomials of degree less than
but not equal to k. A stable unity feedback system is Type k with
respect to reference inputs if the loop gain G(s)Dc(s) has k poles at
the origin in which case we can write

G(s)Dc(s) = A(s+ z1)(s+ z2) · · ·
sk(s+ p1)(s+ p2) · · · ,

and the error constant is given by

Kk = lim
s→0

skG(s)Dc(s) = Az1z2 · · ·
p1p2 · · · . (4.95)

8Black was 29 years old at the time.
9According to the story, many of Black’s colleagues at the Bell laboratories did not believe
it was possible to feed back a signal 100 times as large as was the input and still keep the
system stable. As will be discussed in Chapter 6, this dilemma was solved by H. Nyquist,
also at the labs.
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• A table of steady-state errors for unity feedback systems of Types
0, 1, and 2 to reference inputs is given in Table 4.1.

• Systems can be classified as to type for rejecting disturbances by
computing the system error to polynomial disturbance inputs. The
system is Type k to disturbances if the error is zero to all dis-
turbance polynomials of degree less than k, but nonzero for a
polynomial of degree k.

• Increasing the proportional feedback gain reduces steady-state
errors but high gain almost always destabilizes the system. Integral
control provides robust reduction in steady-state errors, but also
may make the system less stable. Derivative control increases damp-
ing and improves stability. These three kinds of control combined
to form the classical three-term PID controller.

• The standard PID controller is described by the equations

U(s) =
(

kP + kI

s
+ kDs

)
E(s) or

U(s) = kP

(
1+ 1

TI s
+ TDs

)
E(s) = Dc(s)E(s).

This latter form is ubiquitous in the process-control industry and
describes the basic controller in many control systems.

• Useful guidelines for tuning PID controllers were presented in
Tables 4.2 and 4.3.

• Matlab can compute a discrete equivalent with the command c2d.

REVIEW QUESTIONS

4.1 Give three advantages of feedback in control.

4.2 Give two disadvantages of feedback in control.

4.3 A temperature control system is found to have zero error to a constant
tracking input and an error of 0.5◦C to a tracking input that is linear
in time, rising at the rate of 40◦C/ sec. What is the system type of this
control system and what is the relevant error constant (Kp or Kv or Ka)?

4.4 What are the units of Kp, Kv, and Ka?

4.5 What is the definition of system type with respect to reference inputs?

4.6 What is the definition of system type with respect to disturbance
inputs?

4.7 Why does system type depend on where the external signal enters the
system?

4.8 What is the main objective of introducing integral control?

4.9 What is the major objective of adding derivative control?

4.10 Why might a designer wish to put the derivative term in the feedback
rather than in the error path?

4.11 What is the advantage of having a “tuning rule” for PID controllers?
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4.12 Give two reasons to use a digital controller rather than an analog
controller.

4.13 Give two disadvantages to using a digital controller.

PROBLEMS

Problems for Section 4.1: The Basic Equations of Control

4.1 If S is the sensitivity of the unity feedback system to changes in the plant
transfer function and T is the transfer function from reference to output,
show that S + T = 1.

4.2 We define the sensitivity of a transfer function G to one of its parameters
K as the ratio of percent change in G to percent change in K.

SG
K =

dG/G
dK/K

= d ln G
d ln K

= K
G

dG
dK

.

The purpose of this problem is to examine the effect of feedback on sen-
sitivity. In particular, we would like to compare the topologies shown in
Fig. 4.30 for connecting three amplifier stages with a gain of −K into a
single amplifier with a gain of −10.

Figure 4.30
Three-amplifier
topologies for
Problem 4.2

b1R Y-K -K -K

(a)

(b)

(c)

R Y-K -K -K
+

+

b3

+

+
R -K

+

+
-K

b2

+

+
-K Y

b2b2

© ©

©

©

(a) For each topology in Fig. 4.30, compute βi so if K = 10, Y = −10R.
(b) For each topology, compute SG

K when G = Y
R . (Use the respective βi

values found in part (a).) Which case is the least sensitive?
(c) Compute the sensitivities of the systems in Fig. 4.30(b,c) to β2 and

β3. Using your results, comment on the relative need for precision in
sensors and actuators.
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4.3 Compare the two structures shown in Fig. 4.31 with respect to sensitivity
to changes in the overall gain due to changes in the amplifier gain. Use
the relation

S = d ln F
d ln K

= K
F

dF
dK

,

as the measure. Select H1 and H2 so the nominal system outputs satisfy
F1 = F2, and assume KH1 > 0.

+

-
R

H1

K
+

-

H1

K F1

(a)

+

-
R

H2

K K F2

(b)

© © ©

Figure 4.31
Block diagrams for Problem 4.3

4.4 A unity feedback control system has the open-loop transfer function

G(s) = A
s(s+ a)

.

(a) Compute the sensitivity of the closed-loop transfer function to
changes in the parameter A.

(b) Compute the sensitivity of the closed-loop transfer function to
changes in the parameter a.

(c) If the unity gain in the feedback changes to a value of β �= 1, compute
the sensitivity of the closed-loop transfer function with respect to β.

4.5 Compute the equation for the system error for the feedback system
shown in Fig. 4.5.

Problems for Section 4.2: Control of Steady-State Error

4.6 Consider the DC motor control system with rate (tachometer) feedback
shown in Fig. 4.32(a).

+ +

-
uur

(a)

Kp

-
K k

1Km

s(1 + tms)

kts

-
uur

(b)

K¿
s(1 + tms)

1 + k¿ts

+© © ©

Figure 4.32
Control system for Problem 4.6
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(a) Find values for K ′ and k′t so the system of Fig. 4.32(b) has the same
transfer function as the system of Fig. 4.32(a).

(b) Determine the system type with respect to tracking θr and compute
the system Kv in terms of parameters K ′ and k′t.

(c) Does the addition of tachometer feedback with positive kt increase
or decrease Kv?

4.7 A block diagram of a control system is shown in Fig. 4.33.

(a) If r is a step function and the system is closed-loop stable, what is the
steady-state tracking error?

(b) What is the system type?
(c) What is the steady-state error to a ramp velocity 2.5 if K2 = 2 and K1

is adjusted so that the system step response approximately has a rise
time of 0.65 s and a settling time of 0.23 s?

Figure 4.33
Closed-loop system for
Problem 4.7

©
+

-
YR ©

-

+

K2

K1
(s + 7)

s

1

(s + 8)
0.3

0.3

4.8 A standard feedback control block diagram is shown in Fig. 4.5 with

G(s) = 1.5
s

; Dc(s) = (s+ 9)
(s+ 3)

; H(s) = 70
(s+ 70)

; V(s) = 0.

(a) Let W = 0 and compute the transfer function from R to Y .
(b) Let R = 0 and compute the transfer function from W to Y .
(c) What is the tracking error if R a unit-step input and W = 0?
(d) What is the tracking error if R is a unit-ramp input and W = 0?
(e) What is the system type with respect to the reference inputs and the

corresponding error coefficient?

Figure 4.34
Control system for
Problem 4.10

 + 

 - 
Dc(s) YR

1

s(s + 0.5)
©

4.9 A generic negative feedback system with non-unity transfer function in
the feedback path is shown in Fig. 4.5.

(a) Suppose,

G(s) = 1

s(s+ 1)2
; Dcl(s) = 0.42; H(s) = P

(0.58s+ 1)
(0.35s+ 1)

; V(s) = 0,

showing a lead compensation in the feedback path. What is the
requirement on P such that the system will remain a Type 1 system
with respect to the reference input?
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(b) For part (a), find the steady-state tracking error for this system to a
unit ramp reference input if P = 1.

(c) For part (b), what is the value of the velocity error coefficient, Kv?

4.10 Consider the system shown in Fig. 4.34 where

Dc(s) = K
(s2 + αs+ 1)

(s2 + ω2
o)

.

(a) Prove that if the system is stable, it is capable of tracking a sinusoidal
reference input r = sinωot with a zero steady-state error. (Hint: Look
at the transfer function from R to E and consider the gain at ωo.)

(b) Use the Routh’s criterion to find the range of K such that the closed-
loop system remains stable if ωo = 1 and α = 0.3.

4.11 Consider the system shown in Fig. 4.35, which represents control of the
angle of a pendulum that has no damping.

(a) What condition must Dc(s) satisfy so the system can track a ramp
reference input with constant steady-state error?

(b) For a transfer function Dc(s) that stabilizes the system and satisfies
the condition in part (a), find the class of disturbances w(t) that the
system can reject with zero steady-state error.

Figure 4.35
Control system for
Problem 4.11  + 

 - 

 + 
 + 
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s2

1
Dc(s)R
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4.12 A unity feedback system has the overall transfer function

Y(s)
R(s)

= T (s) = 6
(7s+ 2)(s+ 3)

.

Give the system type and the corresponding error constant for tracking
polynomial reference inputs in terms of ζ and ωn.

4.13 Consider the second-order system

G(s) = 2

s2 + 4ζ s+ 2
.

We would like to add a transfer function of the form Dc(s) = K(s + a)/
(s+ b) in cascade with G(s) in a unity-feedback structure.

(a) Ignoring stability for the moment, what are the constraints on K, a,
and b so that the system is Type 1?

(b) What are the constraints on a, and b so that the system is both Type 1
and remains stable for every positive value for K?
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(c) When a = 5, b = 4, what is the constraint on K so that the steady-
state tracking error is less than 0.1 unit when the reference input to
the feedback system is a unit step?

4.14 Consider the system shown in Fig. 4.36(a).

Figure 4.36
Control system for
Problem 4.14
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(b)
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(a) What is the system type? Compute the steady-state tracking error due
to a ramp input r(t) = rot1(t).

(b) For the modified system with a feed forward path shown in Fig.
4.36(b), give the value of Hf so the system is Type 2 for reference
inputs and compute the Ka in this case.

(c) Is the resulting Type 2 property of this system robust with respect to
changes in Hf , that is, will the system remain Type 2 if Hf changes
slightly?

4.15 A controller for a DC servo motor with transfer function G(s) =
5

s(s+10) has been designed with a unity feedback structure and has the

transfer function Dc(s) = 6 (s+7)(s+9)
s(s+12) .

(a) Find the system type for reference tracking and the corresponding
error constant for this system.

(b) If a disturbance torque w adds to the control so that the input to the
process is u + w, what is the system type and corresponding error
constant with respect to disturbance rejection?

4.16 A compensated motor position control system is shown in Fig. 4.37.
Assume the sensor dynamics are H(s) = 1.

(a) Can the system track a step reference input r with zero steady-state
error? If yes, give the value of the velocity constant.

(b) Can the system reject a step disturbance w with zero steady-state
error? If yes, give the value of the velocity constant.

(c) Compute the sensitivity of the closed-loop transfer function to
changes in the plant pole at −3.

(d) In some instances there are dynamics in the sensor. Repeat parts
(a) to (c) for H(s) = 25

s+25 and compare the corresponding velocity
constants.
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Figure 4.37
Control system for
Problem 4.16
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4.17 The general unity feedback system shown in Fig. 4.38 has disturbance
inputs w1, w2, and w3 and is asymptotically stable. Also,

G1(s) =
K1
∏m1

i=1(s+ z1i)

sl1
∏m1

i=1(s+ p1i)
, G2(s) =

K2
∏m1

i=1(s+ z2i)

sl2
∏m1

i=1(s+ p2i)
.

Show that the system is of Type 0, Type l1, and Type (l1 + l2) with
respect to disturbance inputs w1, w2, and w3, respectively.

Figure 4.38
Single input–single
output unity feedback
system with disturbance
inputs
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 + 
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G2(s)© © ©

4.18 One possible representation of an automobile speed-control system with
integral control is shown in Fig. 4.39.

(a) With a zero reference velocity input vc = 0, find the transfer function
relating the output speed v to the wind disturbance w.

(b) What is the steady-state response of v if w is a unit-ramp function?
(c) What type is this system in relation to reference inputs? What is the

value of the corresponding error constant?
(d) What is the type and corresponding error constant of this system in

relation to tracking the disturbance w?

Figure 4.39
System using integral
control  + 
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4.19 For the feedback system shown in Fig. 4.40, find the value of α that will
make the system Type 1 for K = 3. Give the corresponding velocity con-
stant. Show that the system is not robust by using this value of α and
computing the tracking error e = r− y to a step reference for K = 4 and
K = 6.

Figure 4.40
Control system for
Problem 4.19
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4.20 Suppose you are given the system depicted in Fig. 4.41(a), where the plant
parameter a is subject to variations.
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Figure 4.41
Control system for Problem 4.20

(a) Find G(s) so that the system shown in Fig. 4.41(b) has the same
transfer function from r to y as the system in Fig. 4.41(a).

(b) Assume that a = 1 is the nominal value of the plant parameter. What
is the system type and the error constant in this case?

(c) Now assume that a = 1 + δa, where δa is some perturbation to the
plant parameter. What is the system type and the error constant for
the perturbed system?

4.21 Two feedback systems are shown in Fig. 4.42.

(a) Determine values for K1, K2, and K3 so that both systems:

(i) Exhibit zero steady-state error to step inputs (that is, both are
Type 1), and

(ii) whose static velocity error constant Kv = 10 when K0 = 7.5.

(b) Suppose K0 undergoes a small perturbation: K0 → K0 + δK0. What
effect does this have on the system type in each case? Which system
has a type which is robust? Which system do you think would be
preferred?
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Figure 4.42
Two feedback systems for Problem 4.21

4.22 You are given the system shown in Fig. 4.43, where the feedback gain β
is subject to variations. You are to design a controller for this system so
that the output y(t) accurately tracks the reference input r(t).

Figure 4.43
Control system for
Problem 4.22
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YR Dci(s)

12

(s + 3)(2s + 4)

b

a U©

(a) Let β = 1. You are given the following three options for the controller
Dci(s):

Dc1(s) = kP, Dc2(s) = kPs+ kI
s

, Dc3(s) = kPs2 + kI s+ k2

s2
.

Choose the controller (including particular values for the controller
constants) that will result in a Type 1 system with a steady-state error
to a unit reference ramp of less than 1

15 .
(b) Next, suppose there is some attenuation in the feedback path that is

modeled by β = 0.85. Find the steady-state error due to a ramp input
for your choice of Dci(s) in part (a).

(c) If β = 0.85, what is the system type for part (b)? What are the values
of the appropriate error constant?

4.23 Consider the system shown in Fig. 4.44.

(a) Find the transfer function from the reference input to the tracking
error.

(b) For this system to respond to inputs of the form r(t) = tn1(t) (where
n < q) with zero steady-state error, what constraint is placed on the
open-loop poles p1, p2, · · · , pq?

Figure 4.44
Control system for
Problem 4.23
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4.24 Consider the system shown in Fig. 4.45.

(a) Compute the transfer function from R(s) to E(s) and determine the
steady-state error (ess) for a unit-step reference input signal, and a
unit-ramp reference input signal.

(b) Determine the locations of the closed-loop poles of the system.
(c) Select the system parameters (k, kP, kI ) such that the closed-loop

system has damping coefficient ζ = 0.707 and ωn = 1. What percent
overshoot would you expect in y(t) for unit-step reference input?

(d) Find the tracking error signal as a function of time, e(t), if the
reference input to the system, r(t), is a unit-ramp.

(e) How can we select the PI controller parameters (kP, kI ) to ensure
that the amplitude of the transient tracking error, |e(t)|, from part
(d) is small?

(f) What is the transient behavior of the tracking error, e(t), for a unit-
ramp reference input if the magnitude of the integral gain, kI , is very
large? Does the unit-ramp response have an overshoot in that case?

Figure 4.45
Control system diagram
for Problem 4.24
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4.25 A linear ODE model of the DC motor with negligible armature induc-
tance (La = 0) and with a disturbance torque w was given earlier in the
chapter; it is restated here, in slightly different form, as

JRa

Kt
θ̈m + Keθ̇m = υa + Ra

Kt
w,

where θm is measured in radians. Dividing through by the coefficient of
θ̈m, we obtain

θ̈m + a1θ̇m = b0υa + c0w,

where

a1 = KeKt

JRa
, b0 = Kt

JRa
, c0 = 1

J
.

With rotating potentiometers, it is possible to measure the positioning
error between θ and the reference angle θr or e = θr−θm. With a tachome-
ter, we can measure the motor speed θ̇m. Consider using feedback of the
error e and the motor speed θ̇m in the form

υa = K(e− TDθ̇m),

where K and TD are controller gains to be determined.

(a) Draw a block diagram of the resulting feedback system showing both
θm and θ̇m as variables in the diagram representing the motor.

(b) Suppose the numbers work out so that a1 = 80, b0 = 320, and
c0 = 11. If there is no load torque (w = 0), what speed (in rpm)
results from va = 120 V?
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(c) Using the parameter values given in part (b), find K and TD so that
using the results in Chapter 3, a step change in θr with zero load
torque results in a transient that has an approximately 14% overshoot
and that settles to within 4% of steady state in less than 0.03 sec.

(d) Derive an expression for the steady-state error to a reference angle
input, and compute its value for your design in part (c) assuming
θr = 1 rad.

(e) Derive an expression for the steady-state error to a constant distur-
bance torque when θr = 0 and compute its value for your design in
part (c) assuming w = 1.2.

4.26 We wish to design an automatic speed control for an automobile. Assume
that (1) the car has a mass m of 1100 kg, (2) the accelerator is the
control U and supplies a force on the automobile of 12 N per degree of
accelerator motion, and (3) air drag provides a friction force proportional
to velocity of 11 N · sec/m.

(a) Assume the velocity changes are given by

V(s) = 1
s+ 0.01

U(s)+ 0.07
s+ 0.01

W(s),

where V is given in meters per second, U is in degrees, and W is the
percent grade of the road. Design a proportional control law U =
−kP(V − Vd) that will maintain a velocity error of less than 1 m/sec
in the presence of a constant 1.5% grade.

(b) Discuss what advantage (if any) integral control would have for this
problem.

(c) Assuming that pure integral control (that is, no proportional term) is
advantageous, select the feedback gain so that the roots have critical
damping (ζ = 1).

4.27 Consider the automobile speed control system depicted in Fig. 4.46.

Figure 4.46
Automobile
speed-control system
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(a) Find the transfer functions from W(s) and from R(s) to Y(s).
(b) Assume the desired speed is a constant reference r, so R(s) = ro

s .
Assume the road is level, so w(t) = 0. Compute values of the gains
kP, Hr, and Hy to guarantee that
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lim
t→∞y(t) = ro.

Include both the open-loop (assuming Hy = 0) and feedback cases
(Hy �= 0) in your discussion.

(c) Repeat part (b) assuming a constant grade disturbance W(s) = wo
s

is present in addition to the reference input. In particular, find the
variation in speed due to the grade change for both the feedforward
and feedback cases. Use your results to explain (1) why feedback con-
trol is necessary and (2) how the gain kP should be chosen to reduce
steady-state error.

(d) Assume w(t) = 0 and the gain A undergoes the perturbation A+ δA.
Determine the error in speed due to the gain change for both the
feedforward and feedback cases. How should the gains be chosen in
this case to reduce the effects of δA?

4.28 Prove that the step response of a Type II closed-loop stable system must
always have a non-zero overshoot.

4.29 Consider the feedback control system shown in Figure 4.47.

(a) Assume Dc(s) = K. What values of K would make the closed-loop
system stable? Explain all your reasoning.

(b) Now consider the controller of the form Dc(s) = 1
sn with n being a

non-negative integer. For what values of n is the closed-loop system
stable? Explain all your reasoning.

Figure 4.47
Unity feedback system
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4.30 A feedback control system is shown in Fig. 4.48.

(a) Determine the system type with respect to the reference input.
(b) Compute the steady-state tracking errors, e, for unit step and ramp

inputs.
(c) Determine the system type with respect to the disturbance input, w.
(d) Compute the steady-state errors, e, for unit step and ramp distur-

bance inputs.

Figure 4.48
Feedback system for
Problem 4.30 YR
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4.31 Consider the closed-loop system shown in Fig. 4.49.

(a) What is the condition on the gain, K, for the closed-loop system to
be stable?

(b) What is the system type with respect to the reference input, r?
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Figure 4.49
Feedback system for
Problem 4.31 E + 
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(c) What is the system type with respect to the disturbance input, w?
(d) Prove that the system can track a sinusoidal input, r = sin(0.2t), with

zero steady-state error.

4.32 A servomechanism system is shown in Fig. 4.50.

(a) Determine the conditions on the PID gain parameters to guarantee
closed-loop stability.

(b) What is the system type with respect to the reference input?
(c) What is the system type with respect to the disturbance inputs w1 and

w2?

E

W1

W2

1
© ©

+

-

++

©
+ +

YR kDskp + s
kI + s2 + 0.8s + 1

Controller Plant

Figure 4.50
Feedback system for Problem 4.32

4.33 Consider the multivariable system shown in Fig. 4.51. Assume that the
system is stable. Find the transfer functions from each disturbance input
to each output and determine the stead-state values of y1 and y2 for con-
stant disturbances. We define a multivariable system to be Type k with
respect to polynomial inputs at wi if the steady-state value of every out-
put is zero for any combination of inputs of degree less than k and at
least one input is a non-zero constant for an input of degree k. What is
the system type with respect to disturbance rejection at w1? At w2?

Figure 4.51
Multivariable control
system for Problem 4.33  + 
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Problems for Section 4.3: The Three-Term Controller.
PID Control

4.34 For the system shown in Figure 4.47,

(a) Design a proportional controller to stabilize the system.
(b) Design a PD controller to stabilize the system.
(c) Design a PI controller to stabilize the system.
(d) What is the velocity error coefficient Kv for the system in part (c)?

4.35 Consider the feedback control system with the plant transfer function
G(s) = 1

(s+0.1)(s+0.5) .

(a) Design a proportional controller so the closed-loop system has
damping of ζ = 0.707. Under what conditions on kP is the
closed-loop system stable?

(b) Design a PI controller so that the closed-loop system has no over-
shoot. Under what conditions on (kP, kI ) is the closed-loop system
is stable?

(c) Design a PID controller such that the settling time is less than 1.7 sec.

4.36 Consider the liquid level control system with the plant transfer function
G(s) = 14

s2+9s+14
.

(a) Design a proportional controller so that the damping ratio is ζ = 0.6.
(b) Design a PI controller so that the rise time is less than 1 sec.
(c) Design a PD controller so that the rise time is less than 0.7 sec.
(d) Design a PID controller so that the settling time is less than 1.8 sec.

4.37 Consider the process control system with the plant transfer function
G(s) = 10

(8s+1)(7s+1) .

(a) Design a PI controller such that the rise time is less than 2.5 sec.
(b) Design a PID controller so that the system has no overshoot and the

settling time is 5 sec.
(c) Design a controller such that the peak time is less than 4.5 sec.

4.38 Consider the multiple-integrator plant feedback control system shown in
Fig. 4.52, where � is an integer.

(a) Assume � = 1 (voltage controlled oscillator used in the phase-locked
loop of telecommunication systems). Let Dc(s) = k(s+5)

s . Prove that
it is possible to stabilize the system with this dynamic controller. Use
the Routh test to determine the range of the gain K for the closed-
loop stability.

(b) Assume � = 2 (drone or satellite). Let Dc(s) = K(s+5)2
s . Prove that it

is possible to stabilize the system with this dynamic controller. Again
use the Routh test to determine the range of the gain K for the closed-
loop stability.

(c) Assume � = 3 (hospital delivery robot or the Apollo Lunar Module).

Let Dc(s) = K(s+5)3
s . Prove that it is possible to stabilize the system

with this dynamic controller. Again use the Routh test to determine
the range of the gain K for the closed-loop stability.

(d) Assume � ≥ 4. What form of controller will be required to stabilize
the system?
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Figure 4.52
Multiple-integrator
plant systsem
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4.39 The transfer functions for a generator speed control system are shown
in Fig. 4.53. The speed sensor is fast enough that its dynamics can be
neglected and the diagram shows the equivalent unity feedback system.

Figure 4.53
Feedback system for
Problem 4.39
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(a) Assuming the reference is zero, what is the steady-state error due to
a step disturbance torque of 1 N.m? What must the amplifier gain K
be in order to make the steady-state error to have a magnitude of less
than 0.008 rad/sec or |ess| ≤ 0.008 rad/sec?

(b) Plot the roots of the closed-loop system in the complex plane, and
accurately sketch the time response of the output for a step reference
input using the gain K determined in part (a).

(c) Plot the region in the complex plane of acceptable closed-loop poles
corresponding to the specifications of a 1% settling time of ts ≤ 0.23
sec and an overshoot Mp ≤ 2%.

(d) A PD controller is added in the feedback loop while using the gain
K determined in part (a). Select the values for kp and kd for the PD
controller which will meet the specifications in part (c).

(e) How would the disturbance-induced steady-state error change with
the new control scheme in part (d)? How could the steady-state error
to a disturbance torque be eliminated entirely?

4.40 Consider the system shown in Fig. 4.54 with PI control.

(a) Determine the transfer function from R to Y .
(b) Determine the transfer function from W to Y .
(c) Under what conditions on (kp, kI ) is the closed-loop system is stable?

Figure 4.54
Feedback system for
Problem 4.40
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(d) What are the system types and error constants with respect to
reference input and with respect to disturbance rejection?

4.41 Consider the second-order plant with transfer function

G(s) = 1
(s+ 4.5)(s+ 5.7)

.

and in a unity feedback structure.

(a) Determine the system type and error constant with respect to track-
ing polynomial reference inputs of the system for P [D = kp],PD

[D = kp + kDs], and PID [D = kp + kI
s + kDs] controllers. Let

kp = 75, k1 = 38, and kD = 0.1.
(b) Determine the system type and error constant of the system with

respect to disturbance inputs for each of the three regulators in part
(a) assuming the disturbance w(t) is introduced at the input to the
plant.

(c) Is this system better at tracking references or rejecting disturbances?
Explain your responses briefly.

With PID, verify your results for parts (a) and (b) using Matlab by plot-
ting unit step and ramp responses for both tracking and disturbance
rejection.

4.42 The DC motor speed control shown in Fig. 4.55 is described by the
differential equation

ẏ+ 60y = 600va − 1500w,

where y is the motor speed, va is the armature voltage, and w is the
load torque. Assume the armature voltage is computed using the PI
control law

va = −
(

kPe+ kI

∫ t

0
edt
)

,

where e = r− y.

(a) Compute the transfer function from W to Y as a function of kP and
kI .

(b) Compute values for kP and kI so the characteristic equation of the
closed-loop system will have roots at −60± 60j.

4.43 For the system in Fig. 4.55, compute the following steady-state errors:

(a) to a unit-step reference input;
(b) to a unit-ramp reference input;

Figure 4.55
DC Motor speed-control
block diagram for
Problems 4.42 and 4.43
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(c) to a unit-step disturbance input;
(d) for a unit-ramp disturbance input.
(e) Verify your answers to (a) and (d) using Matlab. Note a ramp

response can be generated as a step response of a system modified
by an added integrator at the reference input.

4.44 Consider the satellite-attitude control problem shown in Fig. 4.56 where
the normalized parameters are

J = 10 spacecraft inertia, N·m·sec2/rad.

θr = reference satellite attitude, rad.

θ = actual satellite attitude, rad.

Hy = 1 sensor scale factor, V/rad.

Hr = 1 reference sensor scale factor, V/rad.

w = disturbance torque, N·m.

(a) Use proportional control, P, with Dc(s) = kP, and give the range of
values for kP for which the system will be stable.

(b) Use PD control, let Dc(s) = (kP + kDs), and determine the system
type and error constant with respect to reference inputs.

(c) Use PD control, let Dc(s) = (kP + kDs), and determine the system
type and error constant with respect to disturbance inputs.

(d) Use PI control, let Dc(s) = (kP+ kI
s ), and determine the system type

and error constant with respect to reference inputs.

(e) Use PI control, let Dc(s) = (kP+ kI
s ), and determine the system type

and error constant with respect to disturbance inputs.

(f) Use PID control, let Dc(s) = (kP + kI
s + kDs), and determine the

system type and error constant with respect to reference inputs.

(g) Use PID control, let Dc(s) = (kP + kI
s + kDs), and determine the

system type and error constant with respect to disturbance inputs.

Figure 4.56
Satellite attitude
control
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4.45 Automatic ship steering is particularly useful in heavy seas when it is
important to maintain the ship along an accurate path. Such a control
system for a large tanker is shown in Fig. 4.57, with the plant transfer
function relating heading changes to rudder deflection in radians.

(a) Write the differential equation that relates the heading angle to
rudder angle for the ship without feedback.
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(b) This control system uses simple proportional feedback with the gain
of unity. Is the closed-loop system stable as shown? (Hint: use Routh’s
criterion.)

(c) Is it possible to stabilize this system by changing the proportional
gain from unity to a lower value?

(d) Use Matlab to design a dynamic controller of the form Dc(s) =
K
(

s+a
s+b

)2
so the closed-loop system is stable and in response to a

step heading command it has zero steady-state error and less than
10% overshoot. Are these reasonable values for a large tanker?

Figure 4.57
Ship-steering control
system for Problem 4.45
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4.46 The unit-step response of a paper machine is shown in Fig. 4.58(a) where
the input into the system is stock flow onto the wire and the output
is basis weight (thickness). The time delay and slope of the transient
response may be determined from the figure.

Figure 4.58
Paper-machine
response data for
Problem 4.46
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(a) Find the proportional-, PI-, and PID-controller parameters using the
Ziegler–Nichols transient-response method.

(b) Using proportional feedback control, control designers have
obtained a closed-loop system with the unit impulse response shown
in Fig. 4.58(b). When the gain Ku = 8.556, the system is on the verge
of instability. Determine the proportional-, PI-, and PID-controller
parameters according to the Ziegler–Nichols ultimate sensitivity
method.

4.47 A paper machine has the transfer function

G(s) = e−2s

3s+ 1
,
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where the input is stock flow onto the wire and the output is basis weight
or thickness.

(a) Find the PID-controller parameters using the Ziegler–Nichols tuning
rules.

(b) The system becomes marginally stable for a proportional gain of
Ku = 3.044 as shown by the unit impulse response in Fig. 4.59. Find
the optimal PID-controller parameters according to the Ziegler–
Nichols tuning rules.

Figure 4.59
Unit impulse response
for the paper machine
in Problem 4.47
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Problems for Section 4.4: Feedforward Control by Plant

Model Inversion

4.48 Consider the DC motor speed-control system shown in Fig. 4.60 with
proportional control. (a) Add feedforward control to eliminate the
steady-state tracking error for a step reference input. (b) Also add feed-
forward control to eliminate the effect of a constant output disturbance
signal, w, on the output of the system.

Figure 4.60
Block diagram for
Problem 4.48
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Problems for Section 4.5: Introduction to Digital Control

4.49 Compute the discrete equivalents for the following possible controllers

using the trapezoid rule (Tustin’s method) discussed in Appendix W4.5
available online at www.pearsonglobaleditions.com and in Section 8.3.1.
Let Ts = 0.05 sec in each case.

(a) Dc1(s) = (s+ 2)/2,
(b) Dc2(s) = 2 s+2

s+4 ,

www.pearsonglobaleditions.com
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(c) Dc3(s) = 5 s+2
s+10 ,

(d) Dc4(s) = 5 (s+2)(s+0.1)
(s+10)(s+0.01) .

4.50 Give the difference equations corresponding to the discrete controllers
found in Problem 4.49, respectively.

(a) Part 1.
(b) Part 2.
(c) Part 3.
(d) Part 4.
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The Root-Locus Design
Method
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COAST GUARD

A Perspective on the Root-Locus
Design Method

In Chapter 3, we related the features of a step response, such as rise
time, overshoot, and settling time, to pole locations in the s-plane
of the transform of a second-order system characterized by the nat-
ural frequency ωn, the damping ratio ζ , and the real part σ . This
relationship is shown graphically in Fig. 3.16. We also examined the
changes in these transient-response features when a pole or a zero
is added to the transfer function. In Chapter 4, we saw how feed-
back can improve steady-state errors and can also influence dynamic
response by changing the system’s pole locations. In this chapter,
we present a specific technique that shows how changes in one of a
system’s parameters will modify the roots of the characteristic equa-
tion, which are the closed-loop poles, and thus change the system’s
dynamic response. The method was developed by W. R. Evans who
gave rules for plotting the paths of the roots, a plot he called the
Root Locus. With the development of Matlab and similar software,
the rules are no longer needed for detailed plotting, but we feel it is
essential for a control designer to understand how proposed dynamic
controllers will influence a locus as a guide in the design process. We

270
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also feel that it is important to understand the basics of how loci are
generated in order to perform sanity checks on the computer results.
For these reasons, the study of the Evans rules is important.

The root locus is most commonly used to study the effect of loop
gain variations; however, the method is general and can be used to
plot the roots of any polynomial with respect to any one real param-
eter that enters the equation linearly. For example, the root-locus
method can be used to plot the roots of a characteristic equation
as the gain of a velocity sensor feedback changes, or the parame-
ter can be a physical parameter, such as motor inertia or armature
inductance.

Chapter Overview
We open Section 5.1 by illustrating the root locus for some simple
feedback systems for which the equations can be solved directly. In
Section 5.2, we will show how to put an equation into the proper form
for developing the rules for the root-locus behavior. In Section 5.3,
this approach will be applied to determine the locus for a number of
typical control problems, which illustrate the factors that influence
the final shape. Matlab is used for detailed plotting of specific loci.
When adjustment of the selected parameter alone cannot produce a
satisfactory design, designs using other parameters can be studied
or dynamic elements such as lead, lag, or notch compensations can
be introduced, as is described in Section 5.4. In Section 5.5, the
uses of the root locus for design will be demonstrated in two exam-
ples including a comprehensive design for the attitude control of a
small airplane. In Section 5.6, the root-locusmethodwill be extended
to guide the design of systems with a negative parameter, systems
with more than one variable parameter, and systems with simple time
delay. Finally, Section 5.7 will give historical notes on the origin of
root-locus design.

5.1 Root Locus of a Basic Feedback System
We begin with the basic feedback system shown in Fig. 5.1. For this
system, the closed-loop transfer function is

Y(s)
R(s)

= T (s) = Dc(s)G(s)
1+Dc(s)G(s)H(s)

, (5.1)

and the characteristic equation, whose roots are the poles of this
transfer function, is

1+Dc(s)G(s)H(s) = 0. (5.2)

To put the equation in a form suitable for study of the roots as a param-
eter changes, we first put the equation in polynomial form and select
the parameter of interest, which we will call K. We assume we can define
component polynomials a(s) and b(s) so the characteristic polynomial is
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Figure 5.1
Basic closed-loop block
diagram
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in the form a(s)+Kb(s). We then define the transfer function L(s) = b(s)
a(s)

so the characteristic equation can be written as1

1+ KL(s) = 0 where L(s) = b(s)
a(s)

. (5.3)

If, as is often the case, the parameter is the gain of the controller, then
L(s) is simply proportional to Dc(s)G(s)H(s). Evans suggested we plot
the locus of all possible roots of Eq. (5.3) as K varies from zero to infin-
ity, and then use the resulting plot to aid us in selecting the best value
of K. Furthermore, by studying the effects of additional poles and zeros
on this graph, we can determine the consequences of additional dynam-
ics added to Dc(s) as compensation in the loop. We thus have a tool
not only for selecting the specific parameter value, but for designing
the dynamic compensation as well. The graph of all possible roots of
Eq. (5.3) relative to parameter K is called the root locus, and the set of
rules to construct this graph is called the root-locus method of Evans. WeEvans’s method
begin our discussion of the method with the mechanics of constructing
a root locus, using the equation in the form of Eq. (5.3) and K as the
variable parameter.

To set the notation for our study, we assume here the transfer func-
tion L(s) is a rational function whose numerator is a monic2 polynomial
b(s) of degree m and whose denominator is a monic polynomial a(s) of
degree n such that3 n ≥ m. Therefore, m = the number of zeros, while
n = the number of poles. We can factor these polynomials as

b(s) = sm + b1sm−1 + · · · + bm

= (s− z1)(s− z2) · · · (s− zm)

1In the most common case, L(s) is the loop transfer function of the feedback system and
K is the gain of the controller–plant combination. However, the root locus is a general
method suitable for the study of any polynomial and any parameter that can be put in the
form of Eq. (5.3).
2Monic means that the coefficient of the highest power of s is 1.
3If L(s) is the transfer function of a physical system, it is necessary that n ≥ m or else
the system would have an infinite response to a finite input. If the parameter should be
chosen so n < m, then we can consider the equivalent equation 1+ K−1L(s)−1 = 0.
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=
m∏

i=1

(s− zi), (5.4)

a(s) = sn + a1sn−1 + · · · + an,

=
n∏

i=1

(s− pi).

The roots of b(s) = 0 are the zeros of L(s) and are labeled zi, and
the roots of a(s) = 0 are the poles of L(s) and are labeled pi. The roots of
the characteristic equation itself are ri from the factored form (n > m),

a(s)+ Kb(s) = (s− r1)(s− r2) · · · (s− rn). (5.5)

We may now state the root-locus problem expressed in Eq. (5.3) in
several equivalent but useful ways. Each of the following equations has
the same roots:

1+ KL(s) = 0, (5.6)

1+ K
b(s)
a(s)
= 0, (5.7)

a(s)+ Kb(s) = 0, (5.8)

L(s) = − 1
K

. (5.9)

Equations (5.6)–(5.9) are sometimes referred to as the root-locusRoot-locus forms
form or Evans form of a characteristic equation. The root locus is the
set of values of s for which Eqs. (5.6)–(5.9) hold for some positive real
value4 of K. Because the solutions to Eqs. (5.6)–(5.9) are the roots
of the closed-loop system characteristic equation and are thus closed-
loop poles of the system, the root-locus method can be thought of as
a method for inferring dynamic properties of the closed-loop system as
the parameter K changes.

EXAMPLE 5.1 Root Locus of a Motor Position Control

In Chapter 2, we saw that a normalized transfer function of a DC motor
voltage-to-position can be

�m(s)
Va(s)

= Y(s)
U(s)

= G(s) = A
s(s+ c)

.

Solve for the root locus of closed-loop poles of the system created by
feeding back the output �m as shown in Fig. 5.1 with respect to the
parameter A if Dc(s) = H(s) = 1 and also c = 1.

4If K is positive, the locus is called the “positive” locus. We will later consider the simple
changes if K < 0, resulting in a “negative” locus.
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Figure 5.2
Root locus for
L(s) = 1

s(s+1)

-2 -1

Real axis

0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

in
ar

y
 a

x
is

u = sin-1 1 = 305

Solution. In terms of our notation, the values are

L(s) = 1
s(s+ 1)

, b(s) = 1, m = 0, zi = {empty}, (5.10)

K = A, a(s) = s2 + s, n = 2, pi = 0,−1.

From Eq. (5.8), the root locus is a graph of the roots of the quadratic
equation

a(s)+ Kb(s) = s2 + s+ K = 0. (5.11)

Using the quadratic formula, we can immediately express the roots of
Eq. (5.11) as

r1, r2 = −1
2
±
√

1− 4K
2

. (5.12)

A plot of the corresponding root locus is shown in Fig. 5.2. For 0 ≤ K ≤
1/4, the roots are real between−1 and 0. At K = 1/4 there are two roots
at−1/2, and for K > 1/4 the roots become complex with real parts con-
stant at−1/2 and imaginary parts that increase essentially in proportion
to the square root of K. The dashed lines in Fig. 5.2 correspond to roots
with a damping ratio ζ = 0.5. The poles of L(s) at s = 0 and s = −1
are marked by the symbol ×, and the points where the locus crosses the
lines where the damping ratio equals 0.5 are marked with dots (•). We
can compute K at the point where the locus crosses ζ = 0.5 because we
know that if ζ = 0.5, then θ = 30◦ and the magnitude of the imaginary
part of the root is

√
3 times the magnitude of the real part. Since the

size of the real part is 1
2 , from Eq. (5.12) we have
√

4K − 1
2

=
√

3
2

,

and, therefore, K = 1.

We can observe several features of this simple locus by looking at
Eqs. (5.11) and (5.12) and Fig. 5.2. First, there are two roots and, thus,
two loci which we call branches of the root locus. At K = 0 these
branches begin at the poles of L(s) (which are at 0 and −1), as they
should, since for K = 0 the system is open-loop and the characteristic
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equation is a(s) = 0. As K is increased, the roots move toward each
other, coming together at s = − 1

2 , and at that point they break away
from the real axis. After the breakaway point, the roots move off to infin-Breakaway points are

where roots move away
from the real axis

ity with equal real parts, so the sum of the two roots is always−1. From
the viewpoint of design, we see that by altering the value of the param-
eter K, we can cause the closed-loop poles to be at any point along the
locus in Fig. 5.2. If some points along this locus correspond to a satis-
factory transient response, then we can complete the design by choosing
the corresponding value of K; otherwise, we are forced to consider
a more complex controller. As we pointed out earlier, the root locus
technique is not limited to focusing on the system gain (K = A in Exam-
ple 5.1); the same ideas are applicable for finding the locus with respect
to any parameter that enters linearly in the characteristic equation.

EXAMPLE 5.2 Root Locus with Respect to Plant Open-Loop Pole and Zero

Consider the characteristic equation as in Example 5.1, again with
Dc(s) = H(s) = 1 except now, instead of a constant A, let there be
a zero in the form of A = s+ 2c. Select c as the parameter of interest in
the equation

1+ G(s) = 1+ s+ 2c
s(s+ c)

. (5.13)

Find the root locus of the characteristic equation with respect to c.

Solution. The corresponding closed-loop characteristic equation in
polynomial form is

s2 + s+ c(s+ 2) = 0. (5.14)
Equation (5.6) applies directly if we rearrange Eq. (5.14) with the
following definitions:

L(s) = s+2
s(s+1) , b(s) = s+ 2, m = 1, zi = −2,

K = c, a(s) = s(s+ 1), n = 2, pi = 0,−1.
(5.15)

Thus, the root-locus form of the characteristic equation is

1+ c(s+ 2)
s(s+ 1)

= 0.

The solutions to Eq. (5.14) are easily computed using the quadratic
formula as

r1, r2 = −c+ 1
2
±
√

c2 − 6c+ 1
2

. (5.16)

The locus of solutions is shown in Fig. 5.3, with the poles [roots of a(s)]
again indicated by×’s and the zero [root of b(s)] by the circle (©). Note
that when c2 − 6c + 1 < 0, the roots become complex. This happens
when 0.172 < c < 5.828. When c < 0.172, the roots are on the real
axis between s = 0 and −1 points. There are two roots at s = −0.586,
when c = 0.172 and another two roots at s = −3.41 when c = 5.828;
these point of multiple roots where two or more roots merge at the real
axis is called a break-in point. When c > 5.828, the two locus segments
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Figure 5.3
Root locus versus
parameter c for
1+ G(s) =
1+ s+2c

s(s+c) = 0
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Break-in point
move in opposite along the real axis; one is moving towards the infinite
s-plane and the other towards the location of the zero.

Of course, computing the root locus for a quadratic equation is easy
to do since we can solve the characteristic equation for the roots, as was
done in Eqs. (5.12) and (5.16), and directly plot these as a function of
the parameter K or c. To be useful, the method must be suitable for
higher-order systems for which explicit solutions are difficult to obtain;
therefore, rules for the construction of a general root locus were devel-
oped by Evans. With the availability of Matlab, these rules are no longer
necessary to plot a specific locus because the command rlocus(sys) will
do that. However, in control design we are interested not only in a spe-
cific locus but also in how to modify the dynamics in such a way as to
propose a system that will meet the dynamic response specifications for
good control performance. For this purpose, it is very useful to be able
to roughly sketch a locus so as to be able to evaluate the consequences
of possible compensation alternatives. It is also important to be able to
quickly evaluate the correctness of a computer-generated locus to verify
that what is plotted by Matlab is in fact what was meant to be plotted.
It is easy to get a constant wrong or to leave out a term and GIGO5 is
the well-known first rule of computation.

5.2 Guidelines for Determining a Root Locus
We begin with a formal definition of a root locus. From the form of
Eq. (5.6), we define the root locus this way:

Definition I. The root locus is the set of values of s for which
1+KL(s) = 0 is satisfied as the real parameter K varies from 0
to +∞. Typically, 1+ KL(s) = 0 is the characteristic equation
of the system, and in this case the roots on the locus are the
closed-loop poles of that system.

5Garbage in, Garbage out.
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Now suppose we look at Eq. (5.9). If K is to be real and positive, L(s)
must be real and negative. In other words, if we arrange L(s) in polar
form as magnitude and phase, then the phase of L(s) must be 180◦ in
order to satisfy Eq. (5.9). We can thus define the root locus in terms of
this phase condition as follows.

The basic root-locus rule;
the phase of L(s) = 180◦ Definition II. The root locus of L(s) is the set of points in the

s-plane where the phase of L(s) is 180◦. To test whether a point
in the s-plane is on the locus, we define the angle to the test
point from a zero as ψi and the angle to the test point from a
pole as φi then Definition II is expressed as those points in the
s-plane where, for an integer 	,

∑
ψi −

∑
φi = 180◦ + 360◦(l − 1). (5.17)

The immense merit of Definition II is that, while it is very difficult
to solve a high-order polynomial by hand, computing the phase of a
transfer function is relatively easy. The usual case is when K is real and
positive, and we call this case the positive or 180◦ locus. When K is real
and negative, L(s) must be real and positive with a phase of 0◦, and this
case is called the negative or 0◦ locus.

From Definition II we can, in principle, determine a positive root
locus for a complex transfer function by measuring the phase and
marking those places where we find 180◦. This direct approach can be
illustrated by considering the example

L(s) = s+ 1
s(s+ 5)[(s+ 2)2 + 4]

. (5.18)

In Fig. 5.4, the poles of this L(s) are marked × and the zero is
marked©. Suppose we select the test point s0 = −1+2j. We would like
to test whether or not s0 lies on the root locus for some value of K. For

Figure 5.4
Measuring the phase of
Eq. (5.18)
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this point to be on the locus, we must have ∠L(s0) = 180◦ + 360◦(l− 1)
for some integer l, or equivalently, from Eq. (5.18),

∠(s0+1)−∠s0−∠(s0+5)−∠[(s0+2)2+4] = 180◦+360◦(l−1). (5.19)

The angle from the zero term s0+1 can be computed6 by drawing a
line from the location of the zero at −1 to the test point s0. In this case
the line is vertical and has a phase angle marked ψ1 = 90◦ in Fig. 5.4.
In a similar fashion, the vector from the pole at s = 0 to the test point
s0 is shown with angle φ1, and the angles of the two vectors from the
complex poles at −2 ± 2j to s0 are shown with angles φ2 and φ3. The
phase of the vector s0 + 5 is shown with angle φ4. From Eq. (5.19), we
find the total phase of L(s) at s = s0 to be the sum of the phases of
the numerator term corresponding to the zero minus the phases of the
denominator terms corresponding to the poles:

∠L = ψ1 − φ1 − φ2 − φ3 − φ4

= 90◦ − 116.6◦ − 0◦ − 76◦ − 26.6◦

= −129.2◦.

Since the phase of L(s) is not 180◦, we conclude that s0 is not on the root
locus, so we must select another point and try again. Although measur-
ing phase is not particularly hard, measuring phase at every point in the
s-plane is hardly practical. Therefore, to make the method practical, we
need some general guidelines for determining where the root locus is.
Evans developed a set of rules for this purpose, which we will illustrate
by applying them to the root locus for

L(s) = 1
s[(s+ 4)2 + 16]

. (5.20)

We begin by considering the positive locus, which is by far the most
common case.7 The first three rules are relatively simple to remember
and are essential for any reasonable sketch. The last two are less useful
but are used occasionally. As usual, we assume Matlab or its equivalent
is always available to make an accurate plot of a promising locus.

5.2.1 Rules for Determining a Positive (180◦) Root Locus

RULE 1. The n branches of the locus start at the poles of L(s) and m
of these branches end on the zeros of L(s). From the equation a(s) +
Kb(s) = 0, if K = 0, the equation reduces to a(s) = 0, whose roots
are the poles. When K approaches infinity, s must be such that either
b(s) = 0 or s→∞. Since there are m zeros where b(s) = 0, m branches
can end in these places. The case for s→∞ is considered in Rule 3.

6The graphical evaluation of the magnitude and phase of a complex number is reviewed
in Appendix WA, Section WA.3 online at www.pearsonglobaleditions.com.
7The negative locus will be considered in Section 5.6.

www.pearsonglobaleditions.com
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Figure 5.5
Rule 2. The real-axis
parts of the locus are to
the left of an odd
number of poles and
zeros
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RULE 2. The loci are on the real axis to the left of an odd number of
poles and zeros.

If we take a test point on the real axis, such as s0 in Fig. 5.5, we find
that the angles φ1 and φ2 of the two complex poles cancel each other, as
would the angles from complex conjugate zeros. Angles from real poles
or zeros are 0◦ if the test point is to the right and 180◦ if the test point
is to the left of a given pole or zero. Therefore, for the total angle to add
to 180◦+360◦(l−1), the test point must be to the left of an odd number
of real-axis poles plus zeros as shown in Fig. 5.5.

RULE 3. For large s and K, n − m branches of the loci are asymptotic
to lines at angles φl radiating out from the point s = α on the real axis,
where

φl = 180◦ + 360◦(l − 1)
n−m

, l = 1, 2, . . . , n−m, (5.21)

α =
∑

pi −∑ zi

n−m
.

As K →∞, the equation

L(s) = − 1
K

, (5.22)

can be satisfied only if L(s) = 0. This can occur in two apparently dif-
ferent ways. In the first instance, as discussed in Rule 1, m roots will be
found to approach the zeros of L(s). The second manner in which L(s)
may go to zero is if s → ∞ since, by assumption, n is larger than m.
The asymptotes describe how these n − m roots approach s→ ∞. For
large s, the equation

1+ K
sm + b1sm−1 + · · · + bm

sn + a1sn−1 + · · · + an
= 0, (5.23)
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can be approximated8 by

1+ K
1

(s− α)n−m = 0. (5.24)

This is the equation for a system in which there are n − m poles, all
clustered at s = α. Another way to visualize this same result is to con-
sider the picture we would see if we could observe the locations of poles
and zeros from a vantage point of very large s: They would appear to
cluster near the s-plane origin. Thus, m zeros would cancel the effects
of m of the poles, and the other n − m poles would appear to be in the
same place. We say the locus of Eq. (5.23) is asymptotic to the locus of
Eq. (5.24) for large values of K and s. We need to compute α to find the
locus for the resulting asymptotic system. To find the locus, we choose
our search point s0 such that s0 = Rejφ for some large fixed value of
R and variable φ. Since all poles of this simple system are in the same
place, the angle of its transfer function is 180◦ if all n − m angles, each
equal to φl , sum to 180◦. Therefore, φl is given by

(n−m)φl = 180◦ + 360◦(l − 1),

for some integer l. Thus, the asymptotic root locus consists of radialThe angles of the
asymptotes lines at the n−m distinct angles given by

φl = 180◦ + 360◦(l − 1)
n−m

, l = 1, 2, . . . , n−m. (5.25)

For the system described by Eq. (5.20), n − m = 3 and φ1,2,3 = 60◦,
180◦, and 300◦ or ±60◦, 180◦.

The lines of the asymptotic locus come from s0 = α on the real
axis. To determine α, we make use of a simple property of polynomials.
Suppose we consider the monic polynomial a(s) with coefficients ai and
roots pi, as in Eq. (5.4), and we equate the polynomial form with the
factored form

sn + a1sn−1 + a2sn−2 + · · · + an = (s− p1)(s− p2) · · · (s− pn).

If we multiply out the factors on the right side of this equation, we see
that the coefficient of sn−1 is −p1 − p2 − · · · − pn. On the left side of the
equation, we see that this term is a1. Thus a1 = −∑ pi; in other words,
the coefficient of the second highest term in a monic polynomial is the
negative sum of its roots—in this case, the poles of L(s). Applying this
result to the polynomial b(s), we find the negative sum of the zeros to
be b1. These results can be written as

−b1 =∑ zi,
−a1 =∑ pi.

(5.26)

Finally, we apply this result to the closed-loop characteristic poly-
nomial obtained from Eq. (5.23):

8This approximation can be obtained by dividing a(s) by b(s) and matching the dominant
two terms (highest powers in s) to the expansion of (s− α)n−m.
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sn + a1sn−1 + · · · + an + K(sm + b1sm−1 + · · · + bm) (5.27)

= (s− r1)(s− r2) · · · (s− rn) = 0.

Note the sum of the roots is the negative of the coefficient of sn−1 and
is independent of K if m < n − 1. Therefore, if L(s) has at least two
more poles than zeros, we have a1 = −∑ ri. We have thus shown that
the center point of the roots does not change with K if m < n − 1, and
that the open-loop and closed-loop sum is the same and is equal to−a1,
which can be expressed as

−
∑

ri = −
∑

pi. (5.28)

For large values of K, we have seen that m of the roots ri approach the
zeros zi and n − m of the roots approach the branches of the asymp-
totic system 1

(s−α)n−m whose poles add up to (n−m)α. Combining these
results, we conclude that the sum of all the roots equals the sum of those
roots that go to infinity plus the sum of those roots that go to the zeros
of L(s):

−
∑

ri = −(n−m)α −
∑

zi = −
∑

pi.

Solving for α, we getThe center of the
asymptotes

α =
∑

pi −∑ zi

n−m
. (5.29)

Notice in the sums
∑

pi and
∑

zi, the imaginary parts always add to
zero, since complex poles and zeros always occur in complex conjugate
pairs. Thus, Eq. (5.29) requires information about the real parts only.
For Eq. (5.20),

α = −4− 4+ 0
3− 0

= −8
3
= −2.67.

The asymptotes at±60◦ are shown dashed in Fig. 5.6. Notice they cross
the imaginary axis at ±(2.67)j

√
3 = ±4.62j. The asymptote at 180◦ was

already found on the real axis by Rule 2.

Figure 5.6
The asymptotes are
n− m radial lines from
α at equal angles
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RULE 4. The angle of departure of a branch of the locus from a single
pole is given by

φdep =
∑

ψi −
∑

i 	=dep

φi − 180◦, (5.30)

where
∑
φi is the sum of the angles to the remaining poles and

∑
ψi

is the sum of the angles to all the zeros. The angles of departure for
repeated poles with multiplicity, q, is given by

Rule for departure angles qφl,dep =
∑

ψi −
∑

i 	=l,dep

φi − 180◦ − 360◦(l − 1), (5.31)

where l is an integer and takes on the values 1, 2, . . . , q. Note if there are
q repeated poles, there will be q branches of the locus departing from
the poles.

Likewise, the angle(s) of arrival of a branch at a zero with multi-
plicity q is given by

Rule for arrival angles qψl,arr =
∑

φi −
∑

i 	=l,arr

ψi + 180◦ + 360◦(l − 1), (5.32)

where
∑
φi is the sum of the angles to all the poles,

∑
ψi is the sum

of the angles to the remaining zeros, and again, l takes on the values
1, 2, . . . , q so there will be q branches of the locus arriving at the zeros.

The rules above all arise from the basic root locus phase condition
in Eq. (5.17) as we will now demonstrate. To compute the angle by which
a branch of the locus departs from one of the poles, we take a test point
s0 very near the pole in question, define the angle from that pole to the
test point as φ1, and transpose all other terms of Eq. (5.17) to the right-
hand side. We can illustrate the process by taking the test point s0 to
be near the pole at −4+ 4j of our example and computing the angle of
L(s0). The situation is sketched in Fig. 5.7, and the angle from −4+ 4j
to the test point we define as φ1. We select the test point close enough
to the pole that the angles φ2 and φ3 to the test point can be considered
the same as those angles to the pole. Thus, φ2 = 90◦, φ3 = 135◦, and φ1
can be calculated from the angle condition as whatever it takes to make
the total be 180◦. The calculation is

Figure 5.7
The departure and
arrival angles are found
by looking near a pole
or zero

-10 -5

Real axis

0 5
-6

-4

-2

0

2

4

6

Im
ag

in
ar

y
 a

x
is

f2

Pole 1

Pole 3

f3

f1

Pole 2

s0



main_1 — 2019/2/5 — 10:47 — page 283 — #14

5.2 Guidelines for Determining a Root Locus 283

φ1 = −90◦ − 135◦ − 180◦ (5.33)

= −405◦ (5.34)

= −45◦. (5.35)
By the complex conjugate symmetry of the plots, the angle of departure
of the locus near the pole at −4− 4j will be +45◦.

If there had been zeros in L(s), the angles from the pole to the zeros
would have been added to the right side of Eq. (5.33). For the general
case, we can see from Eq. (5.33) that the angle of departure from a single
pole is that given by Eq. (5.30). For a multiple pole of order q, we must
count the angle from the pole q times. This alters Eq. (5.30) to Eq. (5.31)
where l takes on q values because there are q branches of the locus that
depart from such a multiple pole.

The process of calculating a departure angle for small values of K,
as shown in Fig. 5.7, is also valid for computing the angle by which a
root locus arrives at a zero of L(s) for large values of K. The general
formula that results is that given by Eq. (5.32).

This rule is particularly useful if a system has poles near the imag-
inary axis, because it will show if the locus branch from the pole starts
off toward the stable left half-plane (LHP) or heads toward the unstable
right half-plane (RHP).

RULE 5. The locus can have multiple roots at points on the locus and
the branches will approach a point of q roots at angles separated by

180◦ + 360◦(l − 1)
q

, (5.36)

and will depart at angles with the same separation. As with any poly-
nomial, it is possible for a characteristic polynomial of a degree greater
than 1 to have multiple roots. For example, in the second-order locus of
Fig. 5.2, there are two roots at s = −1/2 when K = 1/4. Here the hor-
izontal branches of the locus come together and the vertical branches
break away from the real axis, becoming complex for K > 1/4. The
locus arrives at 0◦ and 180◦ and departs at +90◦ and −90◦.

In order to compute the angles of arrival and departure from a
point of multiple roots, it is useful to use a trick we call the continua-
tion locus. We can imagine plotting a root locus for an initial range ofContinuation locus
K, perhaps for 0 ≤ K ≤ K1. If we let K = K1 + K2, we can then plot
a new locus with parameter K2, a locus which is the continuation of the
original locus, and whose starting poles are the roots of the original sys-
tem at K = K1. To see how this works, we return to the second-order
root locus of Eq. (5.11) and let K1 be the value corresponding to the
breakaway point K1 = 1/4. If we let K = 1/4 + K2, we have the locus
equation s2 + s+ 1/4+ K2 = 0, or(

s+ 1
2

)2

+ K2 = 0. (5.37)

The steps for plotting this locus are, the same as for any other, except
that now the initial departure of the locus of Eq. (5.37) corresponds to
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Figure 5.8
Root locus for
L(s) = 1
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the breakaway point of the original locus of Eq. (5.11), i.e., s = −1/2
on Fig. 5.2. Applying the rule for departure angles [Eq. (5.31)] from the
double pole at s = −1/2, we find that

2φdep = −180◦ − 360◦(l − 1), (5.38)

φdep = −90◦ − 180◦(l − 1), (5.39)

φdep = ±90◦ (departure angles at breakaway). (5.40)

In this case, the arrival angles at s = −1/2 are, from the original root
locus, along the real axis and are clearly 0◦ and 180◦.

The complete locus for our third-order example is drawn in Fig. 5.8.
It combines all the results found so far—that is, the real-axis segment,
the center of the asymptotes and their angles, and the angles of depar-
ture from the poles. It is usually sufficient to draw the locus by using
only Rules 1 to 3, which should be memorized. Rule 4 is sometimes use-
ful to understand how locus segments will depart, especially if there is a
pole near the jω axis. Rule 5 is sometimes useful to help interpret plots
that come from the computer and, as we will see in the next section, to
explain qualitative changes in some loci as a pole or zero is moved. The
actual locus in Fig. 5.8 was drawn using the Matlab commands

s = tf('s');
sysL = 1/(s*((s+4)^2 + 16));
rlocus(sysL)

We will next summarize the rules for drawing a root locus.

5.2.2 Summary of the Rules for Determining a Root Locus

RULE 1. The n branches of the locus start at the poles of L(s) and m
branches end on the zeros of L(s).

RULE 2. The loci are on the real axis to the left of an odd number of
poles and zeros.
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RULE 3. For large s and K, n − m branches of the loci are asymptotic
to lines at angles φl radiating out from the center point s = α on the real
axis, where

φl = 180◦ + 360◦(l − 1)
n−m

, l = 1, 2, . . . , n−m, (5.41)

α =
∑

pi −∑ zi

n−m
. (5.42)

RULE 4. The angle(s) of departure of a branch of the locus from a pole
of multiplicity q is given by

qφl,dep =
∑

ψi −
∑

φi − 180◦ − 360◦(l − 1), (5.43)

where l = 1, 2, . . . , q and the angle(s) of arrival of a branch at a zero of
multiplicity q is given by

qψl,arr =
∑

φi −
∑

ψi + 180◦ + 360◦(l − 1). (5.44)

RULE 5. The locus can have multiple roots at points on the locus of
multiplicity q. The branches will approach a point of q roots at angles
separated by

180◦ + 360◦(l − 1)
q

, (5.45)

and will depart at angles with the same separation, forming an array of
2q rays equally spaced. If the point is on the real axis, then the orien-
tation of this array is given by the real-axis rule. If the point is in the
complex plane, then the angle of departure rule must be applied.

5.2.3 Selecting the Parameter Value
The positive root locus is a plot of all possible locations for roots to
the equation 1 + KL(s) = 0 for some real positive value of K. The
purpose of design is to select a particular value of K that will meet the
specifications for static and dynamic response. We now turn to the issue
of selecting K from a particular locus so the roots are at specific places.
Although we shall show how the gain selection can be made by hand
calculations from a plot of the locus, this is almost never done by hand
because the determination can be accomplished easily by Matlab. It is
useful, however, to be able to perform a rough sanity check by hand on
the computer-based results.

Using Definition II of the locus, we developed rules to sketch a
root locus from the phase of L(s) alone. If the equation is actually to
have a root at a particular place when the phase of L(s) is 180◦, then
a magnitude condition must also be satisfied. This condition is given by
Eq. (5.9), rearranged as

K = − 1
L(s)

. (5.46)
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Figure 5.9
Root locus for
L(s) = 1
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For values of s on the root locus, the phase of L(s) is 180◦, so we can
write the magnitude condition as

K = 1
|L| . (5.47)

Equation (5.47) has both an algebraic and a graphical interpreta-
tion. To see the latter, consider the locus of 1+ KL(s), where

L(s) = 1
s[(s+ 4)2 + 16]

. (5.48)

For this transfer function, the locus is plotted in Fig. 5.9. In Fig. 5.9,
the lines corresponding to a damping ratio of ζ = 0.5 are sketched and
the points where the locus crosses these lines are marked with dots (•).
Suppose we wish to set the gain so the roots are located at the dots.
This corresponds to selecting the gain so that two of the closed-loop
system poles have a damping ratio of ζ = 0.5. (We will find the third
pole shortly.) What is the value of K when a root is at the dot? From
Eq. (5.47), the value of K is given by 1 over the magnitude of L(s0),
where s0 is the coordinate of the dot. On the figure we have plotted
three vectors marked s0 − s1, s0 − s2, and s0 − s3, which are the vectors
from the poles of L(s) to the point s0. (Since s1 = 0, the first vector
equals s0.) Algebraically, we have

L(s0) = 1
s0(s0 − s2)(s0 − s3)

. (5.49)

Using Eq. (5.47), this becomes

K = 1
|L(s0)| = |s0||s0 − s2||s0 − s3|. (5.50)

The graphical interpretation of Eq. (5.50) shows that its three mag-Graphical calculation of
the desired gain nitudes are the lengths of the corresponding vectors drawn on Fig. 5.9

(see Appendix WD online at www.pearsonglobaleditions.com.). Hence,
we can compute the gain to place the roots at the dot (s = s0) by

www.pearsonglobaleditions.com.
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measuring the lengths of these vectors and multiplying the lengths
together, provided that the scales of the imaginary and real axes are
identical. Using the scale of the figure, we estimate that

|s0| ∼= 4.0,

|s0 − s2| ∼= 2.1,

|s0 − s3| ∼= 7.7.

Thus, the gain is estimated to be

K = 4.0(2.1)(7.7) ∼= 65.

We conclude that if K is set to the value 65, then a root of 1+KL will be
at s0, which has the desired damping ratio of 0.5. Another root is at the
conjugate of s0. Where is the third root? The third branch of the locus
lies along the negative real axis. If performing the calculations by hand,
we would need to take a test point, compute a trial gain, and repeat
this process until we have found the point where K = 65. However, if
performing a check on Matlab’s determination, it is sufficient to merely
use the procedure above to verify the gain at the root location indicated
by the computer.

To use Matlab, plot the locus using the command rlocus(sysL),
for example, then the command [K,p] = rlocfind(sysL) will produce a
crosshair on the plot and, when spotted at the desired location of the
root and selected with a mouse click, the value of the gain K is returned
as well as the roots corresponding to that K in the variable p. The use
of sisotool makes this even easier, and will be discussed in more detail in
Example 5.7.

Finally, with the gain selected, it is possible to compute the error
constant of the control system. A process with the transfer function
given by Eq. (5.48) has one integrator and, in a unity feedback config-
uration, will be a Type 1 control system. In this case, the steady-state
error in tracking a ramp input is given by the velocity constant:

Kv = lim
s→0

sKL(s) (5.51)

= lim
s→0

s
K

s[(s+ 4)2 + 16]
(5.52)

= K
32

. (5.53)

With the gain set for complex roots at a damping ζ = 0.5, the root-locus
gain is K = 65, so from Eq. (5.53) we get Kv = 65/32 ∼= 2 sec−1. If the
closed-loop dynamic response, as determined by the root locations, is
satisfactory and the steady-state accuracy, as measured by Kv, is good
enough, then the design can be completed by gain selection alone. How-
ever, if no value of K satisfies all of the constraints, as is typically the
case, then additional modifications are necessary to meet the system
specifications.
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5.3 Selected Illustrative Root Loci
A number of important control problems are characterized by a process
with the simple “double integrator” transfer function

G(s) = 1
s2 . (5.54)

In Chapter 2, Example 2.3 showed that the attitude control of a satellite
is described by this equation. Also, Example 2.5 showed that the basic
attitude motions of a drone obey this transfer function. Furthermore, it
will be shown in Example 5.16 that the translational motion of a drone
obeys the same dynamics. The result is a plant described by Eq. (5.54).
If we form a unity feedback system with this plant, and a proportional
controller, the root locus with respect to controller gain is

1+ kp
1
s2 = 0. (5.55)

If we apply the rules to this (trivial) case, the results are as follows:

RULE 1. The locus has two branches that start at s = 0.

RULE 2. There are no parts of the locus on the real axis.

RULE 3. The two asymptotes intersect at s = 0 and are at the angles
of ±90◦.

RULE 4. The loci depart from s = 0 at the angles of ±90◦.
Conclusion: The locus consists of the imaginary axis, and the transient
would be oscillatory for any value of kp. A more useful design results
with the use of proportional plus derivative control.

EXAMPLE 5.3 Root Locus for Satellite Attitude Control with PD Control

The characteristic equation with PD control is

1+ [kp + kDs
] 1

s2 = 0. (5.56)

To put the equation in root-locus form, we define K = kD, and for the
moment arbitrarily select the gain ratio9 as kp/kD = 1, which results in
the root-locus form

1+ K
s+ 1

s2 = 0. (5.57)

Solution. Again we compute the results of the rules:

RULE 1. There are two branches that start at s = 0, one of which
terminates on the zero at s = −1 and the other of which approaches
infinity.

9Given a specific physical system, this number would be selected with consideration of the
specified rise time of the design or the maximum control signal (control authority) of the
actuator.
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Figure 5.10
Root locus for
L(s) = G(s) = (s+1)
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RULE 2. The real axis to the left of s = −1 is on the locus.

RULE 3. Since n − m = 1, there is one asymptote along the negative
real axis.

RULE 4. The angles of departure from the double pole at s = 0
are ±90◦.

RULE 5. From Rules 1–4, it should be clear that the locus will curl
around the zero, rejoin the real axis to the left of the zero, and terminate
as indicated by Rule 1. It turns out that the locus segments rejoin the
real axis at s = −2, which creates a point of multiple roots. Evaluation
of the angle of arrival at this point will show that the segments arrive at
±90◦.

We conclude that two branches of the locus leave the origin going
north and south, and that they curve around10 without passing into
the RHP and break into the real axis at s = −2, from which point
one branch goes west toward infinity and the other goes east to ren-
dezvous with the zero at s = −1. The locus is plotted in Fig. 5.10 with
the commands

s = tf('s');
sysS = (s +1)/(s^2);
rlocus( sysS)

Comparing this case with that for the simple 1/s2, we see that

The addition of the zero has pulled the locus into the LHP, a
point of general importance in constructing a compensation.

10 You can prove that the path is a circle by assuming that s + 1 = ejθ and showing that
the equation has a solution for a range of positive K and real θ under this assumption.
(See Problem 5.18.)
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In the previous case, we considered pure PD control. However, as
we have mentioned earlier, the physical operation of differentiation is
not practical and in practice PD control is approximated by

Dc(s) = kp + kDs
s/p+ 1

, (5.58)

which can be put in root-locus form by defining K = kp + pkD and
z = pkp/K so that11

Dc(s) = K
s+ z
s+ p

. (5.59)

For reasons we will see when we consider design by frequency response,
this controller transfer function is called a “lead compensator” provided
z < p or, referring to the frequent implementation by electrical compo-
nents, a “lead network.” The characteristic equation for the 1/s2 plant
with this controller is

1+Dc(s)G(s) = 1+ KL(s) = 0,

1+ K
s+ z

s2(s+ p)
= 0.

EXAMPLE 5.4 Root Locus of the Satellite Control with Modified
PD or Lead Compensation

To evaluate the effect of the added pole, we will again set z = 1 and
consider three different values for p. We begin with a somewhat large
value, p = 12, and consider the root locus for

1+ K
s+ 1

s2(s+ 12)
. (5.60)

Solution. Again, we apply the rules for plotting a root locus:

RULE 1. There are now three branches to the locus, two starting at
s = 0 and one starting at s = −12.

RULE 2. The real axis segment −12 ≤ s ≤ −1 is part of the locus.

RULE 3. There are n − m = 3 − 1 = 2 asymptotes centered at α =
−12−(−1)

2 = −11/2 and at the angles ±90◦.

RULE 4. The angles of departure of the branches at s = 0 are again
±90◦. The angle of departure from the pole at s = −12 is at 0◦.

There are several possibilities on how the locus segments behave
while still adhering to the guidance above. Matlab is the expedient way
to discover the paths. The Matlab commands

11The use of z here for zero is not to be confused with the use of the operator z used in
defining the discrete transfer function that will be described in Chapter 8.
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Figure 5.11
Root locus for
L(s) = (s+1)
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s = tf('s');
sysL = (s + 1)/((s^2)*(s + 12));
rlocus(sysL)

show that two branches of locus break vertically from the poles at s = 0,
curve around to the left without passing into the RHP, and break in at
s = −2.3, where one branch goes right to meet the zero at s = −1
and the other goes left, where it is met by the root that left the pole at
s = −12. These two form a multiple root at s = −5.2 and break away
there and approach the vertical asymptotes located at s = −5.5. The
locus is plotted in Fig. 5.11.

Considering this locus, we see that the effect of the added pole has
been to distort the simple circle of the PD control but, for points near
the origin, the locus is quite similar to the earlier case. The situation
changes when the pole is brought closer in.

EXAMPLE 5.5 Root Locus of the Satellite Control with Lead Having
a Relatively Small Value for the Pole

Now consider p = 4 and draw the root locus for

1+ K
s+ 1

s2(s+ 4)
= 0. (5.61)

Solution. Again, by the rules, we have the following:

RULE 1. There are again three branches to the locus, two starting from
s = 0 and one from s = −4.

RULE 2. The segment of the real axis−4 ≤ s ≤ −1 is part of the locus.

RULE 3. There are two asymptotes centered at α = −3/2 and at the
angles ±90◦.
RULE 4. The branches again depart from the poles at s = 0 at ±90◦.
RULE 5. The Matlab commands



main_1 — 2019/2/5 — 10:47 — page 292 — #23

292 Chapter 5 The Root-Locus Design Method

Figure 5.12
Root locus for
L(s) = (s+1)
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s = tf('s');
sysL = (s + 1)/((s^2)*(s + 4));
rlocus(sysL)

show that two branches of this locus break away vertically from the
poles at s = 0, curve slightly to the left and join the asymptotes going
north and south. The locus segment from the root at s = −4 goes east
and terminates at the zero. In this case, the locus differs from the case
when s = −12 in that there are no break-in or breakaway points on the
real axis as part of the locus. The Matlab plot is given in Fig. 5.12.

In these two cases we have similar systems, but in one case, p = 12,
there were both break-in and breakaway points on the real axis, whereas
for p = 4, these features have disappeared. A logical question might be
to ask at what point they went away. As a matter of fact, it happens at
p = 9, and we’ll look at that locus next.

EXAMPLE 5.6 The Root Locus for the Satellite with a Transition
Value for the Pole

Plot the root locus for

1+ K
s+ 1

s2(s+ 9)
= 0. (5.62)

Solution.

RULE 1. The locus has three branches, starting from s = 0 and s = −9.

RULE 2. The real axis segment −9 ≤ s ≤ −1 is part of the locus.

RULE 3. The two asymptotes are centered at α = −8/2 = −4.

RULE 4. The departures are, as before, at ±90◦ from s = 0.

RULE 5. The Matlab commands
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Figure 5.13
Root locus for
L(s) = (s+1)
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s = tf('s')
sysL = (s + 1)/((s^2)*(s+9));
rlocus(sysL)

produces the locus in Fig. 5.13. It shows the two branches of this locus
break away vertically from the poles at s = 0 and curl around and join
the real axis again at s = −3 with an angle of arrival of ±60◦, while the
branch from the pole at s = −9 heads east and joins the other two poles
at s = −3 with an angle of arrival of 0◦. These three locus segments
continue on by splitting out of s = −3 at the departure angles of 0◦ and
±120◦, with one heading into the zero and the other two heading away
to the northwest to join the asymptotes. Using Rule 5 would confirm
these angles of arrival and departure.12

Note this special locus shape only occurs when the ratio of the pole
value to the zero value is exactly 9:1 for this form of L(s). It is the transi-
tion locus between the two types depicted by Examples 5.4 and 5.5. This
transition is discussed in more detail below, and will be demonstrated
via Matlab in Example 5.7.

From Figs. 5.11 through 5.13, it is evident that when the third pole
is near the zero (p near 1), there is only a modest distortion of the locus
that would result for Dc(s)G(s) ∼= K

s2 , which consists of two straight-line
locus branches departing at ±90◦ from the two poles at s = 0. Then,
as we increase p, the locus changes until at p = 9; the locus breaks
in at −3 in a triple multiple root. As the pole p is moved to the left
beyond −9, the locus exhibits distinct break-in and breakaway points,
approaching, as p gets very large, the circular locus of one zero and
two poles. Figure 5.13, when p = 9, is thus a transition locus between
the two second-order extremes, which occur at p = 1 (when the zero is
canceled) and p→∞ (where the extra pole has no effect).

12The shape of this special root locus is a trisectrix of Maclaurin, a plane curve that can
be used to trisect an angle.
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EXAMPLE 5.7 An Exercise to Repeat the Prior Examples Using sisotool

Repeat Examples 5.3 through 5.6 using Matlab’s sisotool feature.

Solution. sisotool is an interactive design tool in Matlab that provides
a graphical user interface (GUI) for performing analysis and design.
sisotool provides an easy way to design feedback controllers because
it allows rapid iterations and quickly shows their effect on the result-
ing root-locus and the other aspects of the control performance. To
illustrate the use of the tool, the Matlab commands

s = tf('s');
sysL = (s + 1)/(s^2);
sisotool(’rlocus’,sysL)

will initiate the GUI and produce the root locus shown in Fig. 5.10,
which is similar to Examples 5.4 through 5.6, but without the pole on
the negative real axis that was moved around for illustration purposes in
the three prior examples. By clicking on “Compensator Editor” in the
“Control and Estimation Tools Manager” window, right clicking on the
“Dynamics” dialog window and selecting “add pole/zero,” you can add
a pole at the location s = −12. This will produce the locus that is shown
in Figs. 5.11 and 5.14. Now put your mouse on the pole at s = −12,

Figure 5.14
sisotool graphical user
interface
Source: Reprinted with
permission of The MathWorks,
Inc.
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hold down the mouse button, and slide it from s = −12 to s = −4
slowly, so you can examine the locus shapes at all intermediate points.
Be especially careful (and slow) as you pass through s = −9 because
the locus shape changes very quickly with the pole in this region. Note
you can also put your mouse on one of the closed-loop poles (squares)
and slide that along the locus. It will show you the location of the other
roots that correspond to that value of the gain, K, and the frequency
and damping of the closed-loop roots will be shown for when the roots
are complex pairs. More detail can be found in the sisotool Tutorial in
Appendix WR online at www.pearsonglobaleditions.com.

A useful conclusion drawn from this example is the following:

An additional pole moving in from the far left tends to push the
locus branches to the right as it approaches a given locus.

The double integrator is the simplest model of the examples, assum-
ing a rigid body with no friction. A more realistic case would include
the effects of flexibility in the satellite attitude control, where at least
the solar panels would be flexible. Another possibility is that the sen-
sor is not rigidly attached to the base of the satellite that contains the
thrusters, as discussed in Example 2.4 in Chapter 2. So, we see there
are two possibilities, depending on whether the sensor is on the same
rigid body as the actuator, which is called the collocated case,13 or is on
another body, which is called the noncollocated case.14 We begin with
consideration of the collocated case similar to that given by Eq. (2.14).
As we saw in Chapter 2, the transfer function in the collocated case
has not only a pair of complex poles but also a pair of nearby complex
zeros located at a lower natural frequency than the poles. The numbers
in the examples that follow are chosen more to illustrate the root-locus
properties than to represent particular physical models.

EXAMPLE 5.8 Root Locus of the Satellite Control with a Collocated
Flexibility

Plot the root locus of the characteristic equation 1 + G(s)Dc(s) = 0,
where

G(s) = (s+ 0.1)2 + 62

s2[(s+ 0.1)2 + 6.62]
, (5.63)

13Typical of the satellite attitude control, where the flexibility arises from solar panels and
both actuator and sensor act on the main body of the satellite.
14Typical of the satellite, where there is flexibility between an attitude sensor and the
controller.

www.pearsonglobaleditions.com
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Figure 5.15
Figure for computing a
departure angle for
L(s) =
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is in a unity feedback structure with the controller transfer function

Dc(s) = K
s+ 1

s+ 12
. (5.64)

Solution. In this case,

L(s) = s+ 1
s+ 12

(s+ 0.1)2 + 62

s2[(s+ 0.1)2 + 6.62]
has both poles and zeros near the imaginary axis and we should expect
to find the departure angles of particular importance.

Solution

RULE 1. There are five branches to the locus, three of which approach
finite zeros and two of which approach the asymptotes.

RULE 2. The real-axis segment −12 ≤ s ≤ −1 is part of the locus.

RULE 3. The center of the two asymptotes is at

α = −12− 0.1− 0.1− (−0.1− 0.1− 1)
5− 3

= −11
2

.

The angle of the asymptotes is ±90◦.
RULE 4. We compute the departure angle from the pole at s = −0.1+
j6.6. The angle at this pole we will define to be φ1. The other angles are
marked on Fig. 5.15. The root-locus condition is

φ1 = ψ1 + ψ2 + ψ3 − (φ2 + φ3 + φ4 + φ5)− 180◦,
φ1 = 90◦ + 90◦ + tan−1(6.6)− [90◦ + 90◦ + 90◦

+ tan−1
(

6.6
12

)
]− 180◦, (5.65)

φ1 = 81.4◦ − 90◦ − 28.8◦ − 180◦,
= −217.4◦ = 142.6◦,

so the root leaves this pole up and to the left, into the stable region of
the plane. An interesting exercise would be to compute the arrival angle
at the zero located at s = −0.1+ j6.
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Figure 5.16
Root locus for L(s) =
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Using Matlab, the locus is plotted in Fig. 5.16. Note all the
attributes that were determined using the simple rules were exhibited
by the plot, thus verifying in part that the data were entered correctly.

The previous example showed

In the collocated case, the presence of a single flexible mode
introduces a lightly damped root to the characteristic equation
but does not cause the system to be unstable.

The departure angle calculation showed the root departs from the
pole introduced by the flexible mode toward the LHP. Next, let’s con-
sider the noncollocated case, which was also discussed in Example 2.4
and resulted in Eq. (2.13). Using that as a guide, we assume here the
plant transfer function is

G(s) = 1
s2[(s+ 0.1)2 + 6.62]

, (5.66)

and is compensated again by the lead

Dc(s) = K
s+ 1
s+ 12

. (5.67)

As these equations show, the noncollocated transfer function has the
complex poles but does not have the associated complex zeros as in the
previous example, and that we also saw for the collocated case of Chap-
ter 2 in Eq. (2.14). This will have a substantial effect, as illustrated by
Example 5.9.

EXAMPLE 5.9 Root locus for the Noncollocated Cased

Apply the rules and draw the root locus for

KL(s) = DcG = K(s+ 3)
s+ 18

1
(s+ 1)2[(s+ 0.5)2 + 92]

, (5.68)

paying special attention to the departure angles from the complex poles.
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Solution

RULE 1. There are five branches to the root locus, of which one
approaches the zero and four approach the asymptotes.

RULE 2. The real-axis segment defined by −18 ≤ s ≤ −3 is part of the
locus.

RULE 3. The center of the asymptotes is located at

α = −18− (1)(2)− (0.5)(2)− (−3)
5− 1

= −18
4

,

and the angles for the four asymptotic branches area at ±45◦,±135◦.
RULE 4. We again compute the departure angle from the pole at
s = −0.5+ j9. We will define the angle at this pole to be φ1. The other
angles are marked on Fig. 5.17. The root locus condition is

φ1 = ψ1 − (φ2 + φ3 + φ4 + φ5)− 180◦,

φ1 = tan−1
(

9
2.5

)
−
[

2× tan−1
(

9
0.5

)
+

90◦ + tan−1
(

9
17.5

)]
− 180◦, (5.69)

φ1 = 74.48◦ − 173.64◦ − 90◦ − 27.22◦ − 180◦,
φ1 = −36.38◦.

In this case, the root leaves the pole down and to the right, toward the
unstable region. We would expect the system to become unstable as gain
is increased.

RULE 5. The locus is plotted in Fig. 5.18 with the commands

s = tf('s');
sysG = 1/((s+1)^2)*((s + 0.5)^2 + 9^2));
sysD = (s + 3)/(s + 18);
sysL = sysG*sysD;
rlocfind(sysL)

and is seen to agree with the calculations above. By using sisotool, we
see that the locus from the complex poles enter into the RHP almost

Figure 5.17
Figure to compute
departure angle for
L(s) =
s+3
s+18

1
(s+1)2[(s+0.5)2+92]
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Figure 5.18
Root locus for L(s) =
s+3
s+18

1
(s+1)2[(s+0.5)2+92]
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immediately as the gain is increased. Furthermore, by selecting those
roots so that they are just to the left of the imaginary axis, it can be
seen that the dominant slow roots down near the origin have extremely
low damping. Therefore, this system will have a very lightly damped
response with very oscillatory flexible modes. It would not be considered
acceptable with the lead compensator as chosen for this example.

A Locus with Complex Multiple Roots

We have seen loci with break-in and breakaway points on the real axis.
Of course, an equation of fourth or higher order can have multiple roots
that are complex. Although such a feature of a root locus is a rare event,
it is an interesting curiosity that is illustrated by the next example.

EXAMPLE 5.10 Root Locus Having Complex Multiple Roots

Sketch the root locus 1+ KL(s) = 0, where

L(s) = 1
(s+ 4)(s+ 1)[(s+ 2.5)2 + 16]

.

Solution

RULE 1. There are four branches of the roots, all of which approach
the four asymptotes.

RULE 2. The real-axis segment −4 ≤ s ≤ −1 is on the locus.

RULE 3. The center of the asymptotes is at

α = −4− 1− (2.5)(2)
4

= −10
4
= −2.5,

and the angles are φl = ±45◦, ±135◦.

RULE 4. The departure angle φdep from the pole at= −2.5+ 4j, based
on Fig. 5.19, is
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Figure 5.19
Figure to compute
departure angle for
L(s) =

1
(s+4)(s+1)[(s+2.5)2+16]
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Figure 5.20
Root locus for L(s) =

1
(s+4)(s+1)[(s+2.5)2+16]
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φdep = φ3 = −φ1 − φ2 − φ4 + 180◦

= −
(

180◦ − tan−1
(

4
1.5

))
− tan−1

(
4

1.5

)
− 90◦ + 180◦

= −90◦.
We can observe at once that, along the line s = −2.5+ jω, φ2 and φ1 are
angles of an isosceles triangle and always add to 180◦. Hence, the entire
line from one complex pole to the other is on the locus in this special
case.

RULE 5. Using Matlab, we see there are multiple roots at s =
−2.5 ± 2.62j, and branches of the locus (Fig. 5.20) come together at
−2.5± 2.62j. Using Rule 5, we can verify that the locus segments break
away at 0◦ and 180◦, as shown by Matlab. The codes are given below:

s = tf('s');
L = 1/((s+4)*(s+1)*((s + 2.5)^2 + 16));
rlocus(L);
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The locus in this example is a transition between two types of loci:
one where the complex poles are to the left of the example case and
approach the asymptotes at ±135◦, and another where the complex
poles are to the right of their positions in the example and approach
the asymptotes at ±45◦.

5.4 Design Using Dynamic Compensation
Consideration of control design begins with the design of the process
itself. The importance of early consideration of potential control prob-
lems in the design of the process and selection of the actuator and sensor
cannot be overemphasized. It is not uncommon for a first study of the
control to suggest that the process itself can be changed by, for example,
adding damping or stiffness to a structure to make a flexibility eas-
ier to control. Once these factors have been taken into account, the
design of the controller begins. If the process dynamics are of such a
nature that a satisfactory design cannot be obtained by adjustment of
the proportional gain alone, then some modification or compensation
of the dynamics is indicated. While the variety of possible compensation
schemes is great, three categories have been found to be particularly
simple and effective. These are lead, lag, and notch compensations.15

Lead compensation approximates the function of PD control and actsLead and lag
compensations mainly to speed up a response by lowering rise time and decreasing the

transient overshoot. Lag compensation approximates the function of PI
control, and is usually used to improve the steady-state accuracy of the
system. Notch compensation will be used to achieve stability for systems
with lightly damped flexible modes, as we saw with the satellite attitude
control having noncollocated actuator and sensor. In this section, weNotch compensation
will examine techniques to select the parameters of these three schemes.
Lead, lag, and notch compensations have historically been implemented
using analog electronics and, hence were often, referred to as networks.
Today, however, most new control system designs use digital computer
technology, in which the compensation is implemented in the soft-
ware. In this case, one needs to compute discrete equivalents to the
analog transfer functions, as will be described in Chapter 8, and in
Franklin et al. (1998).

Compensation with a transfer function of the form

Dc(s) = K
s+ z
s+ p

(5.70)

is called lead compensation if z < p and lag compensation if z > p.
Compensation is typically placed in series with the plant, as shown in
Fig. 5.21. It can also be placed in the feedback path, and in that location
has the same effect on the overall system poles, but results in different

15The names of these compensation schemes derive from their frequency (sinusoidal)
responses, wherein the output leads the input in one case (a positive phase shift) and lags
the input in another (a negative phase shift). The frequency response of the third looks as
if a notch had been cut in an otherwise flat frequency response. (See Chapter 6.)



main_1 — 2019/2/5 — 10:47 — page 302 — #33

302 Chapter 5 The Root-Locus Design Method

Figure 5.21
Feedback system with
compensation
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transient responses from reference inputs. The characteristic equation
of the system in Fig. 5.21 is

1+Dc(s)G(s) = 0,

1+ KL(s) = 0,

where K and L(s) are selected to put the equation in root-locus form as
before.

5.4.1 Design Using Lead Compensation
To explain the basic stabilizing effect of lead compensation on a sys-
tem, we first consider proportional control for which Dc(s) = K. If we
apply this compensation to a second-order position control system with
normalized transfer function

G(s) = 1
s(s+ 1)

,

the root locus with respect to K is shown as the solid-line portion of
the locus in Fig. 5.22. Also shown in Fig. 5.22 is the locus produced
by proportional plus derivative control, where Dc(s) = K(s + 2). The
modified locus is the circle sketched with dashed lines. As we saw in
the previous examples, the effect of the zero is to move the locus to
the left, toward the more stable part of the s-plane. Now, if our speed-
of-response specification calls for ωn ∼= 2 rad/sec, then proportional
control alone (Dc = K) can produce only a very low value of damping
ratio ζ when the roots are put at the required value of ωn. Hence, at

Figure 5.22
Root loci for
1+ Dc(s)G(s) = 0,
G(s) = 1

s(s+1) : with
compensation
Dc(s) = K (solid lines)
and with
Dc(s) = K(s+ 2)
(dashed lines)

Im
ag

in
ar

y
 a

x
is

Real axis

-6 210-1-2-3-4-5
-3

-2

-1

0

1

2

3



main_1 — 2019/2/5 — 10:47 — page 303 — #34

5.4 Design Using Dynamic Compensation 303

the required gain, the transient overshoot will be substantial. However,
by adding the zero of PD control, we can move the locus to a position
having closed-loop roots at ωn = 2 rad/sec and damping ratio ζ ≥ 0.5.
We have “compensated” the given dynamics by using Dc(s) = K(s+ 2).

As we observed earlier, pure derivative control is not normally
practical because of the amplification of sensor noise implied by the
differentiation and must be approximated. If the pole of the lead com-
pensation is placed well outside the range of the design ωn, then we
would not expect it to upset the dynamic response of the design in a
serious way. For example, consider the lead compensation

Dc(s) = K
s+ 2
s+ p

.

The root loci for two cases with p = 10 and p = 20 are shown in
Fig. 5.23, along with the locus for PD control. The important fact about
these loci is that for small gains, before the real root departing from −p
approaches −2, the loci with lead compensation are almost identical to
the locus for which Dc(s) = K(s + 2). Note the effect of the pole is to
lower the damping, but for the early part of the locus, the effect of the
pole is not great if p > 10.

Selecting exact values of z and p in Eq. (5.70) for particular cases is
often done by trial and error, which can be minimized with experience.Selection of the

zero and pole of a lead In general, the zero is placed in the neighborhood of the closed-loop ωn,
as determined by rise-time or settling-time requirements, and the pole
is located at a distance 5 to 25 times the value of the zero location. But
there are trade-offs to consider. The choice of the exact pole location is
a compromise between the conflicting effects of noise suppression, for
which one wants a small value for p, and compensation effectiveness for
which one wants a large p. In general, if the pole is too close to the zero,
then, as seen in Fig. 5.23, the root locus does not move as much from its
uncompensated shape, and the zero is not as successful in doing its job.

Figure 5.23
Root loci for three cases
with G(s) = 1

s(s+1) :
(a) Dc(s) = (s+2)

(s+20) ;
(b) Dc(s) = (s+2)

(s+10) ;
(c) Dc(s) = s+ 2 (solid
lines)
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On the other hand, for reasons that are perhaps easier to understand
from the frequency response, when the pole is too far to the left, the
magnification of sensor noise appearing at the output of Dc(s) is too
great and the motor or other actuator of the process can be overheated
by noise energy in the control signal, u(t). With a large value of p, the
lead compensation approaches pure PD control. A simple example will
illustrate the approach.

EXAMPLE 5.11 Design Using Lead Compensation

Find a compensation for G(s) = 1/[s(s+ 1)] that will provide overshoot
of no more than 20% and rise time of no more than 0.3 sec.

Solution. From Chapter 3, we estimate that a damping ratio of ζ ≥ 0.5
and a natural frequency of ωn ∼= 1.8

0.3
∼= 6 rad/sec should satisfy the

requirements. To provide some margin, we will shoot for ζ ≥ 0.5 and
ωn ≥ 7 rad/sec. Considering the root loci plotted in Fig. 5.23, we will
first try

Dc(s) = K
s+ 2

s+ 10
.

Figure 5.24 shows that K = 70 will yield ζ = 0.56 and ωn = 7.7 rad/sec,
which satisfies the goals based on the initial estimates. The third pole
will be at s = −2.4 with K = 70. Because this third pole is so near
the lead zero at −2, the overshoot should not be increased very much
from the second-order case. However, Fig. 5.25 shows that the step
response of the system exceeds the overshoot specification by a small
amount. Typically, lead compensation in the forward path will increase
the step-response overshoot because the zero of the compensation has a
differentiating effect, as was discussed in Chapter 3. The rise-time spec-
ification has been met because the time for the amplitude to go from 0.1
to 0.9 is less than 0.3 sec.

Figure 5.24
Root locus for lead
design
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Figure 5.25
Step response for
Example 5.11
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We want to adjust the compensator to achieve better damping in
order to reduce the overshoot in the transient response. Generally, it
is best to increase p in order to increase damping, providing the p/z
ratio stays below approximately 25. Clearly, there is not much increase
in damping required for this example. So a logical choice would be to
increase p by a modest amount, say, from 10 to 13. This means the lead
compensator becomes

Dc(s) = K
(s+ 2)
(s+ 13)

.

The root locus with this change can be created using the Matlab
statements:

s=tf(’s’);
sysG=1/(s*(s + 1));
sysD=(s + 2)/(s + 13);
rlocus(sysG*sysD)
grid on

It is shown in Fig. 5.26. It shows that complex roots are possible at a
natural frequency greater than 8 rad/sec at a damping greater than 0.64.
Placing your cursor on the locus at the point marked in the figure shows
that K = 91 at that location and it will produce a damping, ζ = 0.67
and ωn = 8.63 rad/sec. These values appear to be better than the first
iteration so that the overshoot and time response should be satisfied. In
fact, the additional Matlab statements:

sysD=91*(s + 2)/(s + 13);
sysCL=feedback(sysG*sysD,1);
step(sysCL)

produce the time response shown in Fig. 5.27, which shows that the time
domain specifications are met. That is, tr < 0.3 sec. and Mp < 20%.
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Figure 5.26
Root Locus for
Dc(s) = K (s+2)

(s+13) with
dotted lines for
constant ς and ωn
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Figure 5.27
Time response for
Dc(s) = 91 (s+2)
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As stated earlier, the name lead compensation is a reflection of the
fact that to sinusoidal signals, these transfer functions impart phase
lead. For example, the phase of Eq. (5.70) at s = jω is given by
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φ = tan−1
(ω

z

)
− tan−1

(
ω

p

)
. (5.71)

If z < p, then φ is positive, which by definition indicates phase lead. The
details of design using the phase angle of the lead compensation will be
treated in Chapter 6.

Design Procedure for
Lead Compensation 1. Determine where the closed-loop roots need to be in the s-

plane in order to meet the desired specifications on the speed
of response and damping (or overshoot).

(a) pick the limits for ωn and ζ , or
(b) pick the limits for σ and ωd .

2. Create the root locus vs. K with no compensation.
3. If more damping is required, select a value of z in Eq. (5.70) to

be approximately 1/4 to 1 times the value of the desired ωn or
ωd and pick p to be 10*z.

4. Examine the resulting root locus; and adjust as necessary to
meet the required specifications as determined in step 1.

(a) decrease p if less damping is needed,
(b) increase p if more damping is needed, and/or decrease z,
(c) it is desirable to keep the value of p/z as low as possible

(p/z � 25) in order to minimize the amplification of sensor
noise by the compensation.

5. When the values of z and p are selected so that the resulting
locus passes through an acceptable region of the s-plane, deter-
mine the value of K to select the closed-loop root locations.

6. Verify that all time domain specifications are met by examining
the time response to a unit step input, and adjust the desired
s-plane specifications if needed and go back to step 2.

7. Determine if the resulting value of K meets the steady-state
error requirements, if any. If a value of K can not be found
that meets the requirement, then add Integral Control or a Lag
Compensator.

5.4.2 Design Using Lag Compensation
Once satisfactory dynamic response has been obtained, perhaps by
using one or more lead compensations, we may discover that the low-
frequency gain—the value of the relevant steady-state error constant,
such as Kv—is still too low. As we saw in Chapter 4, the system type,
which determines the degree of the polynomial the system is capable of
following, is determined by the order of the pole of the transfer function
Dc(s)G(s) at s = 0. If the system is Type 1, the velocity-error constant,
which determines the magnitude of the error to a ramp input, is given
by lims→0 sDc(s)G(s). In order to increase this constant, it is necessary
to do so in a way that does not upset the already satisfactory dynamic
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response. Thus, we want an expression for Dc(s) that will yield a signifi-
cant gain at s = 0 to raise Kv (or some other steady-state error constant)
but is nearly unity (no effect) at the higher frequency ωn, where dynamic
response is determined. The result is

Dc(s) = s+ z
s+ p

, z > p, (5.72)

where the values of z and p are very small compared with ωn, yet
Dc(0) = z/p = 3 to 10 (the value depending on the extent to which
the steady-state gain requires boosting). Because z > p, the phase φ
given by Eq. (5.71) is negative, corresponding to phase lag. Hence, a
device with this transfer function is called lag compensation.

The effects of lag compensation on dynamic response can be stud-An example of lag
compensation ied by looking at the corresponding root locus. Again, we take G(s) =

1
s(s+1) , include the lead compensation KDc1(s) = K(s+2)

(s+13) that produced
the locus in Fig. 5.26. With the gain of K = 91 from the previous tuned
example, we find that the velocity constant is

Kv = lim
s→0

sKDc1G

= lim
s→0

s(91)
s+ 2

s+ 13
1

s(s+ 1)

= 91 ∗ 2
13
= 14.

Suppose we require that Kv = 70 sec−1in order to reduce the veloc-
ity error by a factor of 5. To obtain this, we require a lag compensation
with z/p = 5 in order to increase the velocity constant by a factor
of 5. This can be accomplished with a pole at p = −0.01 and a zero
at z = −0.05, which keeps the values of both z and p very small so
Dc2(s) would have little effect on the portions of the locus represent-
ing the dominant dynamics around ωn = 7 rad/sec. The result is a lag
compensation with the transfer function of

Dc2(s) = (s+ 0.05)
(s+ 0.01)

.

The root locus with both lead and lag compensation is plotted in
Fig. 5.28 and we see that, for the large scale on the left, the locus
is not noticeably different from that in Fig. 5.26. This was the result
of selecting very small values for the lag compensator pole and zero.
With K = 91, the dominant roots are at −5.8 ± j6.5. The effect of
the lag compensation can be seen by expanding the region of the locus
around the origin as shown on the right side of Fig. 5.28. Here we
can see the circular locus that is a result of the very small lag pole
and zero. A closed-loop root remains very near the lag-compensation
zero at −0.05 + 0j; therefore, the transient response corresponding to
this root will be a very slowly decaying term, which will have a small
magnitude because the zero will almost cancel the pole in the transfer
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Figure 5.28
Root locus with both lead and lag compensation

function. Still, the decay is so slow that this term may seriously influence
the settling time. Furthermore, the zero will not be present in the step
response to a disturbance torque and the slow transient will be much
more evident there. Because of this effect, it is important to place the
lag pole–zero combination at as high a frequency as possible without
causing major shifts in the dominant root locations.

Design Procedure for Lag
Compensation 1. Determine the amount of gain amplification to be contributed

by the lag compensation at low frequencies in order to achieve
the desired Kp or Kv or Ka as determined by Eqs. (4.36–4.38).

2. Select the value of z in Eq. (5.72) so it is approximately a fac-
tor of 100 to 200 smaller than the system dominant natural
frequency.

3. Select the value of p in Eq. (5.72) so that z/p is equal to the
desired gain amplification determined in step 1.

4. Examine the resulting root locus to verify that the frequency
and damping of the dominant closed-loop roots are still satis-
factory. If not, adjust the lead compensation as needed.

5. Verify that all time domain specifications are met by examining
the time response to a unit step input. If the slow root intro-
duced by the lag compensation is too slow, increase the values
of z and p somewhat while keeping z/p constant, and go back
to step 4. However, do so with the understanding that the closer
the values of the lag compensator’s z and p come to the domi-
nant roots of the closed loop system, the more they will affect
those dominant root characteristics.
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5.4.3 Design Using Notch Compensation16

Suppose the design has been completed with lead and lag compensation
given by

KDc(s) = 91
[

s+ 2
s+ 13

] [
s+ 0.05
s+ 0.01

]
, (5.73)

but is found to have a substantial oscillation at about 50 rad/sec when
tested, because there was an unsuspected flexibility of the noncollocated
type at a natural frequency of ωn = 50 rad/sec. On reexamination, the
plant transfer function, including the effect of the flexibility, is estimated
to be

G(s) = 2500
s(s+ 1)(s2 + s+ 2500)

. (5.74)

A mechanical engineer claims that some of the “control energy” has
spilled over into the lightly damped flexible mode and caused it to be
excited. In other words, as we saw from the similar system whose root
locus is shown in Fig. 5.18, the very lightly damped roots at 50 rad/sec
have been made even less damped or perhaps unstable by the feedback.
The best method to fix this situation is to modify the structure so there
is a mechanical increase in damping. Unfortunately, this is often not
possible because it is found too late in the design cycle. If it isn’t pos-
sible, how else can this oscillation be corrected? There are at least two
possibilities. An additional lag compensation might lower the loop gain
far enough that there is greatly reduced spillover and the oscillation is
eliminated. Reducing the gain at the high frequency is called gain stabi-
lization. If the response time resulting from gain stabilization is too long,Gain stabilization
a second alternative is to add a zero near the resonance so as to shift the
departure angles from the resonant poles so as to cause the closed-loop
root to move into the LHP, thus causing the associated transient to die
out. This approach is called phase stabilization, and its action is similarPhase stabilization
to that of flexibility in the collocated motion control discussed earlier.
Gain and phase stabilization will be explained more precisely by their
effect on the frequency response in Chapter 6 where these methods of
stabilization will be discussed further. For phase stabilization, the result
is called a notch compensation, and an example has a transfer function

Dnotch(s) = s2 + 2ζωos+ ω2
o

(s+ ωo)2
. (5.75)

A necessary design decision is whether to place the notch frequency
above or below that of the natural resonance of the flexibility in order
to get the necessary phase. A check of the angle of departure shows that
with the plant as compensated by Eq. (5.73) and the notch as given,
it is necessary to place the frequency of the notch above that of the
resonance to get the departure angle to point toward the LHP. Thus
the compensation is added with the transfer function

16This type of compensation is often referred to as a “Notch Filter” because it basically
is attenuating the input around the prescribed unwanted frequency.
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Figure 5.29
Root locus with lead,
lag, and notch
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The gain of the notch at s = 0 has been kept at 1 so as not to change the
Kv. The new root locus is shown in Fig. 5.29, and the step response is
shown in Fig. 5.30 for the system with and without the notch compen-
sation included. Note from the step responses that the notch damps the
oscillations well but degrades the overshoot somewhat. The rise time
specification was not affected. To rectify the increased overshoot and
strictly meet all the specifications, further iteration should be carried
out in order to provide more damping of the fast roots in the vicinity of
ωn = 7 rad/sec.

Figure 5.30
Step response with lead
and lag, with and
without the notch filter
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Figure 5.31
Possible circuit of a lead
compensation

Vin V0-

C Rf

R1 R2

When considering notch or phase stabilization, it is important to
understand that its success depends on maintaining the correct phase at
the frequency of the resonance. If that frequency is subject to significant
change, which is common in many cases, then the notch needs to be
removed far enough from the nominal frequency in order to work for
all cases. The result may be interference of the notch with the rest of the
dynamics and poor performance. As a general rule, gain stabilization is
substantially more robust to plant changes than is phase stabilization.

5.4.4 Analog and Digital Implementations
Compensation can be physically realized in various ways. Most com-

�
pensation can be implemented using analog electronics similar to
that described in Section 2.2. However, it is very common today to
implement compensation using digital devices.

As an example of an analog realization, a circuit diagram for lead
compensation using an operational amplifier is shown in Fig. 5.31. The
transfer function of the circuit in Fig. 5.31 is readily found by the
methods from Chapter 2 to be

Dlead(s) = −a
s+ z
s+ p

, (5.77)

where
a = p

z
, if Rf = R1 + R2,

z = 1
R1C

,

p = R1 + R2

R2
· 1

R1C
.

A short section describing the implementation of a lead compen-
sation using a digital device and a comparison of the results with an
analog implementation is contained in online Appendix W5.4.4. (See
www.pearsonglobaleditions.com)

5.5 Design Examples Using the Root Locus

EXAMPLE 5.12 Control of a Quadrotor Drone Pitch Axis

For the quadrotor shown in Fig. 2.13, the transfer function between a
pitch control input, Tlon, and the pitch angle, θ , is

www.pearsonglobaleditions.com
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Figure 5.32
Block diagram for the quadrotor design Example 5.12

θ(s)
Tlon(s)

= G1(s) = 1
s2(s+ 2)

.

This is similar to the transfer function obtained in Eq. (2.15) in Chap-
ter 2; however, an extra term has been added to account for the lag
associated with the rotor coming up to the newly commanded thrust
and speed. The lag term selected, (s+ 2), is for a fairly large quadrotor
of perhaps 2 meters in diameter. The more detailed drone example in
Chapter 10 (see Example 10.5) will include this term along with some
of the aerodynamic terms. However, for purposes of understanding the
essential control features, this simplified example should suffice. The
block diagram of the control system is shown in Fig. 5.32. It shows
the quadrotor dynamics given by θ(s)/Tlon(s) and shows the compen-
sator, Dc(s), to be designed via the root locus method. The desired
specifications for this system are:

ωn ≥ 1 rad/sec,

ζ ≥ 0.44.

Using lead compensation, find a set of parameters for Dc(s) that
meet the required specifications.

Solution. Knowing the desired ωn and ζ values is the first step in the
Lead Compensation Design Procedure. The second step in the process
is to determine a root locus for the uncompensated system. The ensuing
Matlab commands will generate such a locus:

s = tf(’s’);
sysG1=1/((s^2)*(s + 2));
rlocus(sysG1)
axis([-8 4 -6 6])
grid on

Note use of the grid command places the ωn and ζ values on
the root locus plot as an aid in the determination of whether the
specifications are met. The result is shown in Fig. 5.33.

The uncompensated system exhibits increasing instability as the
gain, K, is increased; therefore, it is likely that significant more lead
will be required compared to Example 5.11 where the uncompensated
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Figure 5.33
Uncompensated system,
i.e., with Dc(s) = K.
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system was always stable, as was shown in Fig. 5.22. For the third step
we select z = 1 and p = 10 in Eq. (5.70) so

Dc(s) = K
s+ 1

s+ 10
.

This compensation is implemented into the quadrotor control
system by the Matlab commands

s = tf(’s’);
sysG1=1/((s^2 )*(s + 2));
sysD=(s+1)/(s+10);
rlocus(sysG1*sysD)
axis([-3 1 -2 2])
grid on

which produce the root locus in Fig. 5.34. It shows that no value of K
will produce the level of damping required, that is, ζ ≥ 0.44.

Clearly, significantly more damping from the compensator is
required so we move on to step 4 in the procedure. For our next attempt,
let’s choose a value of z = 0.5 instead of 1. However, it will show
that it is still not possible to meet both specifications. Therefore, let’s
also increase p to 15 and examine whether that will create a locus with
ζ ≥ 0.44. Therefore the compensation is now

Dc(s) = K
s+ 0.5
s+ 15

.
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Figure 5.34
Compensated system
with Dc(s) = K s+1
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A root locus of the system with this compensator is found from the
ensuing Matlab statements

s = tf(’s’);
sysG1=1/((s^2 )*(s + 2));
sysD=(s+0.5)/(s+15);
rlocus(sysG1*sysD)
axis([-3 1 -2 2])
grid on

which produces the locus shown in Fig. 5.35.
Comparing the locus with the lines of constant damping shows that

it comes very close to the ζ = 0.5 line, and thus most likely will satisfy
the requirement that ζ ≥ 0.44. Also note that the point on the locus
that is closest to the ζ = 0.5 line is approximately at ωn = 1 rad/sec.
Thus, step 5 consists of verifying this result. This can be carried out by
placing your cursor on the Matlab generated root locus at the point of
best damping. Doing so shows that

K = 30,

ωn = 1.03, and

ζ = 0.446,

which satisfies step 5 in the design procedure and yields the value of K
in the lead compensation. Therefore, we now have the complete set of
parameters, and the final design is

Dc(s) = 30
s+ 0.5
s+ 15

.
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Figure 5.35
Root locus of the
quadrotor with
Dc(s) = K s+0.5
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K = 30

Thus, all the specifications are now met. Since no time domain or
steady-state requirements have been made, steps 6 and 7 do not apply
in this case. Had there been a time response specification that was not
met, it would be necessary to return to step 2 and revise the desired
ωn and ζ so as to improve the situation. A higher value of ωn would
speed up the response time and a higher value of ζ would decrease the
overshoot. If the steady-state error requirements had not been met, it
is sometimes possible to increase K and still meet the other specifica-
tions; however, in this case any increase in K from the selected value
of 30 would decrease the damping, ζ , so it would be necessary to add
a lag compensator or integral control had a higher value of K been
necessary.

EXAMPLE 5.13 Control of a Small Airplane

For the Piper Dakota shown in Fig. 5.36, the transfer function between
the elevator input and the pitch attitude is

G(s) = θ(s)
δe(s)

= 160(s+ 2.5)(s+ 0.7)
(s2 + 5s+ 40)(s2 + 0.03s+ 0.06)

, (5.78)

where

θ = pitch attitude, degrees (see Fig. 10.30),

δe = elevator angle, degrees.

(For a more detailed discussion of longitudinal aircraft motion,
refer to Section 10.3.)
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Figure 5.36
Autopilot design in the
Piper Dakota, showing
elevator and trim tab
Source: Photos courtesy of
Denise Freeman

1. Design an autopilot so the response to a step elevator input has a
rise time of 1 sec or less and an overshoot less than 10%.

2. When there is a constant disturbing moment acting on the aircraft
so the pilot must supply a constant force on the controls for steady
flight, it is said to be out of trim. The transfer function between the
disturbing moment and the attitude is the same as that due to the
elevator; that is,

θ(s)
Md(s)

= 160(s+ 2.5)(s+ 0.7)
(s2 + 5s+ 40)(s2 + 0.03s+ 0.06)

, (5.79)

where Md is the moment acting on the aircraft. There is a separate
aerodynamic surface for trimming, δt, that can be actuated and
will change the moment on the aircraft. It is shown in the close-
up of the tail in Fig. 5.36(b), and its influence is depicted in the
block diagram shown in Fig. 5.37(a). For both manual and autopi-
lot flight, it is desirable to adjust the trim so there is no steady-state
control effort required from the elevator (that is, so δe = 0). In
manual flight, this means no force is required by the pilot to keep
the aircraft at a constant altitude, whereas in autopilot control it
means reducing the amount of electrical power required and saving



main_1 — 2019/2/5 — 10:47 — page 318 — #49

318 Chapter 5 The Root-Locus Design Method
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Figure 5.37
Block diagrams for autopilot design: (a) open loop; (b) feedback scheme excluding trim

wear and tear on the servomotor that drives the elevator. Design an
autopilot that will command the trim δt so as to drive the steady-
state value of δe to zero for an arbitrary constant moment Md as
well as meet the specifications in part (a).

Solution

1. To satisfy the requirement that the rise time tr ≤ 1 sec, Eq. (3.68)
indicates that, for the ideal second-order case, ωn must be greater
than 1.8 rad/sec. And to provide an overshoot of less than 10%,
Fig. 3.24 indicates that ζ should be greater than 0.6, again, for
the ideal second-order case. In the design process, we can exam-
ine a root locus for a candidate for feedback compensation and
then look at the resulting time response when the roots appear to
satisfy the design guidelines. However, since this is a fourth-order
system, the design guidelines might not be sufficient, or they might
be overly restrictive.

To initiate the design process, it is often instructive to look
at the system characteristics with proportional feedback, that is,
where Dc(s) = 1 in Fig. 5.37(b). The statements in Matlab to
create a root locus with respect to K and a time response for the
proportional feedback case with K = 0.3 are as follows:

s = tf('s');
sysG = (160*(s + 2.5)*(s + 0.7))/((s^2 + 5*s + 40)*(s^2 + 0.03*s +

0.06));
rlocus(sysG)
K = 0.3;
sysL = K*sysG;
[sysT] = feedback (sysL,1);
step(sysT)

The resulting root locus and time response are shown with dashed
lines in Figs. 5.38 and 5.39. Notice from Fig. 5.38 that the two
faster roots will always have a damping ratio ζ that is less than
0.4; therefore, proportional feedback will not be acceptable. Also,
the slower roots have some effect on the time response shown
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in Fig. 5.39 (dashed curve) with K = 0.3 in that they cause a
long-term settling. However, the dominating characteristic of the
response that determines whether or not the compensation meets
the specifications is the behavior in the first few seconds, which is
dictated by the fast roots. The low damping of the fast roots causes
the time response to be oscillatory, which leads to excess overshoot
and a longer settling time than desired.
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We saw in Section 5.4.1 that lead compensation causes the
locus to shift to the left, a change needed here to increase the damp-
ing. Some trial and error will be required to arrive at a suitable pole
and zero location. Values of z = 3 and p = 20 in Eq. (5.70) have
a substantial effect in moving the fast branches of the locus to the
left; thus

Dc(s) = s+ 3
s+ 20

.

Trial and error is also required to arrive at a value of K that meets
the specifications. The statements in Matlab to add this compensa-
tion are as follows:Lead compensation via

Matlab
sysD = (s + 3)/(s + 20);
sysDG = sysD*sysG;
rlocus(sysDG)
K = 1.5;
sysKDG = K*sysDG;
sysT = feedback(sysKDG,1);
step(sysT)

The root locus for this case and the corresponding time
response are also shown in Figs. 5.38 and 5.39 by the solid lines.
Note the damping of the fast roots that corresponds to K =
1.5 is ζ = 0.52, which is slightly lower than we would like;
also, the natural frequency is ωn = 15 rad/sec, much faster than
we need. However, these values are close enough to meeting the
guidelines to suggest a look at the time response. In fact, the time
response shows that tr ∼= 0.9 sec and Mp ∼= 8%, both within the
specifications, although by a very slim margin.

In summary, the primary design path consisted of adjusting
the compensation to influence the fast roots, examining their effect
on the time response, and continuing the design iteration until the
time specifications were satisfied.

2. The purpose of the trim is to provide a moment that will eliminate
a steady-state nonzero value of the elevator. Therefore, if we inte-
grate the elevator command δe and feed this integral to the trim
device, the trim should eventually provide the moment required to
hold an arbitrary altitude, thus eliminating the need for a steady-
state δe. This idea is shown in Fig. 5.40(a). If the gain on the
integral term KI is small enough, the destabilizing effect of adding
the integral should be small and the system should behave approx-
imately as before, since that feedback loop has been left intact. The
block diagram in Fig. 5.40(a) can be reduced to that in Fig. 5.40(b)
for analysis purposes by defining the compensation to include the
PI form

DI (s) = KDc(s)
(

1+ KI

s

)
.
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Figure 5.40
Block diagram showing the trim-command loop

However, it is important to keep in mind that, physically, there will
be two outputs from the compensation: δe (used by the elevator
servomotor) and δt (used by the trim servomotor).

The characteristic equation of the system with the integral
term is

1+ KDcG + KI

s
KDcG = 0.

To aid in the design process, it is desirable to find the locus of roots
with respect to KI , but the characteristic equation is not in any of
the root-locus forms given by Eqs. (5.6)–(5.9). Therefore, dividing
by 1+ KDcG yields

1+ (KI/s)KDcG
1+ KDcG

= 0.

To put this system in root locus form, we define

L(s) = 1
s

KDcG
1+ KDcG

, (5.80)

so KI becomes the root locus parameter. In Matlab, with KDcG
1+KDcG

already computed as sysT, we construct the integrator as sysIn =
1/s, the loop gain of the system with respect to KI as sysL =
sysIn*sysT, and the root locus with respect to KI is found with
sisotool(‘rlocus’,sysL).

It can be seen from the locus in Fig. 5.41 that the damping
of the fast roots decreases as KI increases, as is typically the case
when integral control is added. This shows the necessity for keep-
ing the value of KI as low as possible. After some trial and error,
we select KI = 0.15. This value has little effect on the roots—note
the roots are virtually on top of the previous roots obtained with-
out the integral term—and little effect on the short-term behavior
of the step response, as shown in Fig. 5.42(a), so the specifica-
tions are still met. KI = 0.15 does cause the longer-term attitude
behavior to approach the commanded value with no error, as we
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would expect with integral control. It also causes δe to approach
zero (Fig. 5.42(b) shows it settling in approximately 30 sec) which
is good because this is the reason for choosing integral control in
the first place. The time for the integral to reach the correct value
is predicted by the new, slow real root that is added by the inte-
gral term at s = −0.14. The time constant associated with this root
is τ = 1/0.14 ∼= 7 sec. The settling time to 1% for a root with
σ = 0.14 is shown by Eq. (3.73) to be ts = 33 sec, which agrees
with the behavior in Fig. 5.42(b).

5.6 Extensions of the Root-Locus Method
As we have seen in this chapter, the root-locus technique is a graphical
scheme to show locations of possible roots of an algebraic equation as
a single real parameter varies. The method can be extended to consider
negative values of the parameter, a sequential consideration of more
than one parameter, and systems with time delay. In this section, we
examine these possibilities. Another interesting extension to nonlinear
systems will be discussed in Chapter 9.

5.6.1 Rules for Plotting a Negative (0◦) Root Locus
We now consider modifying the root-locus procedure to permit analysis
of negative values of the parameter. In a number of important cases, the
transfer function of the plant has a zero in the RHP and is said to be
nonminimum phase. The result is often a locus of the form 1 + A(zi −
s)G′(s) = 1 + (−A)(s − zi)G′(s) = 0, and in the standard form the
parameter K = −A must be negative. Another important issue calling
for understanding the negative locus arises in building a control system.
In any physical implementation of a control system there are inevitably a
number of amplifiers and components whose gain sign must be selected.
By Murphy’s Law,17 when the loop is first closed, the sign will be wrong
and the behavior will be unexpected unless the engineer understands
how the response will go if the gain which should be positive is instead
negative. So what are the rules for a negative locus (a root locus relative
to a negative parameter)? First of all, Eqs. (5.6)–(5.9) must be satisfied
for negative values of K, which implies that L(s) is real and positive. In
other words, for the negative locus, the phase condition is

Definition of a Negative
Root Locus

The angle of L(s) is 0◦ + 360◦(l− 1) for s on the negative locus.

The steps for plotting a negative locus are essentially the same as
for the positive locus, except that we search for places where the angle

17Anything that can go wrong, will go wrong.
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of L(s) is 0◦ + 360◦(l− 1) instead of 180◦ + 360◦(l− 1). For this reason,
a negative locus is also referred to as a 0◦ root locus. This time we find
that the locus is to the left of an even number of real poles plus zeros (the
number zero being even). Computation of the center of the asymptotes
for large values of s is, as before, given by

α =
∑

pi −∑ zi

n−m
, (5.81)

but we modify the angles to be

φl = 360◦(l − 1)
n−m

, where l = 1, 2, 3, . . . , n−m

(shifted by 180◦
(n−m) from the 180◦ locus). Following are the guidelines for

plotting a 0◦ locus:

RULE 1. (As before) The n branches of the locus leave the poles and
m branches approach the zeros and n − m branches approach the
asymptotes.

RULE 2. The locus is on the real axis to the left of an even number of
real poles plus zeros.

RULE 3. The asymptotes are described by

α =
∑

pi −∑ zi

n−m
= −a1 + b1

n−m
,

φl = 360◦(l − 1)
n−m

, l = 1, 2, 3, . . . , n−m.

Notice the angle condition here is measured from 0◦ rather than from
180◦, as it was in the positive locus.

RULE 4. Departure angles from poles and arrival angles to zeros are
found by searching in the near neighborhood of the pole or zero where
the phase of L(s) is 0◦, so that

qφdep =
∑

ψi −
∑

φi − 360◦(l − 1),

qψarr =
∑

φi −
∑

ψi + 360◦(l − 1),

where q is the order of the pole or zero and l takes on q integer values
such that the angles are between ±180◦.

RULE 5. The locus can have multiple roots at points on the locus, and
the branches will approach a point of q roots at angles separated by

180◦ + 360◦(l − 1)
q

,

and will depart at angles with the same separation.
The result of extending the guidelines for constructing root loci to

include negative parameters is that we can visualize the root locus as a
set of continuous curves showing the location of possible solutions to
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the equation 1 + KL(s) = 0 for all real values of K, both positive and
negative. One branch of the locus departs from every pole in one direc-
tion for positive values of K, and another branch departs from the same
pole in another direction for negative K. Likewise, all zeros will have two
branches arriving, one with positive and the other with negative values
of K. For the n − m excess poles, there will be 2(n − m) branches of
the locus asymptotically approaching infinity as K approaches positive
and negative infinity, respectively. For a single pole or zero, the angles of
departure or arrival for the two locus branches will be 180◦ apart. For
a double pole or zero, the two positive branches will be 180◦ apart, and
the two negative branches will be at 90◦ to the positive branches.

The negative locus is often required when studying a nonminimum
phase transfer function. A well-known example is that of the control of
liquid level in the boiler of a steam power plant. If the level is too low,
the actuator valve adds (relatively) cold water to the boiling water in the
vessel. As demonstrated in Fig. 3.31, the initial effect of the addition is
to slow down the rate of boiling, which reduces the number and size of
the bubbles and causes the level to fall momentarily, before the added
volume and heat cause it to rise again to the new increased level. This
initial underflow is typical of nonminimum phase systems. Another typ-
ical nonminimum phase transfer function is that of the altitude control
of an airplane. To make the plane climb, the upward deflection of the
elevators initially causes the plane to drop before it rotates and climbs. A
Boeing 747 in this mode can be described by the scaled and normalized
transfer function

G(s) = 6− s
s(s2 + 4s+ 13)

. (5.82)

To put 1+ KG(s) in root-locus form, we need to multiply by −1 to get

G(s) = − s− 6
s(s2 + 4s+ 13)

. (5.83)

EXAMPLE 5.14 Negative Root Locus for an Airplane

Sketch the negative root locus for the equation

1+ K(s− 3)
s(s2 + 5s+ 19)

= 0. (5.84)

Solution

RULE 1. There are three branches and two asymptotes.

RULE 2. A real-axis segment is to the right of s = 3 and a segment is
to the left of s = 0.

RULE 3. The angles of the asymptotes are φ1 = (l−1)360◦
2 = 0◦, 180◦.

RULE 4. The branch departs the pole at s = −2.5+j3.5707 at the angle
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Figure 5.43
Negative root locus
corresponding to

K(s−3)
s(s2+5s+19)
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180◦ − tan−1
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3.5707
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))
−
(

180◦ − tan−1
(

3.5707
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))

−90◦ + 360(l − 1),

= 147◦ − 125◦ − 90◦ + 360(l − 1),

= −68◦.
The locus is plotted, in Fig. 5.43 by Matlab, which is seen to be

consistent with these values.

5.6.2 Successive Loop Closure
An important technique for practical control is to consider a struc-

�
ture with two loops: an inner loop around an actuator or part of the
process dynamics, and an outer loop around the entire plant-plus-inner-
controller. The process is called successive loop closure. A controller is
selected for the inner loop to be robust and give good response alone,
and then the outer loop can be designed to be simpler and more effec-
tive than if the entire control was done without the aid of the inner loop.
The use of the root locus to study such a system with two parameters
can be illustrated by a simple example.

EXAMPLE 5.15 Root Locus Using Two Parameters in Succession

A block diagram of a relatively common servomechanism structure is
shown in Fig. 5.44. Here a speed-measuring device (a tachometer) is

Figure 5.44
Block diagram of a
servomechanism
structure, including
tachometer feedback

 + 

 - 
R Y

s + 1
1

s
1KA

 + 

 - 

1
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© ©
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available and the problem is to use the root locus to guide the selec-
tion of the tachometer gain KT as well as the amplifier gain KA. The
characteristic equation of the system in Fig. 5.44 is

1+ KA

s(s+ 1)
+ KT

s+ 1
= 0,

which is not in the standard 1 + KL(s) form. After clearing fractions,
the characteristic equation becomes

s2 + s+ KA + KT s = 0, (5.85)

which is a function of two parameters, whereas the root locus technique
can consider only one parameter at a time. In this case, we set the gain
KA to a nominal value of 4 and consider first the locus with respect to
KT . With KA = 4, Eq. (5.85) can be put into root-locus form for a
root-locus study with respect to KT with L(s) = s

s2+s+4
, or

1+ KT
s

s2 + s+ 4
= 0. (5.86)

For this root locus, the zero is at s = 0 and the poles are at the roots of
s2 + s+ 4 = 0, or s = − 1

2 ± 1.94j. A sketch of the locus using the rules
as before is shown in Fig. 5.45.

From this locus, we can select KT so the complex roots have a spe-
cific damping ratio or take any other value of KT that would result in
satisfactory roots for the characteristic equation. Consider KT = 1.
Having selected a trial value of KT , we can now re-form the equation
to consider the effects of changing from KA = 4 by taking the new
parameter to be K1 so KA = 4 + K1. The locus with respect to K1 is
governed by Eq. (5.50), now with L(s) = 1

s2+2s+4
, so the locus is for the

equation

1+ K1
1

s2 + 2s+ 4
= 0. (5.87)

Note the poles of the new locus corresponding to Eq. (5.87) are the roots
of the previous locus, which was drawn versus KT , and the roots were
taken at KT = 1. The locus is sketched in Fig. 5.46, with the previ-
ous locus versus KT left dashed. We could draw a locus with respect to

Figure 5.45
Root locus of
closed-loop poles of the
system in Fig. 5.44
versus KT

Re(s)

Im(s)
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Figure 5.46
Root locus versus
K1 = KA + 4 after
choosing KT = 1

Re(s)

Im(s)

K1 for a while, stop, resolve the equation, and continue the locus with
respect to KT , in a sort of see-saw between the parameters KA and KT ,
and thus use the root locus to study the effects of two parameters on the
roots of a characteristic equation. Notice, of course, we can also plot
the root locus for negative values of K1, and thus consider values of KA
less than 4.

EXAMPLE 5.16 Control of a Quadrotor Drone x-Axis Position

For the quadrotor pitch angle control shown in Fig. 5.32, the trans-
fer function between the pitch control input, Tθ , and the pitch angle,
θ , is G1 = 1

s2(s+2)
. We found a lead compensator, Dc1(s) = 30 s+0.5

s+15 ,
that provided well-damped roots of the closed-loop system based on
a measurement of the pitch angle and commands to the two pitch
rotors, 1 and 3, shown in Fig. 2.14. We can use the pitch angle to
control position along the x-axis since a small non-zero value of the
pitch angle, θ , provides a component of thrust along the negative x-
axis = −go sin(θ)  −goθ . Integrated twice, this thrust component
will produce a change in the x-position. Thus, we have the additional
dynamics,

G2(s) = x(s)
θ(s)
= −go

s2 .

The block diagram of the complete position control system for the
x-axis control is shown in Fig. 5.47. It includes the inner, pitch attitude
loop plus the outer loop that provides the position control that depends
on a position measurement, typically obtained for drones using a GPS
on board. Note that, due to the negative x-axis thrust produced by the
positive θ , the sign on the outer feedback loop has been made positive
for proper control action.



main_1 — 2019/2/5 — 10:47 — page 329 — #60

5.6 Extensions of the Root-Locus Method 329

 +  + 

 + 
Xr

Xu
Controller

GPS sensor

Dc2(s)
G1(s)

Plant, G2Tlon
©©

1

s2 
g0

Dc1(s)

 -  - 

Inner loop, L1(s)

Figure 5.47
Inner and outer loop of the drone position control system

Design the outer loop compensation, Dc2(s), so that the natural
frequency, ωn, of the complex roots are ≥ 0.4 rad/sec and ζ ≥ 0.5.

Solution. The inner loop’s dynamics were obtained in Example 5.12
and those need to be included in the analysis of the outer loop. To deter-
mine the transfer function of that loop, we can use the Matlab feedback
function as follows:

s= tf(’s’);
sysG1=1/((s^2 )*(s +2));
sysD1=(s+0.5)/(s+15);
K=30;
sysL1=feedback(sysG1,sysD1*K)

The result, which can also be computed by hand, is that the transfer
function of the inner pitch control loop is

L1(s) = K
s+ 15

s4 + 17s3 + 30s2 + 30s+ 15
.

The first step in the design of the outer loop is to take a look at the
root locus of the loop with the compensation, Dc2(s) = K2. The Matlab
commands for that step are:

sysG2=32.2/s^2;
rlocus(sysL1*sysG2)

As you might expect with two poles at the origin, the locus departs north
and south from the origin and, because of the poles of L1(s) located as
shown in Fig. 5.35, the locus quickly departs into the unstable RHP.
Therefore, it is clear that some lead compensation [Dc2(s)] is required
for this outer loop to be stable with acceptable characteristics. After
some iteration with the pole and zero of Dc2(s), using
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Figure 5.48
Root locus of the x-axis
control system showing
the location of the
closed loop roots with
Dc2(s) = .081 s+0.1
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rlocus(sysD2*sysL1*sysG2),

it can be found that

Dc2(s) = K2
s+ 0.1
s+ 10

,

will provide a root locus that allows closed-loop roots with acceptable
frequency and damping. In fact, selecting K2 = .081 yields two sets of
complex roots, one set with ωn = 0.4 and ζ ≈ 0.7 and another set with
ωn = 0.9 and ζ ≈ 0.6. In addition, there are real roots at s ∼= −0.2
and −10. Thus, the design is complete and the closed-loop roots of the
entire system meet the desired specifications. The root locus with Dc2(s)
showing the location of the closed-loop roots for K2 = .081 is shown
in Fig. 5.48. Although the general rule is that the pole/zero ratio should
be less than 25, in this case, it can be violated because the GPS sensor
systems generally supply the position and velocity. Hence, pure deriva-
tive feedback is practical and the pole in that case would essentially be
at negative infinity.

It is theoretically possible to compensate this type of system using
only the outer-loop output, x. However, in practice, when it is possible
to use a sensor for an inner loop closure, this approach is universally
used in order to obtain a better control design due to its improved
robustness and reduced sensitivity to sensor noise. The relationship
between lead compensation characteristics and sensitivity to sensor
noise will be discussed in more depth in Chapter 6.
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5.6.3 Time Delay
Time delays often arise in control systems, both from delays in the pro-

�
cess itself and from delays in the processing of sensed signals. Chemical
plants often have processes with a time delay representing the time mate-
rial takes to be transported via pipes or other conveyer. In measuring
the attitude of a spacecraft en route to Mars, there is a significant time
delay for the sensed quantity to arrive back on Earth due to the speed
of light. Time delay always reduces the stability of a system; there-Time delays always reduce

the stability of a system fore, it is important to be able to analyze its effect. Use of the Padé
approximant adds a rational function that approximates the effect of
a time delay so one can analyze its effect on the stability of a sys-
tem. This method is described in Appendix W5.6.3 found online at
www.pearsonglobaleditions.com. The effect of time delays will also be
covered via frequency response design in Chapter 6. Using frequency
response methods, it is possible to show the effect of a time delay exactly
and easily. The destabilizing effect is clearly exposed by Fig. 6.80.

5.7 Historical Perspective
In Chapter 1, we gave an overview of the early development of feedback
control analysis and design including frequency response and root-locus
design. Root-locus design was introduced in 1948 by Walter R. Evans,
who was working in the field of guidance and control of aircraft and
missiles at the Autonetics Division of North American Aviation (now
a part of The Boeing Co.). Many of his problems involved unstable or
neutrally stable dynamics, which made the frequency methods difficult,
so he suggested returning to the study of the characteristic equation
that had been the basis of the work of Maxwell and Routh nearly 70
years earlier. However, rather than treat the algebraic problem, Evans
posed it as a graphical problem in the complex s-plane. Evans was also
interested in the character of the dynamic response of the aerospace
vehicles being controlled; therefore, he wanted to solve for the closed-
loop roots in order to understand the dynamic behavior. To facilitate
this understanding, Evans developed techniques and rules allowing one
to follow graphically the paths of the roots of the characteristic equa-
tion as a parameter was changed. His method is suitable for design as
well as for stability analysis and remains an important technique today.
Originally, it enabled the solutions to be carried out by hand since com-
puters were not readily available to designers; however, root-loci remain
an important tool today for aiding the design process. As we learned
in this chapter, Evans method involves finding a locus of points where
the angles to the other poles and zeros add up to a certain value. To aid
in this determination, Evans invented the “Spirule.” It could be used
to measure the angles and to perform the addition or subtraction very
quickly. A skilled controls engineer could evaluate whether the angle cri-
terion was met for a fairly complex design problem in a few seconds. In

www.pearsonglobaleditions.com


main_1 — 2019/2/5 — 10:47 — page 332 — #63

332 Chapter 5 The Root-Locus Design Method

addition, a logarithmic spiral curve on a portion of the device allowed
the designer to multiply distances from points on the locus to the poles
and zeros, in order to determine the gain at a selected spot on the locus
in a manner analogous to a slide rule.

Evans was clearly motivated to aid the engineer in their design and
analysis of control systems. Computers were basically not available to
designers in the 1940s and 50s. Large mainframe computers started
being used, somewhat, for large-scale data processing by corporations in
the 1950s, but there were no courses in engineering programs that taught
the use of computers for analysis and design until about 1960. Engi-
neering usage became commonplace through the 1960s, but the process
involved submitting a job to a mainframe computer via a large deck of
punched cards and waiting for the results for hours or overnight, a situ-
ation that was not conducive to any kind of design iteration. Mainframe
computers in that era were just transitioning from vacuum tubes to tran-
sistors, random access memory would be in the neighborhood of 32k(!),
and the long-term data storage was by a magnetic tape drive. Random
access drums and disks arrived during that decade, thus greatly speeding
up the process of retrieving data. A big step forward in computing for
engineers occurred when the batch processing based on punched cards
was replaced by time share with many users at remote terminals during
the late 1960s and early 1970s. Mechanical calculators were also avail-
able through the 1940s, 50s, and 60s that could add, subtract, multiply,
and divide, and cost about $1500 in the early 1960s. The very high-
end devices (about $3000) could also do square roots (see Fig. 5.49).
These machines were the basis for the complex computations done at
Los Alamos and Langley Field during World War II. They were the
size of a typewriter, had a large carriage that went back and forth dur-
ing the calculations, and would occasionally ring a bell at the end of the
carriage stroke (see Fig. 5.49). They were accurate to eight or more deci-
mal places and were often used after the advent of computers to perform
spot checks of the results, but a square root could take tens of seconds to
complete, the machines were noisy, and the process was tedious. Enter-
prising engineers learned which particular calculations played certain
tunes, and it was not unusual to hear favorites such as Jingle Bells.

Figure 5.49
The Friden mechanical
calculator
Source: Photo courtesy of
David Powell
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The personal computer arrived in the late 1970s, although the ones
at that time utilized an audio cassette tape for data storage and had very
limited random access memory, usually less than 16k. But as these desk-
top machines matured over the ensuing decade, the age of the computer
for engineering design came into its own. First came the floppy disk for
long-term data storage, followed by the hard drive toward the mid- and
late-1980s. Initially, the BASIC and APL languages were the primary
methods of programming. Matlab was introduced by Cleve Moler in the
1970s. Two events took place in 1984: Apple introduced the point-and-
click MacIntosh and PC-Matlab was introduced by The MathWorks,
which was specifically founded to commercialize Matlab on personal
computers. Initially, Matlab was primarily written for control system
analysis, but has branched out into many fields since the initial intro-
duction. At that point in the evolution, the engineer could truly perform
design iterations with little or no time between trials. Other similar pro-
grams were available for mainframe computers before that time; two
being CTRL-C and MATRIXx; however, those programs did not adapt
to the personal computer revolution, and have faded from general use.

SUMMARY

• A root locus is a graph of the values of s that are solutions to the
equation

1+ KL(s) = 0

with respect to a real parameter K.

1. When K > 0, s is on the locus if ∠L(s) = 180◦, producing a
180◦ or positive K locus.

2. When K < 0, s is on the locus if ∠L(s) = 0◦, producing a 0◦ or
negative K locus.

• If KL(s) is the loop transfer function of a system with negative feed-
back, then the characteristic equation of the closed-loop system
is

1+ KL(s) = 0,

and the root-locus method displays the effect of changing the gain
K on the closed-loop system roots.

• A specific locus for a system sysL in Matlab notation can be plotted
by rlocus(sysL) and sisotool(‘rlocus’,sysL).

• A working knowledge of how to determine a root locus is useful for
verifying computer results and for suggesting design alternatives.

• The key features for aid in sketching or verifying a computer
generated 180◦ locus are as follows:

1. The locus is on the real axis to the left of an odd number of
poles plus zeros.
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2. Of the n branches, m approach the zeros of L(s) and n − m
branches approach asymptotes centered at α and leaving at
angles φl :

n = number of poles,

m = number of zeros,

n−m = number of asymptotes,

α =
∑

pi −∑ zi

n−m
,

φl = 180◦ + 360◦(l − 1)
n−m

, l = 1, 2, . . . , n−m.

3. Branches of the locus depart from the poles of order q and
arrive at the zeros of order q with angles

φl,dep = 1
q

⎛
⎝∑ψi −

∑
i 	=dep

φi − 180◦ − 360◦(l − 1)

⎞
⎠ ,

ψl,arr = 1
q

⎛
⎝∑φi −

∑
i 	=arr

ψi + 180◦ + 360◦(l − 1)

⎞
⎠ ,

where

q = order of the repeated pole or zero,

ψi = angles from the zeros,

φi = angles from the poles.

l = 1, 2, . . . , q

• The parameter K corresponding to a root at a particular point s0
on the locus can be found from

K = 1
|L(s0)| ,

where |L(s0)| can be found graphically by measuring the distances
from s0 to each of the poles and zeros.

• For a locus drawn with rlocus(sysL), the parameter and corre-
sponding roots can be found with [K,p] = rlocfind(sysL) or with
sisotool.

• Lead compensation, given by

Dc(s) = s+ z
s+ p

, z < p,

approximates proportional–derivative (PD) control. For a fixed
error coefficient, it generally moves the locus to the left and
improves the system damping.

• Lag compensation, given by

Dc(s) = s+ z
s+ p

, z > p,
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approximates proportional–integral (PI) control. It generally
improves the steady-state error for fixed speed of response by
increasing the low-frequency gain and typically degrades stability.

• The root locus can be used to analyze successive loop closures by�
studying two (or more) parameters in succession.

REVIEW QUESTIONS

5.1 Give two definitions for the root locus.

5.2 Define the negative root locus.

5.3 Where are the sections of the (positive) root locus on the real axis?

5.4 What are the angles of departure from two coincident poles at s = −a on
the real axis? There are no poles or zeros to the right of −a.

5.5 What are the angles of departure from three coincident poles at s = −a
on the real axis? There are no poles or zeros to the right of −a.

5.6 What is the principal effect of a lead compensation on a root locus?

5.7 What is the principal effect of a lag compensation on a root locus in the
vicinity of the dominant closed-loop roots?

5.8 What is the principal effect of a lag compensation on the steady-state
error to a reference input?

5.9 Why is the angle of departure from a pole near the imaginary axis
especially important?

5.10 Define a conditionally stable system.

5.11 Show, with a root-locus argument, that a system having three poles at the
origin MUST be either unstable or, at best, conditionally stable.

PROBLEMS

Problems for Section 5.1: Root Locus of a Basic Feedback System

5.1 Set up the listed characteristic equations in the form suited to Evans’s
root-locus method. Give L(s), a(s), and b(s) and the parameter K in
terms of the original parameters in each case. Be sure to select K so a(s)
and b(s) are monic in each case, and the degree of b(s) is not greater than
that of a(s).

(a) s+ (1/τ) = 0 versus parameter τ

(b) s2 + cs+ c+ 1 = 0 versus parameter c

(c) (s+ c)3 + A(Ts+ 1) = 0

(i) versus parameter A,
(ii) versus parameter T ,

(iii) versus the parameter c, if possible. Say why you can or cannot.
Can a plot of the roots be drawn versus c for given constant
values of A and T by any means at all?
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(d) 1 +
[
kp + kI

s + kDs
τ s+1

]
G(s) = 0. Assume G(s) = A c(s)

d(s) , where c(s)

and d(s) are monic polynomials with the degree of d(s) greater than
that of c(s).

(i) versus kp

(ii) versus kI

(iii) versus kD

(iv) versus τ

Problems for Section 5.2: Guidelines for Sketching a Root
Locus

5.2 Roughly sketch the root loci for the pole–zero maps as shown in Fig. 5.50
without the aid of a computer. Show your estimates of the center and
angles of the asymptotes, a rough evaluation of arrival and departure
angles for complex poles and zeros, and the loci for positive values of the
parameter K. Each pole–zero map is from a characteristic equation of
the form

1+ K
b(s)
a(s)
= 0,

where the roots of the numerator b(s) are shown as small circles ◦ and the
roots of the denominator a(s) are shown as ×’s on the s-plane. Note in
Fig. 5.50(c), there are two poles at the origin.

Figure 5.50
Pole–zero maps

(a) (b) (c)

2

(d) (e) (f)

5.3 For the characteristic equation

1+ K

s2(s+ 1)(s+ 5)
= 0,

(a) Draw the real-axis segments of the corresponding root locus.
(b) Sketch the asymptotes of the locus for K →∞.
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(c) Sketch the locus
(d) Verify your sketch with a Matlab plot.

5.4 Real poles and zeros. Sketch the root locus with respect to K for the equa-
tion 1 + KL(s) = 0 and the listed choices for L(s). Be sure to give the
asymptotes, and the arrival and departure angles at any complex zero
or pole. After completing each hand sketch, verify your results using
Matlab. Turn in your hand sketches and the Matlab results on the same
scales.

(a) L(s) = 2
s(s+1)(s+5)(s+10)

(b) L(s) = (s+2)
s(s+1)(s+5)(s+10)

(c) L(s) = (s+2)(s+20)
s(s+1)(s+5)(s+10)

(d) L(s) = (s+2)(s+6)
s(s+1)(s+5)(s+10)

5.5 Complex poles and zeros. Sketch the root locus with respect to K for
the equation 1 + KL(s) = 0 and the listed choices for L(s). Be sure to
give the asymptotes and the arrival and departure angles at any complex
zero or pole. After completing each hand sketch, verify your results using
Matlab. Turn in your hand sketches and the Matlab results on the same
scales.

(a) L(s) = 1
s2+3s+10

(b) L(s) = 1
s(s2+3s+10)

(c) L(s) = (s2+2s+8)
s(s2+2s+10)

(d) L(s) = (s2+2s+12)
s(s2+2s+10)

(e) L(s) = s2+1
s(s2+4)

(f) L(s) = s2+4
s(s2+1)

5.6 Multiple poles at the origin. Sketch the root locus with respect to K for
the equation 1 + KL(s) = 0 and the listed choices for L(s). Be sure to
give the asymptotes and the arrival and departure angles at any complex
zero or pole. After completing each hand sketch, verify your results using
Matlab. Turn in your hand sketches and the Matlab results on the same
scales.

(a) L(s) = 1
s2(s+10)

(b) L(s) = 1
s3 (s+10)

(c) L(s) = 1
s4(s+10)

(d) L(s) = (s+3)
s2(s+10)

(e) L(s) = (s+3)
s3(s+4)
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(f) L(s) = (s+1)2

s3(s+4)

(g) L(s) = (s+1)2

s3(s+10)

5.7 Mixed real and complex poles. Sketch the root locus with respect to K for
the equation 1 + KL(s) = 0 and the listed choices for L(s). Be sure to
give the asymptotes and the arrival and departure angles at any complex
zero or pole. After completing each hand sketch, verify your results using
Matlab. Turn in your hand sketches and the Matlab results on the same
scales.

(a) L(s) = (s+3)
s(s+10)(s2+2s+2)

(b) L(s) = (s+3)
s2(s+10)(s2+6s+25)

(c) L(s) = (s+3)2

s2(s+10)(s2+6s+25)

(d) L(s) = (s+3)(s2+4s+68)
s2(s+10)(s2+4s+85)

(e) L(s) = [(s+1)2+1]
s2(s+2)(s+3)

5.8 RHP and zeros. Sketch the root locus with respect to K for the equa-
tion 1 + KL(s) = 0 and the listed choices for L(s). Be sure to give the
asymptotes and the arrival and departure angles at any complex zero
or pole. After completing each hand sketch, verify your results using
Matlab. Turn in your hand sketches and the Matlab results on the same
scales.

(a) L(s) = s+2
s+10

1
s2−1

; the model for a case of magnetic levitation with
lead compensation.

(b) L(s) = s+2
s(s+10)

1
(s2−1)

; the magnetic levitation system with integral

control and lead compensation.
(c) L(s) = s−1

s2

(d) L(s) = s2+2s+1
s(s+20)2(s2−2s+2)

. What is the largest value that can be

obtained for the damping ratio of the stable complex roots on this
locus?

(e) L(s) = (s+2)
s(s−1)(s+6)2

(f) L(s) = 1
(s−1)[(s+2)2+3]

5.9 Put the characteristic equation of the system shown in Fig. 5.51 in
root-locus form with respect to the parameter α, and identify the cor-
responding L(s), a(s), and b(s). When α = 0.5, 1.0, and 1.5, find the

Figure 5.51
Control system for
Problem 5.9

Y

 - 

 + 
R

s2 + s + 1
2

1 + as

©
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closed-loop pole locations, verify your results from the root locus with
respect to the parameter α and sketch the corresponding step responses.
Use Matlab to check the accuracy of your approximate step responses.

5.10 Use the Matlab function sisotool to study the behavior of the root locus
of 1+ KL(s) for

L(s) = (s+ a)

s(s+ 1)(s2 + 8s+ 52)

as the parameter a is varied from 0 to 10, paying particular attention to
the region between 2.5 and 3.5. Verify that a multiple root occurs at a
complex value of s for some value of a in this range.

5.11 Use Routh’s criterion to find the range of the gain K for which the sys-
tems in Fig. 5.52 are stable, and use the root locus to confirm your
calculations.

 - 

 + 
R YK

(a)

 - 

 + 
R YK

(b)

s(s + 6)(s2 + 2s + 3)

s2 + 5s + 16

(s + 6)(s2 - 5s + 6)

s2 + 5s + 2© ©

Figure 5.52
Feedback systems for Problem 5.11

5.12 Sketch the root locus for the characteristic equation of the system for
which

L(s) = (s+ 2)

s2(s+ 10)
,

and determine the value of the root-locus gain for which the complex con-
jugate poles have the maximum damping ratio. What is the approximate
value of the damping?

5.13 For the system in Fig. 5.53,

(a) Find the locus of closed-loop roots with respect to K.
(b) Is there a value of K that will cause all roots to have a damping ratio

greater than 0.5?
(c) Find the values of K that yield closed-loop poles with the damping

ratio ζ = 0.707.
(d) Use Matlab to plot the response of the resulting design to a reference

step.

Figure 5.53
Feedback system for
Problem 5.13  - 

 + 
R Y

s + 13

s + 1( )K
s2(s2 + 100)

s2 + 81©



main_1 — 2019/2/5 — 10:47 — page 340 — #71

340 Chapter 5 The Root-Locus Design Method

5.14 For the feedback system shown in Fig. 5.54, find the value of the gain K
that results in dominant closed-loop poles with a damping ratio ζ = 0.5.

Figure 5.54
Feedback system for
Problem 5.14

 - 
Y(s)R(s) 10

 - 

 +  + 
s
1

Ks

s
1

 + 

 + 

© ©

©

Problems for Section 5.3: Selected Illustrative Root Loci

5.15 A simplified model of the longitudinal motion of a certain helicopter near
hover has the transfer function

G(s) = 8.5(s2 − 0.7s+ 4)

(s+ 0.5)(s2 − 0.2s+ 2)
,

and the characteristic equation 1 + Dc(s)G(s) = 0. Let Dc(s) = kp at
first.

(a) Compute the departure and arrival angles at the complex poles and
zeros.

(b) Sketch the root locus for this system for parameter K = 8.5kp. Use
axes −1.4 ≤ x ≤ 0.6; −3 ≤ y ≤ 3.

(c) Verify your answer using Matlab. Use the command axis([−1.4 0.6
−3 3]) to get the right scales.

(d) Suggest a practical (at least as many poles as zeros) alternative
compensation Dc(s) which will at least result in a stable system.

5.16 For the system given in Fig. 5.55,

(a) Plot the root locus of the characteristic equation as the parameter K1
is varied from 0 to∞ with λ = 2. Find the corresponding L(s), a(s),
and b(s).

(b) Repeat part (a) with λ = 4. Is there anything special about this value?
(c) Repeat part (a) for fixed K1 = 2, with the parameter K = λ varying

from 0 to∞.

Figure 5.55
Control system for
Problem 5.16  - 

YR 4
s + 7

8

s
1

s + l
K1

0.5 0.25

 + 

 + 

 + 

 + 

 + 
©

© ©

5.17 For the system shown in Fig. 5.56, determine the characteristic equation
and sketch the root locus of it with respect to positive values of parameter
a. Give L(s), a(s), and b(s), and be sure to show with arrows the direction
in which a increases on the locus.
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Figure 5.56
Control system for
Problem 5.17  - 

R
(s + a)(s + 2) s2

3
Y

 + 
© (s + 5)(s + 0.01a)

5.18 The loop transmission of a system has two poles at s = −1 and a zero
at s = −2. There is a third real-axis pole p located somewhere to the
left of the zero. Several different root loci are possible, depending on the
exact location of the third pole. The extreme cases occur when the pole is
located at infinity or when it is located at s = −2. Give values for p and
sketch the three distinct types of loci.

5.19 For the feedback configuration of Fig. 5.57, use asymptotes, center of
asymptotes, angles of departure and arrival, and the Routh array to
sketch root loci for the characteristic equations of the listed feedback
control systems versus the parameter K. Use Matlab to verify your
results.

(a) G(s) = K
s(s+2+8j)(s+2−8j) , H(s) = s+1

s+6

(b) G(s) = K
s2 , H(s) = s+2

s+5

(c) G(s) = K(s+4)
(s+3) , H(s) = s+9

s+2

(d) G(s) = K(s+2+1j)(s+2−1j)
s(s+5−7j)(s+5+7j) , H(s) = 1

s+3

Figure 5.57
Feedback system for
Problem 5.19

Y

 - 

 + 
R G(s)

H(s)

©

5.20 Consider the system in Fig. 5.58.

(a) Using Routh’s stability criterion, determine all values of K for which
the system is stable.

(b) Use Matlab to draw the root locus versus K and find the values of K
at the imaginary-axis crossings.

Figure 5.58
Feedback system for
Problem 5.20  - 

 + 
R YK

s(s2 + 6s + 10)

s + 5

s + 1
1

©

Problems for Section 5.4: Design Using Dynamic Compensation

5.21 Let

G(s) = 1

s2 + 7s+ 12
and Dc(s) = K

(s+ a)
s+ b

.

Using root-locus techniques, find the values for the parameters a, b,
and K of the compensation Dc(s) that will produce closed-loop poles
at s = −1.5± 1.5j for the system shown in Fig. 5.59.
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Figure 5.59
Unity feedback system
for Problems 5.21–5.27,
and 5.32

Y

 - 

 + 
R Dc(s) G(s)©

5.22 Suppose in Fig. 5.59

G(s) = 1

s(s2 + 3s+ 7)
and D(s) = K

s+ 3
.

Without using Matlab, sketch the root locus with respect to K of the char-
acteristic equation for the closed-loop system, paying particular attention
to points that generate multiple roots. Find the value of K at that point,
state what the location of the mulitple roots, and how many multiple
roots there are.

5.23 Suppose the unity feedback system of Fig. 5.59 has an open-loop plant
given by G(s) = 1

s(s+1) . Design a lead compensation Dc(s) = K s+z
s+p to

be added in cascade with the plant so that the dominant poles of the
closed-loop system are located at s = −3.2± 3.2j.

5.24 Assume that the unity feedback system of Fig. 5.59 has the open-loop
plant

G(s) = s+ 7
s(s+ 9)(s+ 5)

.

Design a lag compensation Dc(s) = K (s−z)
s−p to meet the following

specifications:

• The step response rise time is to be less than 0.45 sec.
• The step response overshoot is to be less than 5%.
• The steady-state error to a unit ramp input must not exceed 10%.

5.25 A numerically controlled machine tool positioning servomechanism has
a normalised and scaled transfer function given by

G(s) = 1
(s+ 0.8)(s+ 0.5)

.

Performance specifications of the system in the unit feedback configu-
ration of Fig. 5.59 are satisfied if the closed-loop poles are located at
s = −1± j2.

(a) Show that this specification cannot be achieved by choosing propor-
tional control alone, Dc(s) = kp.

(b) Design a lead compensator Dc(s) = K s−z
s−p that will meet the

specification.

5.26 A servomechanism position control has the plant transfer function

G(s) = 10
s(s+ 1)(s+ 10)

.

You are to design a series compensation transfer function Dc(s) in the
unity feedback configuration to meet the following closed-loop specifica-
tions:

• The response to a reference step input is to have no more than 16%
overshoot.
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• The response to a reference step input is to have a rise time of no
more than 0.4 sec.

• The steady-state error to a unit ramp at the reference input must be
less than 0.05.

(a) Design a lead compensation that will cause the system to meet the
dynamic response specifications, ignoring the error requirement.

(b) What is the velocity constant Kv for your design? Does it meet the
error specification?

(c) Design a lag compensation to be used in series with the lead you
have designed to cause the system to meet the steady-state error
specification.

(d) Give the Matlab plot of the root locus of your final design.
(e) Give the Matlab response of your final design to a reference step.

5.27 Assume the closed-loop system of Fig. 5.59 has a feed forward transfer
function G(s) given by

G(s) = 1
(s+ 1)(s+ 2)

.

Design a lag compensation so that the dominant poles of the closed-loop
system are located at s = −1.5± j1.5 and the steady-state error to a unit
step input is less than 0.1.

5.28 An elementary magnetic suspension scheme is depicted in Fig. 5.60. For
small motions near the reference position, the voltage e on the photo
detector is related to the ball displacement x (in meters) by e = 100x.
The upward force (in newtons) on the ball caused by the current i (in
amperes) may be approximated by f = 0.5i + 20x. The mass of the ball
is 20 g and the gravitational force is 9.8 N/kg. The power amplifier is a
voltage-to-current device with an output (in amperes) of i = u+ V0.

Figure 5.60
Elementary magnetic
suspension u

iV0

Photo

detector

e

Light

Solenoid

Ball

x

(a) Write the equations of motion for this set up.
(b) Give the value of the bias V0 that results in the ball being in

equilibrium at x = 0.
(c) What is the transfer function from u to e?
(d) Suppose that the control input u is given by u = −Ke. Sketch the root

locus of the closed-loop system as a function of K.
(e) Assume a lead compensation is available in the form U

E = Dc(s) =
K s+z

s+p . Give values of K, z, and p that yield improved performance
over the one proposed in part (d).
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5.29 A certain plant with the non-minimum phase transfer function

G(s) = 7− 3s

s2 + s+ 5
,

is in a unity positive feedback system with the controller transfer function
Dc(s).

(a) Use Matlab to determine a (negative) value for Dc(s) = K so that
the closed-loop system with negative feedback has a damping ratio
ζ = 0.707.

(b) Use Matlab to plot the system’s response to a reference step.

5.30 Consider the rocket-positioning system shown in Fig. 5.61.

(a) Show that if the sensor that measures x has a unity transfer function,
the lead compensator

H(s) = K
s+ 3
s+ 6

,

stabilizes the system.
(b) Assume that the sensor transfer function is modelled by a single pole

with a 0.1 sec time constant and unit DC gain, and H(s) is a PD
controller having transfer function K(s + 1). Using the root-locus
procedure, find a value for the gain K that will provide the maximum
damping ratio while its step response has the lowest settling time.

Figure 5.61
Block diagram for
rocket-positioning
control system

x

 - 

 + 

H(s)

s2

1

Sensor

Fc F
©

5.31 For the system in Fig. 5.62,

(a) Find the locus of closed-loop roots with respect to K.
(b) Find the maximum value of K for which the system is stable. Assume

K = 0.5 for the remaining parts of this problem.
(c) What is the steady-state error (e = r− y) for a step change in r?
(d) What is the steady-state error in y for a constant disturbance w1?
(e) What is the steady-state error in y for a constant disturbance w2?

Figure 5.62
Control system for
Problem 5.31

Y

 - 

 + 

s + 1

s2

1
R K

 + 

W2

 + 
 + 

W1

 + 
s2 + 2s + 3

3© © ©
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(f) If you wished to have more damping, what changes would you make
to the system?

5.32 Consider the plant transfer function

G(s) = bs+ k

s2[mMs2 + (M +m)bs+ (M +m)k]

to be put in the unity feedback loop of Fig. 5.59. This is the transfer func-
tion relating the input force u(t) of mass M in the non-collocated sensor
and actuator problem. In this problem, we will use root-locus techniques
to design a controller Dc(s) so that the closed-loop step response has a
rise time of less than 0.5 sec and an overshoot of less than 15%. You may
use Matlab for any of the following questions:

(a) Approximate G(s) by assuming that m ≈ 0, and let M = 1, k = 1,
b = 0.5, and Dc(s) = K. Can K be chosen to satisfy the performance
specifications? Why or why not?

(b) Repeat part (a) assuming Dc(s) = K(s + z), and show that K and z
can be chosen to meet the specifications.

(c) Repeat part (b) but with a practical controller given by the transfer
function

Dc(s) = K
p(s+ z)

s+ p
.

and using the value for z in part(b), pick p and K so that the step
response similar to part (b) is obtained.

(d) Now suppose that the small mass m is not negligible, but is given by
m = M/10. Check to see if the controller you design in part (c) still
meets the given specifications. If not, adjust the controller parameters
or suggest a new controller so that the specifications are met.

5.33 Consider the Type 1 system drawn in Fig. 5.63. We would like to design
the compensation Dc(s) to meet the following requirements: (1) The
steady-state value of y due to a constant unit disturbance w should be less
than 0.1, and (2) the damping ratio ζ > 0.7. Using root-locus techniques,

(a) Show that proportional control alone is not adequate.
(b) Show that proportional-derivative control will work.
(c) Find values of the gains kp and kD for Dc(s) = kp + kDs that meet

the design specifications with at least 10% margin.

Figure 5.63
Control system for
Problem 5.33

Y

 - 

 + 
Dc(s)

 + 
 + 

W1

(s + 1)(0.2s + 1)

1
R © ©

5.34 Using a sample rate of 10 Hz, find the Dc(z) that is the discrete equiv-�
alent to your Dc(s) from Problem 5.7 using the trapezoid rule. Evaluate
the time response using Simulink, and determine whether the damping
ratio requirement is met with the digital implementation. (Note: The
material to do this problem is covered in the online Appendix W4.5 at
www.pearsonglobaleditions.com or in Chapter 8.)

www.pearsonglobaleditions.com
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Problems for Section 5.5: A Design Example Using the Root
Locus

5.35 Consider the positioning servomechanism system shown in Fig. 5.64,
where

ei = Koθi, eo = Kpotθo, Ko = 10 V/rad,

T = motor torque = Ktia,

km = Kt = torque constant = 0.1 N·m/A,

Ke = back emf constant = 0.1 V·sec,

Ra = armature resistance = 10 �,

Gear ratio = 1:1,

JL + Jm = total inertia = 10−3 kg·m2,

va = KA(ei − ef ).

Figure 5.64
Positioning
servomechanism

uo

Jm

JL

ef

ei

eo

ui

Filter

s + 10

10

Sensor

Ko
Sensor

Ko

 + 
 - 

© KA

ya

km

(a) What is the range of the amplifier gain KA for which the system is
stable? Estimate the upper limit graphically using a root-locus plot.

(b) Choose a gain KA that gives roots at ζ = 0.7. Where are all three
closed-loop root locations for this value of KA?

5.36 We wish to design a velocity control for a tape-drive servomecha-
nism. The transfer function from current I(s) to tape velocity �(s) (in
millimeters per millisecond per ampere) is

�(s)
I(s)

= 23(s2 + 0.5s+ 0.7)

(s+ 1)(s2 + 0.7s+ 1)
.

We wish to design a Type 1 feedback system so that the response to a
reference step satisfies

tr ≤ 6 msec, ts ≤ 15 msec, Mp ≤ 0.15.

(a) Use the integral compensator kI/s to achieve Type 1 behavior, and
sketch the root-locus with respect to kI . Show on the same plot
the region of acceptable pole locations corresponding to the speci-
fications and is the integral compensator able to help satisfy all the
specifications?
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(b) Assume a proportional-integral compensator of the form kp(s+α)/s,
and select the best possible values of kp and α you can find. Sketch
the root-locus plot of your design, giving values for kp and α, and
the velocity constant Kv your design achieves. On your plot, indicate
the closed-loop poles with a dot (•) and include the boundary of the
region of acceptable root locations.

5.37 The normalized, scaled equations of a cart as drawn in Fig. 5.65 of mass
mc holding an inverted uniform pendulum of mass mp and length 	 with
no friction are

θ̈ − θ = −v, (5.88)

ÿ+ βθ = v,

Figure 5.65
Figure of cart pendulum
for Problem 5.37

Trolley or cart

y

u

where β = 3mp
4(mc+mp)

is a mass ratio bounded by 0 < β < 0.75. Time is

measured in terms of τ = ωot where ω2
o = 3g(mc+mp)

	(4mc+mp)
. The cart motion

y is measured in units of pendulum length as y = 3x
4	 and the input is

force normalized by the system weight v = u
g(mc+mp)

. These equations

can be used to compute the transfer functions

�

V
= − 1

s2 − 1
, (5.89)

Y
V
= s2 − 1+ β

s2(s2 − 1)
. (5.90)

In this problem, you are to design a control for the system by first clos-
ing a loop around the pendulum, Eq. (5.89), then, with this loop closed,
closing a second loop around the cart plus pendulum, Eq. (5.90). For this
problem, let the mass ratio be mc = 5mp.

(a) Draw a block diagram for the system with V input and both Y and
θ as outputs.

(b) Design a lead compensation Dc(s) = K s+z
s+p for the � loop to cancel

the pole at s = −1 and place the two remaining poles at −4 ± j4.
The new control is U(s), where the force is V(s) = U(s)+Dc(s)�(s).
Draw the root locus of the angle loop.

(c) Compute the transfer function of the new plant from U to Y with
Dc(s) in place.
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(d) Design a controller Dc(s) for the cart position with the pendulum
loop closed. Draw the root locus with respect to the gain of Dc(s).

(e) Use Matlab to plot the control, cart position, and pendulum position
for a unit step change in cart position.

5.38 Consider the 270-ft U.S. Coast Guard cutter Tampa (902) shown in
Fig 5.66(a). Parameter identification based on sea-trials data (Trankle,
1987) was used to estimate the hydrodynamic coefficients in the equa-
tions of motion. The result is that the response of the heading angle of
the ship ψ to rudder angle δ and wind changes w can be described by the
block diagram in Fig 5.66(b) and the second-order transfer functions

Gδ(s) = ψ(s)
δ(s)
= −0.0184(s+ 0.0068)

s(s+ 0.2647)(s+ 0.0063)
,

Gw(s) = ψ(s)
w(s)

= 0.0000064
s(s+ 0.2647)(s+ 0.0063)

,

where

ψ = heading angle, rad,

ψr = reference heading angle, rad,

r = yaw rate, ψ̇ , rad/sec,

δ = rudder angle, rad,

w = wind speed, m/sec.

0¿ 10¿ 20¿ 30¿ 40¿ 50¿

COAST GUARD

(a) (b)

Wind effects

Gw(s)

Rate gyro

s

Ship dynamics

Gd(s)
d

w

r

c

c
©

Figure 5.66
(a) USCG Tampa for Problem 5.38, (b) partial block diagram for the system

(a) Determine the open-loop settling time of r for a step change in δ.
(b) In order to regulate the heading angle ψ , design a compensator that

uses ψ and the measurement provided by a yaw-rate gyroscope (that
is, by ψ̇ = r). The settling time of ψ to a step change in ψr is specified
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to be less than 50 sec, and for a 5◦ change in heading, the maximum
allowable rudder angle deflection is specified to be less than 10◦.

(c) Check the response of the closed-loop system you designed in part
(b) to a wind gust disturbance of 10 m/sec. (Model the disturbance
as a step input.) If the steady-state value of the heading due to this
wind gust is more than 0.5◦, modify your design so it meets this
specification as well.

5.39 Golden Nugget Airlines has opened a free bar in the tail of their airplanes
in an attempt to lure customers. In order to automatically adjust for the
sudden weight shift due to passengers rushing to the bar when it first
opens, the airline is mechanizing a pitch-attitude autopilot. Figure 5.67
shows the block diagram of the proposed arrangement. We will model
the passenger moment as a step disturbance Mp(s) = M0/s, with a
maximum expected value for M0 of 0.6.

(a) Assuming the bar has opened, and the passengers have rushed to it,
what value of K is required to keep the steady-state error in θ to less
than 0.02 rad (∼= 1◦)? (Assume the system is stable.)

(b) Draw a root locus with respect to K.
(c) Based on your root locus, what is the value of K when the system

becomes unstable?
(d) Suppose the value of K required for acceptable steady-state behavior

is 600. Show that this value yields an unstable system with roots at

s = −2.9,−13.5,+1.2± 6.6j.

(e) You are given a black box with rate gyro written on the side, and told
that, when installed, it provides a perfect measure of θ̇ , with output
KT θ̇ . Assume K = 600 as in part (d) and draw a block diagram indi-
cating how you would incorporate the rate gyro into the autopilot.
(Include transfer functions in boxes.)

(f) For the rate gyro in part (e), sketch a root locus with respect to KT .
(g) What is the maximum damping factor of the complex roots obtain-

able with the configuration in part (e)?
(h) What is the value of KT for part (g)?

Figure 5.67
Golden Nugget Airlines
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(i) Suppose you are not satisfied with the steady-state errors and damp-
ing ratio of the system with a rate gyro in parts (e) through (h).
Discuss the advantages and disadvantages of adding an integral term
and extra lead networks in the control law. Support your comments
using Matlab or with rough root-locus sketches.

5.40 Consider the instrument servomechanism with the parameters given in
Fig. 5.68. For each of the following cases, draw a root locus with respect
to the parameter K, and indicate the location of the roots corresponding
to your final design:

(a) Lead network: Let

H(s) = 1, Dc(s) = K
s+ z
s+ p

,
p
z
= 6.

Select z and K so the roots nearest the origin (the dominant roots)
yield

ζ ≥ 0.4, −σ ≤ −7, Kv ≥ 16
2
3

sec−1 .

(b) Output-velocity (tachometer) feedback: Let

H(s) = 1+ KT s and Dc(s) = K.

Select KT and K so the dominant roots are in the same location as
those of part (a). Compute Kv. If you can, give a physical reason
explaining the reduction in Kv when output derivative feedback is
used.

(c) Lag network: Let

H(s) = 1 and Dc(s) = K
s+ 1
s+ p

.

Using proportional control, is it possible to obtain a Kv = 12 at
ζ = 0.4? Select K and p so the dominant roots correspond to the
proportional-control case but with Kv = 100 rather than Kv = 12.

Figure 5.68
Control system for
Problem 5.40
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5.41 For the quadrotor shown in Figs. 2.13 and 2.14 (see Example 2.5),

(a) Describe what the commands should be to rotors 1, 2, 3, & 4 in order
to produce a yaw torque, Tψ , that has no effect on pitch or roll, and
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will not produce any net vertical thrust of the 4 rotors. In other words,
find the relation between δT1, δT2, δT3, δT4 so that Tψ produces the
desired response.

(b) The system dynamics for the yaw motion of a quadrotor are given in
Eq. (2.17). Assuming the value of Iz = 200, find a compensation that
gives a rise time less 0.2 seconds with an overshoot less than 20%.

Problems for Section 5.6: Extensions of the Root Locus Method

5.42 Plot the loci for the 0◦ locus or negative K for each of the following:

(a) The examples given in Problem 5.3
(b) The examples given in Problem 5.4
(c) The examples given in Problem 5.5
(d) The examples given in Problem 5.6
(e) The examples given in Problem 5.7
(f) The examples given in Problem 5.8

5.43 Suppose you are given the plant

L(s) = 1

s3 + 5s2 + (4+ α)s+ (1+ 2α)
,

where α is a system parameter that is subject to variations. Use both pos-
itive and negative root-locus methods to determine what variations in α
can be tolerated before instability occurs.

5.44 Consider the system in Fig. 5.69.�
(a) Use Routh’s criterion to determine the regions in the K1, K2 plane

for which the system is stable.
(b) Use sisotool to verify your answer to part (a).

Figure 5.69
Feedback system for
Problem 5.44  - 
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5.45 The block diagram of a positioning servomechanism is shown in�
Fig. 5.70.

(a) Sketch the root locus with respect to K when no tachometer feedback
is present KT = 0.

Figure 5.70
Control system for
Problem 5.45
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(b) Indicate the root locations corresponding to K = 16 on the locus of
part (a). For these locations, estimate the transient-response param-
eters tr, Mp, and ts. Compare your estimates to measurements
obtained using the step command in Matlab.

(c) For K = 16, draw the root locus with respect to KT .
(d) For K = 16 and with KT set so Mp = 0.05 (ζ = 0.707), estimate

tr and ts. Compare your estimates to the actual values of tr and ts
obtained using Matlab.

(e) For the values of K and KT in part (d), what is the velocity constant
Kv of this system?

5.46 Consider the mechanical system shown in Fig. 5.71, where g and a0 are�
gains. The feedback path containing gs controls the amount of rate feed-
back. For a fixed value of a0, adjusting g corresponds to varying the
location of a zero in the s-plane.

(a) With g = 0 and τ = 1, find a value for a0 such that the poles are
complex.

(b) Fix a0 at this value, and construct a root locus that demonstrates the
effect of varying g.

Figure 5.71
Control system for
Problem 5.46
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5.47 Sketch the root locus with respect to K for the system in Fig. 5.72 using�
the Padé(1,1) approximation and the first-order lag approximation. For
both approximations, what is the range of values of K for which the sys-
tem is unstable? (Note: The material to answer this question is contained
in Appendix W5.6.3 at www.pearsonglobaleditions.com.)

Figure 5.72
Control system for
Problem 5.47
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5.48 For the equation 1+ KG(s), where�

G(s) = 1

s(s+ p)[(s+ 1)2 + 4]
,

use Matlab to examine the root locus as a function of K for p in the range
from p = 1 to p = 10, making sure to include the point p = 2.

www.pearsonglobaleditions.com
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6
The Frequency-Response
Design Method

A Perspective on the Frequency-Response
Design Method

The design of feedback control systems in industry is probably accom-
plished using frequency-response methods more often than any
other. Frequency-response design is popular primarily because it pro-
vides good designs in the face of uncertainty in the plant model. For
example, for systems with poorly known or changing high-frequency
resonances, we can temper the feedback compensation to alleviate
the effects of those uncertainties. Currently, this tempering is car-
ried out more easily using frequency-response design than with any
other method.

Another advantage of using frequency response is the ease with
which experimental information can be used for design purposes. Raw
measurements of the output amplitude and phase of a plant undergo-
ing a sinusoidal input excitation are sufficient to design a suitable
feedback control. No intermediate processing of the data (such as
finding poles and zeros or determining system matrices) is required
to arrive at the system model. The wide availability of computers has

IM_photo/Shutterstock.
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rendered this advantage less important now than it was years ago;
however, for relatively simple systems, frequency response is often
still the most cost-effective design method. Yet another advantage is
that specifications for control systems are typically provided in terms
of a system’s frequency-response characteristics. Therefore, design in
the frequency domain directly ensures that the specifications are met
rather than having to transform them to other parameters.

The underlying theory for determining stability in all situations
is somewhat challenging and requires a rather broad knowledge of
complex variables. However, the methodology of frequency-response
design does not require that the designer remembers the details of
the theory and the stability rules are fairly straightforward.

Chapter Overview
The chapter opens with a discussion of how to obtain the frequency
response of a system by analyzing its poles and zeros. An important
extension of this discussion is how to use Bode plots to graphically
display the frequency response. In Sections 6.2 and 6.3, we will
discuss stability briefly, then in more depth the use of the Nyquist
stability criterion. In Sections 6.4 through 6.6, we will introduce the
notion of stability margins, discuss Bode’s gain–phase relationship,
and study the closed-loop frequency response of dynamic systems.
The gain–phase relationship suggests a very simple rule for compen-
sation design: Shape the frequency-response magnitude so it crosses
magnitude 1 with a slope of −1. As with our treatment of the root-
locus method, we will describe how adding dynamic compensation
can adjust the frequency response (see Section 6.7) and improve
system stability and/or error characteristics.

In optional Sections 6.7.7 and 6.7.8, we will discuss issues of
sensitivity that relate to the frequency response, including mate-
rial on sensitivity functions and stability robustness. The next two
sections on analyzing time delays in the system and Nichols charts
will represent additional, somewhat advanced material that may also
be considered optional. The final Section 6.10 is a short history of the
frequency-response design method.

6.1 Frequency Response
The basic concepts of frequency response were discussed in
Section 3.1.2. In this section, we will review those ideas and extend the
concepts for use in control system design.

A linear system’s response to sinusoidal inputs—called the system’sFrequency response
frequency response—can be obtained from knowledge of its pole and
zero locations.
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To review the ideas, we consider a system described by

Y(s)
U(s)

= G(s),

where the input u(t) is a sine wave with an amplitude A:

u(t) = A sin(ωot)1(t).

This sine wave has a Laplace transform

U(s) = Aωo

s2 + ω2
o

.

With zero initial conditions, the Laplace transform of the output is

Y(s) = G(s)
Aωo

s2 + ω2
o

. (6.1)

A partial-fraction expansion of Eq. (6.1) [assuming that the poles ofPartial-fraction expansion
G(s) are distinct] will result in an equation of the form

Y(s) = α1

s− p1
+ α2

s− p2
+ · · · + αn

s− pn
+ αo

s+ jωo
+ α∗o

s− jωo
, (6.2)

where p1, p2, . . . , pn are the poles of G(s), αo would be found by per-
forming the partial-fraction expansion, and α∗o is the complex conjugate
of αo. The time response that corresponds to Y(s) is

y(t) = α1ep1t+α2ep2t+· · ·+αnepnt+2|αo| cos(ωot+φ), t ≥ 0, (6.3)

where

φ = tan−1
[

Im(αo)

Re(αo)

]
.

If all the poles of the system represent stable behavior (the real
parts of p1, p2, . . . , pn < 0), the natural unforced response will die out
eventually, and therefore the steady-state response of the system will be
due solely to the sinusoidal term in Eq. (6.3), which is caused by the
sinusoidal excitation. Example 3.7 determined the response of the sys-
tem G(s) = 1

(s+1) to the input u = sin 10t and showed that response
in Fig. 3.5, which is repeated here as Fig. 6.1. It shows that e−t, the
natural part of the response associated with G(s), disappears after sev-
eral time constants, and the pure sinusoidal response is essentially all
that remains. Example 3.7 showed that the remaining sinusoidal term in
Eq. (6.3) can be expressed as

y(t) = AM cos(ωot+ φ), (6.4)
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Figure 6.1
Response of
G(s) = 1

(s+1) to an input
of sin 10t
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where

M = |G( jωo)| = |G(s)|s=jωo

=
√
{Re[G( jωo)]}2 + {Im[G( jωo)]}2, (6.5)

φ = tan−1
[

Im[G( jωo)]
Re[G( jωo)]

]
= ∠G( jωo). (6.6)

In polar form,
G( jωo) =Me jφ . (6.7)

Equation (6.4) shows that a stable system with transfer function G(s)
excited by a sinusoid with unit amplitude and frequency ωo will, after
the response has reached steady-state, exhibit a sinusoidal output with a
magnitude M(ωo) and a phase φ(ωo) at the frequency ωo. The facts thatFrequency-response plot
the output y is a sinusoid with the same frequency as the input u, and
that the magnitude ratio M and phase φ of the output are independent
of the amplitude A of the input, are a consequence of G(s) being a linear
constant system. If the system being excited were a nonlinear or time-
varying system, the output might contain frequencies other than the
input frequency, and the output–input ratio might be dependent on the
input magnitude.

More generally, the magnitude M is given by |G( jω)|, and the phaseMagnitude and phase
φ is given by ∠G( jω); that is, the magnitude and angle of the complex
quantity G(s) are evaluated with s taking on values along the imaginary
axis (s = jω). The frequency response of a system consists of these func-
tions of frequency that tell us how a system will respond to a sinusoidal
input of any frequency. We are interested in analyzing the frequency
response not only because it will help us understand how a system
responds to a sinusoidal input, but also because evaluating G(s) with
s taking on values along the jω axis will prove to be very useful in deter-
mining the stability of a closed-loop system. As we saw in Chapter 3,
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the jω axis is the boundary between stability and instability; we will see
in Section 6.4 that evaluating G( jω) provides information that allows us
to determine closed-loop stability from the open-loop G(s).

EXAMPLE 6.1 Frequency-Response Characteristics of a Capacitor

Consider the capacitor described by the equation

i = C
dv
dt

,

where v is the voltage input and i is the current output. Determine the
sinusoidal steady-state response of the capacitor.

Solution. The transfer function of this circuit is

I(s)
V(s)

= G(s) = Cs,

so

G( jω) = Cjω.

Computing the magnitude and phase, we find that

M = |Cjω| = Cω and φ = ∠(Cjω) = 90◦.

For a unit-amplitude sinusoidal input v, the output i will be a sinusoid
with magnitude Cω, and the phase of the output will lead the input by
90◦. Note for this example, the magnitude is proportional to the input
frequency while the phase is independent of frequency.

EXAMPLE 6.2 Frequency-Response Characteristics of a Lead Compensator

Recall from Chapter 5 [see Eq. (5.70)] the transfer function of the lead
compensation, which is equivalent to

Dc(s) = K
Ts+ 1
αTs+ 1

, α < 1. (6.8)

1. Analytically determine its frequency-response characteristics and
discuss what you would expect from the result.

2. Use Matlab to plot Dc( jω) with K = 1, T = 1, and α = 0.1 for
0.1 ≤ ω ≤ 100, and verify the features predicted from the analysis
in 1, above.

Solution

1. Analytical evaluation: Substituting s = jω into Eq. (6.8), we get

Dc( jω) = K
Tjω + 1
αTjω + 1

.
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From Eqs. (6.5) and (6.6) the amplitude is

M = |Dc| = |K|
√

1+ (ωT)2√
1+ (αωT)2

,

and the phase is given by
φ = ∠(1+ jωT)− ∠(1+ jαωT)

= tan−1(ωT)− tan−1(αωT).
At very low frequencies, the amplitude is just |K|, and at very
high frequencies, it is |K/α|. Therefore, the amplitude is higher
at very high frequency. The phase is zero at very low frequencies
and goes back to zero at very high frequencies. At intermediate
frequencies, evaluation of the tan−1(·) functions would reveal that
φ becomes positive. These are the general characteristics of lead
compensation.

2. Computer evaluation: A Matlab script for frequency-response eval-
uation was shown for Example 3.6. A similar script for the lead
compensation:

s = tf('s');
sysD = (s + 1)/ (s/10 + 1);
w=logspace(-1,2); % determines frequencies over

range of interest
[mag,phase] = bode(sysD,w); % computes magnitude and phase

over frequency range of interest
loglog(w,squeeze(mag)),grid;
axis([0.1 100 1 10])
semilogx(w,squeeze(phase)),grid;
axis([0.1 100 0 60])

produces the frequency-response magnitude and phase plots shown
in Fig 6.2.

The analysis indicated that the low-frequency magnitude
should be K (= 1) and the high-frequency magnitude should be
K/α(= 10), which are both verified by the magnitude plot. The
phase plot also verifies that the value approaches zero at high and
low frequencies, and that the intermediate values are positive.

In the cases for which we do not have a good model of the system,
and wish to determine the frequency-response magnitude and phase
experimentally, we can excite the system with a sinusoid varying in fre-
quency. The magnitude M(ω) is obtained by measuring the ratio of the
output sinusoid to input sinusoid in the steady-state at each frequency.
The phase φ(ω) is the measured difference in phase between input and
output signals.1

1Agilent Technologies produces instruments called spectrum analyzers that automate this
experimental procedure and greatly speed up the process.
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Figure 6.2
(a) Magnitude;
(b) phase for the lead
compensation in
Example 6.2
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A great deal can be learned about the dynamic response of a system
from knowledge of the magnitude M(ω) and the phase φ(ω) of its trans-
fer function. In the obvious case, if the signal is a sinusoid, then M and
φ completely describe the response. Furthermore, if the input is peri-
odic, then a Fourier series can be constructed to decompose the input
into a sum of sinusoids, and again M(ω) and φ(ω) can be used with
each component to construct the total response. For transient inputs,
our best path to understanding the meaning of M and φ is to relate the
frequency response G( jω) to the transient responses calculated by the
Laplace transform. For example, in Fig. 3.19(b), we plotted the step
response of a system having the transfer function

G(s) = 1
(s/ωn)2 + 2ζ(s/ωn)+ 1

, (6.9)

for various values of ζ . These transient curves were normalized with
respect to time as ωnt. In Fig. 6.3, we plot M(ω) and φ(ω) for
these same values of ζ to help us see what features of the frequency
response correspond to the transient-response characteristics. Specifi-
cally, Figs. 3.19(b) and 6.3 indicate the effect of damping on system
time response and the corresponding effect on the frequency response.
They show that the damping of the system can be determined from
the transient-response overshoot or from the peak in the magnitude of
the frequency response [Fig. 6.3 (a)]. Furthermore, from the frequency
response, we see that ωn is approximately equal to the bandwidth—the
frequency where the magnitude starts to fall off from its low-frequency
value. (We will define bandwidth more formally in the next paragraph.)
Therefore, the rise time can be estimated from the bandwidth. We also
see that the magnitude of peak overshoot is approximately 1/2ζ for
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Figure 6.3
Frequency response
of Eq. (6.9);
(a) Magnitude;
(b) Phase
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ζ < 0.5, so the peak overshoot in the step response can be estimated
from the peak overshoot in the frequency response. Thus, we see that
essentially the same information is contained in the frequency-response
curve as is found in the transient-response curve.

A natural specification for system performance in terms of fre-
quency response is the bandwidth, defined to be the maximum frequencyBandwidth
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Figure 6.4
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at which the output of a system will track an input sinusoid in a satis-
factory manner. By convention, for the system shown in Fig. 6.4 with
a sinusoidal input r, the bandwidth is the frequency of r at which the
output y is attenuated to a factor of 0.707 times the input.2 Figure 6.5
depicts the idea graphically for the frequency response of the closed-loop
transfer function

Y(s)
R(s)

�= T (s) = KG(s)
1+ KG(s)

.

The plot is typical of most closed-loop systems, in that (1) the out-
put follows the input (|T | ∼= 1) at the lower excitation frequencies,
and (2) the output ceases to follow the input (|T | < 1) at the higher
excitation frequencies. The maximum value of the frequency-response
magnitude is referred to as the resonant peak Mr.

Bandwidth is a measure of speed of response, and is therefore sim-
ilar to time-domain measures such as rise time and peak time or the
s-plane measure of dominant-root(s) natural frequency. In fact, if the
KG(s) in Fig. 6.4 is such that the closed-loop response is given by
Fig. 6.3, we can see that the bandwidth will equal the natural frequency
of the closed-loop root (that is, ωBW = ωn for a closed-loop damping
ratio of ζ = 0.7). For other damping ratios, the bandwidth is approxi-
mately equal to the natural frequency of the closed-loop roots, with an
error typically less than a factor of 2.

The definition of the bandwidth stated here is meaningful for sys-
tems that have a low-pass filter behavior, as is the case for most any
physical control system. In other applications, the bandwidth may be
defined differently. Also, if the ideal model of the system does not have

2If the output is a voltage across a 1-� resistor, the power is v2 and when |v| = 0.707, the
power is reduced by a factor of 2. By convention, this is called the half-power point.
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a high-frequency roll-off (e.g., if it has an equal number of poles and
zeros), the bandwidth is infinite; however, this does not occur in nature
as nothing responds well at infinite frequencies.

In many cases, the designer’s primary concern is the error in the
system due to disturbances rather than the ability to track an input.
For error analysis, we are more interested in one of the sensitivity func-
tions defined in Section 4.1, S(s), rather than T (s). For most open-loop
systems with high gain at low frequencies, S(s) for a disturbance input
will have very low values at low frequencies and grows as the frequency
of the input or disturbance approaches the bandwidth. For analysis
of either T (s) or S(s), it is typical to plot their response versus the
frequency of the input. Either frequency response for control systems
design can be evaluated using the computer, or can be quickly sketched
for simple systems using the efficient methods described in the follow-
ing Section 6.1.1. The methods described next are also useful to expedite
the design process, as well as to perform sanity checks on the computer
output.

6.1.1 Bode Plot Techniques
Display of frequency response is a problem that has been studied for
a long time. Before computers, this was accomplished by hand; there-
fore, it was useful to be able to accomplish this quickly. The most useful
technique for hand plotting was developed by H. W. Bode at Bell Lab-
oratories between 1932 and 1942. This technique allows plotting that
is quick and yet sufficiently accurate for control systems design. Most
control systems designers now have access to computer programs that
diminish the need for hand plotting; however, it is still important to
develop good intuition so you can quickly identify erroneous computer
results, and for this, you need the ability to perform a sanity check and
in some cases to determine approximate results by hand.

The idea in Bode’s method is to plot magnitude curves using a
logarithmic scale and phase curves using a linear scale. This strategy
allows us to plot a high-order G( jω) by simply adding the separate
terms graphically, as discussed in Appendix WB. This addition is pos-
sible because a complex expression with zero and pole factors can be
written in polar (or phasor) form as

G( jω) = �s1�s2

�s3�s4�s5
= r1e jθ1r2e jθ2

r3e jθ3 r4e jθ4r5e jθ5
=
(

r1r2

r3r4r5

)
e j(θ1+θ2−θ3−θ4−θ5).

(6.10)
(The overhead arrow indicates a phasor.) Note from Eq. (6.10) the
phases of the individual terms are added directly to obtain the phase ofComposite plot from

individual terms the composite expression, G( jω). Furthermore, because

|G( jω)| = r1r2

r3r4r5
,

it follows that

log10 |G( jω)| = log10 r1+ log10 r2− log10 r3− log10 r4− log10 r5. (6.11)
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We see that addition of the logarithms of the individual terms provides
the logarithm of the magnitude of the composite expression. The fre-
quency response is typically presented as two curves; the logarithm of
magnitude versus logω and the phase versus logω. Together, these two
curves constitute a Bode plot of the system. BecauseBode plot

log10 Me jφ = log10 M + jφ log10 e, (6.12)

we see the Bode plot shows the real and imaginary parts of the logarithm
of G( jω). In communications, it is standard to measure the power gainDecibel
in decibels (db), or “Power db”:3

|G|db = 10 log10
P2

P1
. (6.13)

Here P1 and P2 are the input and output powers. Because power is
proportional to the square of the voltage, the power gain is also given by

|G|db = 20 log10
V2

V1
. (6.14)

Hence, we can present a Bode plot as the magnitude in decibels versus
logω, and the phase in degrees versus logω.4 In this book, we give Bode
plots in the form log |G| versus logω; also, we mark an axis in decibels
on the right-hand side of the magnitude plot to give you the choice of
working with the representation you prefer. However, for frequency-
response plots, we are not actually plotting power, and use of Eq. (6.14)
can be somewhat misleading. If the magnitude data are derived in terms
of log |G|, it is conventional to plot them on a log scale but identify the
scale in terms of |G| only (without “log”). If the magnitude data are
given in decibels, the vertical scale is linear such that each decade of |G|
represents 20 db.

Advantages of Working with Frequency Response
in Terms of Bode Plots

1. Dynamic compensator design can be based entirely on Bode plots.Advantages of Bode plots
2. Bode plots can be determined experimentally.
3. Bode plots of systems in series (or tandem) simply add, which is

quite convenient.
4. The use of a log scale permits a much wider range of frequencies to

be displayed on a single plot than is possible with linear scales.

It is important for the control systems engineer to understand
the Bode plot techniques for several reasons: This knowledge allows

3Researchers at Bell Laboratories first defined the unit of power gain as a bel (named for
Alexander Graham Bell, the founder of the company). However, this unit proved to be
too large, and hence a decibel or db (1/10 of a bel) was selected as a more useful unit. The
abbreviation dB is also used sometimes; however, Bode used db and we choose to follow
his lead.
4Henceforth, we will drop the base of the logarithm; it is understood to be 10.
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the engineer not only to deal with simple problems, but also to per-
form a sanity check on computer results for more complicated cases.
Often approximations can be used to quickly sketch the frequency
response and deduce stability, as well as to determine the form of the
needed dynamic compensations. Finally, an understanding of the plot-
ting method is useful in interpreting frequency-response data that have
been generated experimentally.

In Chapter 5, we wrote the open-loop transfer function in the form

KG(s) = K
(s− z1)(s− z2) · · ·
(s− p1)(s− p2) · · · (6.15)

because it was the most convenient form for determining the degree of
stability from the root locus with respect to the gain K. In working with
frequency response, we are only interested in evaluating G(s) along the
jω axis, so it is more convenient to replace s with jω and to write the
transfer functions in the Bode formBode form of the transfer

function
KG( jω) = Ko( jω)n

( jωτ1 + 1)( jωτ2 + 1) · · ·
( jωτa + 1)( jωτb + 1) · · · . (6.16)

This form also causes the gain Ko to be directly related to the transfer-
function magnitude at very low frequencies. In fact, for systems with
n = 0, Ko is the gain at ω = 0 in Eq. (6.16) and is also equal to the DC
gain of the system. Although a straightforward calculation will convert
a transfer function in the form of Eq. (6.15) to an equivalent transfer
function in the form of Eq. (6.16), note K and Ko will not usually have
the same value in the two expressions.

Transfer functions can also be rewritten according to Eqs. (6.10)
and (6.11). As an example, suppose

KG( jω) = Ko
jωτ1 + 1

( jω)2( jωτa + 1)
. (6.17)

Then
∠KG( jω) = ∠Ko + ∠( jωτ1 + 1)− ∠( jω)2 − ∠( jωτa + 1) (6.18)

and
log |KG( jω)| = log |Ko| + log |jωτ1 + 1| − log |( jω)2|

− log |jωτa + 1|. (6.19)
In decibels, Eq. (6.19) becomes

|KG( jω)|db = 20 log |Ko| + 20 log |jωτ1 + 1| − 20 log |( jω)2|
− 20 log |jωτa + 1|. (6.20)

All transfer functions for the kinds of systems we have talked about
so far are composed of three classes of terms:Classes of terms of transfer

functions
1. Ko( jω)n.
2. ( jωτ + 1)±1.

3.
[(

jω
ωn

)2 + 2ζ jω
ωn
+ 1

]±1

.
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Figure 6.6
Magnitude of ( jω)n
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First, we will discuss the plotting of each individual term and how
the terms affect the composite plot including all the terms; then, we will
discuss how to draw the composite curve.

1. Ko( jω)n: BecauseClass 1: singularities at the
origin

log Ko|( jω)n| = log Ko + n log |jω|,
the magnitude plot of this term is a straight line with a slope n ×
(20 db per decade). Examples for different values of n are shown
in Fig. 6.6. Ko( jω)n is the only class of term that affects the slope
at the lowest frequencies, because all other terms are constant in
that region. The easiest way to draw the curve is to locate ω = 1
then plot log Ko at that frequency. Then draw the line with slope
n through that point.5 The phase of ( jω)n is φ = n × 90◦; it is
independent of frequency and is thus a horizontal line: −90◦ for
n = −1, −180◦ for n = −2, +90◦ for n = +1, and so forth.

2. ( jωτ + 1): The magnitude of this term approaches one asymp-Class 2: first-order term
tote at very low frequencies and another asymptote at very high
frequencies:

(a) For ωτ � 1, jωτ + 1 ∼= 1.
(b) For ωτ 	 1, jωτ + 1 ∼= jωτ .

If we call ω = 1/τ the break point, then we see that below the breakBreak point
point the magnitude curve is approximately constant (= 1), while
above the break point the magnitude curve behaves approximately
like the class 1 term Ko( jω). The example plotted in Fig. 6.7, G(s) =

5In decibels the slopes are n × 20 db per decade or n × 6 db per octave (an octave is a
change in frequency by a factor of 2).
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Figure 6.7
Magnitude plot for
jωτ + 1; τ = 10
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10s+1, shows how the two asymptotes cross at the break point and
how the actual magnitude curve lies above that point by a factor
of 1.4 (or +3 db). (If the term were in the denominator, it would
be below the break point by a factor of 0.707 or −3 db.) Note this
term will have only a small effect on the composite magnitude curve
below the break point, because its value is equal to 1 (= 0 db) in this
region. The slope at high frequencies is +1 (or +20 db per decade).
The phase curve can also be easily drawn by using the following
low- and high-frequency asymptotes:

(a) For ωτ � 1, ∠1 = 0◦.
(b) For ωτ 	 1, ∠jωτ = 90◦.
(c) For ωτ ∼= 1, ∠( jωτ + 1) ∼= 45◦.

For ωτ ∼= 1, the ∠( jω + 1) curve is tangent to an asymptote going
from 0◦ at ωτ = 0.2 to 90◦ at ωτ = 5, as shown in Fig. 6.8. The
figure also illustrates the three asymptotes (dashed lines) used for
the phase plot and how the actual curve deviates from the asymp-
totes by 11◦ at their intersections. Both the composite phase and
magnitude curves are unaffected by this class of term at frequen-
cies below the break point by more than a factor of 10 because the
term’s magnitude is 1 (or 0 db) and its phase is less than 5◦.

Figure 6.8
Phase plot for jωτ + 1;
τ = 10
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3. [( jω/ωn)
2 + 2ζ( jω/ωn) + 1]±1: This term behaves in a mannerClass 3: second-order term

similar to the class 2 term, with differences in detail: The break
point is now ω = ωn. The magnitude changes slope by a fac-
tor of +2 (or +40 db per decade) at the break point (and −2, or
−40 db per decade, when the term is in the denominator). The
phase changes by ±180◦, and the transition through the break-
point region varies with the damping ratio ζ . Figure 6.3 shows the
magnitude and phase for several different damping ratios when the
term is in the denominator. Note the magnitude asymptote for fre-
quencies above the break point has a slope of −2 (or −40 db per
decade), and that the transition through the break-point region has
a large dependence on the damping ratio. A rough determination
of this transition can be made by noting thatPeak amplitude

|G( jω)| = 1
2ζ

at ω = ωn (6.21)

for this class of second-order term in the denominator. If the term
was in the numerator, the magnitude would be the reciprocal of the
curve plotted in Fig. 6.3(a).

No such handy rule as Eq. (6.21) exists for sketching in the tran-
sition for the phase curve; therefore, we would have to resort to
Fig. 6.3(b) for an accurate plot of the phase. However, a very rough
idea of the transition can be gained by noting that it is a step func-
tion for ζ = 0, while it obeys the rule for two first-order (class 2)
terms when ζ = 1 with simultaneous break-point frequencies. All
intermediate values of ζ fall between these two extremes. The phase
of a second-order term is always ±90◦ at ωn.

When the system has several poles and several zeros, plotting the
frequency response requires that the components be combined into aComposite curve
composite curve. To plot the composite magnitude curve, it is useful to
note that the slope of the asymptotes is equal to the sum of the slopes
of the individual curves. Therefore, the composite asymptote curve has
integer slope changes at each break-point frequency:+1 for a first-order
term in the numerator,−1 for a first-order term in the denominator, and
±2 for second-order terms. Furthermore, the lowest-frequency portion
of the asymptote has a slope determined by the value of n in the ( jω)n

term and is located by plotting the point Koω
n at ω = 1. Therefore, the

complete procedure consists of plotting the lowest-frequency portion of
the asymptote, then sequentially changing the asymptote’s slope at each
break point in order of ascending frequency, and finally drawing the
actual curve by using the transition rules discussed earlier for classes 2
and 3.

The composite phase curve is the sum of the individual curves.
Addition of the individual phase curves graphically is made possible by
locating the curves so the composite phase approaches the individual
curve as closely as possible. A quick but crude sketch of the compos-
ite phase can be found by starting the phase curve below the lowest
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break point and setting it equal to n × 90◦. The phase is then stepped
at each break point in order of ascending frequency. The amount of the
phase step is ±90◦ for a first-order term and ±180◦ for a second-order
term. Break points in the numerator indicate a positive step in phase,
while break points in the denominator indicate a negative phase step.6

The plotting rules so far have only considered poles and zeros in the
left half-plane (LHP). Changes for singularities in the right half-plane
(RHP) will be discussed at the end of the section.

Summary of Bode Plot Rules

1. Manipulate the transfer function into the Bode form given by
Eq. (6.16).

2. Determine the value of n for the Ko( jω)n term (class 1). Plot the
low-frequency magnitude asymptote through the point Ko at ω = 1
with a slope of n (or n× 20 db per decade).

3. Complete the composite magnitude asymptotes: Extend the low-
frequency asymptote until the first frequency break point. Then
step the slope by±1 or±2, depending on whether the break point is
from a first- or second-order term in the numerator or denominator.
Continue through all break points in ascending order.

4. The approximate magnitude curve is increased from the asymp-
tote value by a factor of 1.4 (+3 db) at first-order numerator
break points, and decreased by a factor of 0.707 (−3 db) at first-
order denominator break points. At second-order break points, the
resonant peak (or valley) occurs according to Fig. 6.3(a), using
the relation |G( jω)| = 1/2ζ at denominator (or |G( jω)| = 2ζ at
numerator) break points.

5. Plot the low-frequency asymptote of the phase curve, φ = n× 90◦.
6. As a guide, the approximate phase curve changes by±90◦ or±180◦

at each break point in ascending order. For first-order terms in the
numerator, the change of phase is +90◦; for those in the denom-
inator the change is −90◦. For second-order terms, the change is
±180◦.

7. Locate the asymptotes for each individual phase curve so their
phase change corresponds to the steps in the phase toward or away
from the approximate curve indicated by Step 6. Each individual
phase curve occurs as indicated by Fig. 6.8 or Fig. 6.3(b).

8. Graphically add each phase curve. Use grids if an accuracy of
about ±5◦ is desired. If less accuracy is acceptable, the composite
curve can be done by eye. Keep in mind that the curve will start at
the lowest-frequency asymptote and end on the highest-frequency
asymptote and will approach the intermediate asymptotes to an
extent that is determined by how close the break points are to each
other.

6This approximate method was pointed out to us by our Parisian colleagues.
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EXAMPLE 6.3 Bode Plot for Real Poles and Zeros

Plot the Bode magnitude and phase for the system with the transfer
function

KG(s) = 2000(s+ 0.5)
s(s+ 10)(s+ 50)

.

Solution

1. We convert the function to the Bode form of Eq. (6.16):

KG( jω) = 2[( jω/0.5)+ 1]
jω[( jω/10)+ 1][( jω/50)+ 1]

.

2. We note the term in jω is first order and in the denominator, so
n = −1. Therefore, the low-frequency asymptote is defined by the
first term:

KG( jω) = 2
jω

.

This asymptote is valid for ω < 0.1, because the lowest break point
is at ω = 0.5. The magnitude plot of this term has the slope of
−1 (or −20 db per decade). We locate the magnitude by passing
through the value 2 at ω = 1 even though the composite curve will
not go through this point because of the break point at ω = 0.5.
This is shown in Fig. 6.9(a).

3. We obtain the remainder of the asymptotes, also shown in Fig.
6.9(a): The first break point is at ω = 0.5 and is a first-order term
in the numerator, which thus calls for a change in slope of +1. We
therefore draw a line with 0 slope that intersects the original −1
slope. Then, we draw a −1 slope line that intersects the previous
one at ω = 10. Finally, we draw a −2 slope line that intersects the
previous −1 slope at ω = 50.

4. The actual curve is approximately tangent to the asymptotes when
far away from the break points, a factor of 1.4 (+3 db) above the
asymptote at the ω = 0.5 break point, and a factor of 0.7 (−3 db)
below the asymptote at the ω = 10 and ω = 50 break points.

5. Because the phase of 2/jω is −90◦, the phase curve in Fig. 6.9(b)
starts at −90◦ at the lowest frequencies.

6. The result is shown in Fig. 6.9(c).
7. The individual phase curves, shown dashed in Fig. 6.9(b), have

the correct phase change for each term and are aligned vertically
so their phase change corresponds to the steps in the phase from
the approximate curve in Fig. 6.9(c). Note the composite curve
approaches each individual term.

8. The graphical addition of each dashed curve results in the solid
composite curve in Fig. 6.9(b). As can be seen from the figure,
the vertical placement of each individual phase curve makes the
required graphical addition particularly easy because the compos-
ite curve approaches each individual phase curve in turn.
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Figure 6.9
Composite plots:
(a) magnitude;
(b) phase;
(c) approximate phase
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EXAMPLE 6.4 Bode Plot with Complex Poles

As a second example, draw the frequency response for the system

KG(s) = 10
s[s2 + 0.4s+ 4]

. (6.22)

Solution. A system like this is more difficult to plot than the one in the
previous example because the transition between asymptotes is depen-
dent on the damping ratio; however, the same basic ideas illustrated in
Example 6.3 apply.

This system contains a second-order term in the denominator. Pro-
ceeding through the steps, we convert Eq. (6.22) to the Bode form of
Eq. (6.16):

KG(s) = 10
4

1
s(s2/4+ 2(0.1)s/2+ 1)

.

Starting with the low-frequency asymptote, we have n = −1 and
|G( jω)| ∼= 2.5/ω. The magnitude plot of this term has a slope of −1
(−20 db per decade) and passes through the value of 2.5 at ω = 1,
as shown in Fig. 6.10(a). For the second-order pole, note ωn = 2 and

Figure 6.10
Bode plot for a transfer
function with complex
poles: (a) magnitude;
(b) phase
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ζ = 0.1. At the break-point frequency of the poles, ω = 2, the slope
shifts to −3 (−60 db per decade). At the pole break point, the magni-
tude ratio above the asymptote is 1/2ζ = 1/0.2 = 5. The phase curve
for this case starts at φ = −90◦, corresponding to the 1/s term, falls
to φ = −180◦ at ω = 2 due to the pole as shown in Fig. 6.10(b),
then approaches φ = −270◦ for higher frequencies. Because the damp-
ing is small, the stepwise approximation is a very good one. The true
composite phase curve is shown in Fig. 6.10(b).

EXAMPLE 6.5 Bode Plot for Complex Poles and Zeros:
Satellite with Flexible Appendages

As a third example, draw the Bode plots for a system with second-
order terms. The transfer function represents a mechanical system with
two equal masses coupled with a lightly damped spring. The applied
force and position measurement are collocated on the same mass. For
the transfer function, the time scale has been chosen so the resonant
frequency of the complex zeros is equal to 1. The transfer function is

KG(s) = 0.01(s2 + 0.01s+ 1)
s2[(s2/4)+ 0.02(s/2)+ 1]

.

Solution. Proceeding through the steps, we start with the low-frequency
asymptote, 0.01/ω2. It has a slope of−2 (−40 db per decade) and passes
through magnitude = 0.01 at ω = 1, as shown in Fig. 6.11(a). At
the break-point frequency of the zero, ω = 1, the slope shifts to zero
until the break point of the pole, which is located at ω = 2, when the
slope returns to a slope of −2. To interpolate the true curve, we plot the
point at the zero break point, ω = 1, with a magnitude ratio below the
asymptote of 2ζ = 0.01. At the pole break point, the magnitude ratio
above the asymptote is 1/2ζ = 1/0.02 = 50. The magnitude curve is a
“doublet”of a negative pulse followed by a positive pulse. Figure 6.11(b)
shows that the phase curve for this system starts at −180◦ (correspond-
ing to the 1/s2 term), jumps 180◦ to φ = 0 at ω = 1, due to the zeros,
then falls 180◦ back to φ = −180◦ at ω = 2, due to the pole. With
such small damping ratios the stepwise approximation is quite good.
(We haven’t drawn this on Fig. 6.11(b), because it would not be easily
distinguishable from the true phase curve.) Thus, the true composite
phase curve is a nearly square pulse between ω = 1 and ω = 2.

In actual designs, Bode plots are made with a computer. However,
acquiring the ability to determine how Bode plots should behave is a
useful skill, because it gives the designer insight into how changes in
the compensation parameters will affect the frequency response. This
allows the designer to iterate to the best designs more quickly.
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Figure 6.11
Bode plot for a transfer
function with complex
poles and zeros:
(a) magnitude;
(b) phase

100

10

1

0.1

0.01

0.001

0.0001

M
ag

n
it

u
d
e,

 ƒG
ƒ

   40

   20

-20

-40

-60

-80

d
b

205

-205

-605

-1005

-1405

-1805

P
h
as

e,
 j

G

1010.1

v (rad/sec)

(b)

1010.1

v (rad/sec)

(a)

0

EXAMPLE 6.6 Computer-Aided Bode Plot for Complex Poles and Zeros

Repeat Example 6.5 using Matlab.

Solution. To obtain Bode plots using Matlab, we call the function bode
as follows:

s = tf('s');
sysG = 0.01*(s^2 + 0.01*s + 1)/((s^2)*((s^2 )/4 + 0.01*s + 1));
[mag, phase, w] = bode(sysG);
loglog(w,squeeze(mag))
semilogx(w,squeeze(phase))

These commands will result in a Bode plot which matches that in
Fig. 6.11 very closely. To obtain the magnitude plot in decibels, the last
three lines can be replaced with

bode(sysG).
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Nonminimum-Phase Systems
A system with a zero in the RHP undergoes a net change in phase when
evaluated for frequency inputs between zero and infinity, which, for an
associated magnitude plot, is greater than if all poles and zeros were in
the LHP. Such a system is called nonminimum phase. As can be deduced
from the construction in Fig. WA.3 in online Appendix WA,7 if the
zero is in the RHP, then the phase decreases at the zero break point
instead of exhibiting the usual phase increase that occurs for an LHP
zero. Consider the transfer functions

G1(s) = 10
s+ 1

s+ 10
,

G2(s) = 10
s− 1

s+ 10
.

Both transfer functions have the same magnitude for all frequencies;
that is,

|G1( jω)| = |G2( jω)|,
as shown in Fig. 6.12(a). But the phases of the two transfer functions
are drastically different [see Fig. 6.12(b)]. A “minimum-phase” system
(i.e., all zeros in the LHP) with a given magnitude curve will produce
the smallest net change in the associated phase, as shown in G1, com-
pared with what the nonminimum-phase system will produce, as shown
by the phase of G2. The discrepancy between G1 and G2 with regard
to the phase change would be greater if two or more zeros of the plant
were in the RHP.

6.1.2 Steady-State Errors
We saw in Section 4.2 that the steady-state error of a feedback system
decreases as the gain of the open-loop transfer function increases. In
plotting a composite magnitude curve, we saw in Section 6.1.1 that the
open-loop transfer function, at very low frequencies, is approximated by

KG( jω) ∼= Ko( jω)n. (6.23)

Therefore, we can conclude that the larger the value of the magnitude
on the low-frequency asymptote, the lower the steady-state errors will be
for the closed-loop system. This relationship is very useful in the design
of compensation: Often we want to evaluate several alternate ways to
improve stability, and to do so we want to be able to see quickly how
changes in the compensation will affect the steady-state errors.

For a system of the form given by Eq. (6.16)—that is, wherePosition-error constant
n = 0 in Eq. (6.23) (a Type 0 system)—the low-frequency asymp-
tote is a constant, and the gain Ko of the open-loop system is equal
to the position-error constant Kp. For a unity feedback system with a

7See www.pearsonglobaleditions.com.

www.pearsonglobaleditions.com
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Figure 6.12
Bode plot of minimum-
and nonminimum-
phase systems: for
(a) magnitude;
(b) phase
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unit-step input, the Final Value Theorem (see Section 3.1.6) was used in
Section 4.2.1 to show that the steady-state error is given by

ess = 1
1+ Kp

.

For a unity-feedback system in which n = −1 in Eq. (6.23), defined toVelocity error coefficient
be a Type 1 system in Section 4.2.1, the low-frequency asymptote has a
slope of−1. The magnitude of the low-frequency asymptote is related to
the gain according to Eq. (6.23); therefore, we can again read the gain,
Ko/ω, directly from the Bode magnitude plot. Equation (4.37) tells us
that the velocity-error constant

Kν = Ko,

where, for a unity-feedback system with a unit-ramp input, the steady-
state error is

ess = 1
Kν

.

The easiest way of determining the value of Kν in a Type 1 system is
to read the magnitude of the low-frequency asymptote at ω = 1 rad/sec,
because this asymptote is A(ω) = Kν/ω. In some cases, the lowest-
frequency break point will be below ω = 1 rad/sec; therefore, the
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Figure 6.13
Determination of Kv
from the Bode plot
for the system
KG(s) = 10

s(s+1)
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asymptote needs to extend to ω = 1 rad/sec in order to read Kν
directly. Alternately, we could read the magnitude at any frequency on
the low-frequency asymptote and compute it from Kν = ωA(ω).

EXAMPLE 6.7 Computation of Kν

As an example of the determination of steady-state errors, a Bode
magnitude plot of an open-loop system is shown in Fig. 6.13. Assum-
ing there is unity feedback as in Fig. 6.4, find the velocity-error
constant, Kν .

Solution. Because the slope at the low frequencies is −1, we know the
system is Type 1. The extension of the low-frequency asymptote crosses
ω = 1 rad/sec at a magnitude of 10. Therefore, Kν = 10 and the steady-
state error to a unit ramp for a unity-feedback system would be 0.1.
Alternatively, at ω = 0.01 we have |A(ω)| = 1000; therefore, from
Eq. (6.23) we have

Ko = Kν ∼= ω|A(ω)| = 0.01(1000) = 10.

6.2 Neutral Stability
In the early days of electronic communications, most instruments were
judged in terms of their frequency response. It is therefore natural that
when the feedback amplifier was introduced, techniques to determine
stability in the presence of feedback were based on this response.

Suppose the closed-loop transfer function of a system is known.
We can determine the stability of a system by simply inspecting the
denominator in factored form (because the factors give the system roots
directly) to observe whether the real parts are positive or negative. How-
ever, the closed-loop transfer function is usually not known; in fact, the
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whole purpose behind understanding the root-locus technique is to be
able to find the factors of the denominator in the closed-loop transfer
function, given only the open-loop transfer function. Another way to
determine closed-loop stability is to evaluate the frequency response of
the open-loop transfer function KG( jω), then perform a test on that
response. Note that this method also does not require factoring the
denominator of the closed-loop transfer function. In this section, we
will explain the principles of this method.

Suppose we have a system defined by Fig. 6.14(a) and whose root
locus behaves as shown in Fig. 6.14(b); that is, instability results if K is
larger than 2. The neutrally stable points lie on the imaginary axis—that
is, where K = 2 and s = j1.0. Furthermore, we saw in Section 5.1 that
all points on the locus have the property that

|KG(s)| = 1 and ∠G(s) = 180◦.

At the point of neutral stability, we see that these root-locus conditions
hold for s = jω, so

|KG( jω)| = 1 and ∠G( jω) = 180◦. (6.24)

Thus, a Bode plot of a system that is neutrally stable (i.e., with K defined
such that a closed-loop root falls on the imaginary axis) will satisfy the
conditions of Eq. (6.24). Figure 6.15 shows the frequency response for
the system whose root locus is plotted in Fig. 6.14(b) for various values
of K. The magnitude response corresponding to K = 2 passes through 1
at the same frequency (ω = 1 rad/sec) at which the phase passes through
180◦, as predicted by Eq. (6.24).

Having determined the point of neutral stability, we turn to a key
question: Does increasing the gain increase or decrease the system’s sta-
bility? We can see from the root locus in Fig. 6.14(b) that any value
of K less than the value at the neutrally stable point will result in a
stable system. At the frequency ω where the phase ∠G( jω) = −180◦
(ω = 1 rad/sec), the magnitude |KG( jω)| < 1.0 for stable values of K
and > 1 for unstable values of K. Therefore, we have the following trial

Figure 6.14
Stability example:
(a) system definition;
(b) root locus
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Figure 6.15
Frequency-response
magnitude and phase
for the system in
Fig. 6.14
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stability condition, based on the character of the open-loop frequency
response:Stability condition

|KG( jω)| < 1 at ∠G( jω) = −180◦. (6.25)

This stability criterion holds for all systems for which increasing gain
leads to instability and |KG( jω)| crosses the magnitude (=1) once,
the most common situation. However, there are systems for which an
increasing gain can lead from instability to stability; in this case, the
stability condition is

|KG( jω)| > 1 at ∠G( jω) = −180◦. (6.26)

There are also cases when |KG( jω)| crosses magnitude (=1) more than
once. One way to resolve the ambiguity that is usually sufficient is to
perform a rough sketch of the root locus. Another more rigorous way
to resolve the ambiguity is to use the Nyquist stability criterion, the sub-
ject of the next section. However, because the Nyquist criterion is fairly
complex, it is important while studying it to bear in mind the theme of
this section—namely, that for most systems a simple relationship exists
between closed-loop stability and the open-loop frequency response.
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6.3 The Nyquist Stability Criterion
For most systems, as we saw in the previous section, an increasing gain
eventually causes instability. In the very early days of feedback con-
trol design, this relationship between gain and stability margins was
assumed to be universal. However, designers found occasionally that
in the laboratory the relationship reversed itself; that is, the amplifier
would become unstable when the gain was decreased. The confusion
caused by these conflicting observations motivated Harry Nyquist of
the Bell Telephone Laboratories to study the problem in 1932. His study
explained the occasional reversals, and resulted in a more sophisticated
analysis without loopholes. Not surprisingly, his test has come to be
called the Nyquist stability criterion. It is based on a result from complex
variable theory known as the argument principle,8 as we briefly explain
in this section. More detail is contained in online Appendix WD.

The Nyquist stability criterion relates the open-loop frequency
response to the number of closed-loop poles of the system in the
RHP. Study of the Nyquist criterion will allow you to determine stabil-
ity from the frequency response of a complex system, perhaps with one
or more resonances, where the magnitude curve crosses 1 several times
and/or the phase crosses 180◦ several times. It is also very useful in deal-
ing with open-loop unstable systems, nonminimum-phase systems, and
systems with pure delays (transportation lags).

6.3.1 The Argument Principle
Consider the transfer function H1(s) whose poles and zeros are indi-
cated in the s-plane in Fig. 6.16(a). We wish to evaluate H1 for values
of s on the clockwise contour C1. (Hence this is called a contour evalua-
tion.) We choose the test point so for evaluation. The resulting complex
quantity has the form H1(so) = �v = |�v|e jα. The value of the argument
of H1(so) is

α = θ1 + θ2 − (φ1 + φ2).

As s traverses C1 in the clockwise direction starting at so, the angle α
of H1(s) in Fig. 6.16(b) will change (decrease or increase), but it will
not undergo a net change of 360◦ as long as there are no poles or zeros
within C1. This is because none of the angles that make up α go through
a net revolution. The angles θ1, θ2, φ1, and φ2 increase or decrease as s
traverses around C1, but they return to their original values as s returns
to so without rotating through 360◦. This means that the plot of H1(s)
[see Fig. 6.16(b)] will not encircle the origin. This conclusion follows
from the fact that α is the sum of the angles indicated in Fig. 6.16(a),
so the only way that α can be changed by 360◦ after s executes one full
traverse of C1 is for C1 to contain a pole or zero.

Now consider the function H2(s), whose pole–zero pattern is shown
in Fig. 6.16(c). Note it has a singularity (pole) within C1. Again, we start

8Sometimes referred to as “Cauchy’s Principle of the Argument.”
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Figure 6.16
Contour evaluations:
(a) s-plane plot of poles
and zeros of H1(s) and
the contour C1;
(b) H1(s) for s on C1;
(c) s-plane plot of poles
and zeros of H2(s) and
the contour C1;
(d) H2(s) for s on C1
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at the test point so. As s traverses in the clockwise direction around C1,
the contributions from the angles θ1, θ2, and φ1 change, but they return
to their original values as soon as s returns to so. In contrast, φ2, the
angle from the pole within C1, undergoes a net change of −360◦ after
one full traverse of C1. Therefore, the argument of H2(s) undergoes the
same change, causing H2 to encircle the origin in the counterclockwise
direction, as shown in Fig. 6.16(d). The behavior would be similar if the
contour C1 had enclosed a zero instead of a pole. The mapping of C1
would again enclose the origin once in the H2(s)-plane, except it would
do so in the clockwise direction.

Thus we have the essence of the argument principle:

A contour map of a complex function will encircle the origin
Z−P times, where Z is the number of zeros and P is the number
of poles of the function inside the contour.

For example, if the number of poles and zeros within C1 is the same, the
net angles cancel and there will be no net encirclement of the origin.

6.3.2 Application of The Argument Principle
to Control Design

To apply the principle to control design, we let the C1 contour in the
s-plane encircle the entire RHP, the region in the s-plane where a pole



main_1 — 2019/2/5 — 16:00 — page 381 — #29

6.3 The Nyquist Stability Criterion 381

Figure 6.17
An s-plane plot of a
contour C1 that
encircles the entire RHP

Contour at

infinity

C1

C1

Im(s)
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Figure 6.18
Block diagram for
Y(s)/R(s) =
KG(s)/[1+ KG(s)]

Y©
-

+
R KG(s)

would cause an unstable system (see Fig. 6.17). The resulting evaluation
of H(s) will encircle the origin only if H(s) has an RHP pole or zero.

As stated earlier, what makes all this contour behavior useful is
that a contour evaluation of an open-loop KG(s) can be used to deter-
mine stability of the closed-loop system. Specifically, for the system in
Fig. 6.18, the closed-loop transfer function is

Y(s)
R(s)

= T (s) = KG(s)
1+ KG(s)

.

Therefore, the closed-loop roots are the solutions of

1+ KG(s) = 0,

and we apply the principle of the argument to the function 1 + KG(s).
If the evaluation contour of this function of s enclosing the entire RHP
contains a zero or pole of 1 + KG(s), then the evaluated contour of
1 + KG(s) will encircle the origin. Notice 1 + KG(s) is simply KG(s)
shifted to the right 1 unit, as shown in Fig. 6.19. Therefore, if the plot of
1+ KG(s) encircles the origin, the plot of KG(s) will encircle −1 on the
real axis. Therefore, we can plot the contour evaluation of the open-loop
KG(s), examine its encirclements of −1, and draw conclusions about
the origin encirclements of the closed-loop function 1+ KG(s). Presen-
tation of the evaluation of KG(s) in this manner is often referred to as
a Nyquist plot, or polar plot, because we plot the magnitude of KG(s)Nyquist plot; polar plot
versus the angle of KG(s).

To determine whether an encirclement is due to a pole or zero, we
write 1+ KG(s) in terms of poles and zeros of KG(s):

1+ KG(s) = 1+ K
b(s)
a(s)
= a(s)+ Kb(s)

a(s)
. (6.27)
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Im Im
[KG(s)]s=C1

[1 + KG(s)]s=C1

-1 0 0

Figure 6.19
Evaluations of KG(s) and 1+ KG(s): Nyquist plots

Equation (6.27) shows the poles of 1+KG(s) are also the poles of G(s).
Because it is safe to assume the poles of G(s) [or factors of a(s)] are
known, the (rare) existence of any of these poles in the RHP can be
accounted for. Assuming for now there are no poles of G(s) in the RHP,
an encirclement of −1 by KG(s) indicates a zero of 1 + KG(s) in the
RHP, and thus an unstable root of the closed-loop system.

We can generalize this basic idea by noting that a clockwise con-
tour C1 enclosing a zero of 1 + KG(s)—that is, a closed-loop system
root—will result in KG(s) encircling the −1 point in a clockwise direc-
tion. Likewise, if C1 encloses a pole of 1+ KG(s)—that is, if there is an
unstable open-loop pole—there will be a counterclockwise KG(s) encir-
clement of −1. Furthermore, if two poles or two zeros are in the RHP,
KG(s) will encircle −1 twice, and so on. The net number of clockwise
encirclements, N, equals the number of zeros (closed-loop system roots)
in the RHP, Z, minus the number of open-loop poles in the RHP, P:

N = Z − P.

This is the key concept of the Nyquist stability criterion.
A simplification in the plotting of KG(s) results from the fact that

any KG(s) that represents a physical system will have zero response at
infinite frequency (i.e., has more poles than zeros). This means that the
big arc of C1 corresponding to s at infinity (see Fig. 6.17) results in
KG(s) being a point of infinitesimally small value near the origin for
that portion of C1. Therefore, we accomplish a complete evaluation of
a physical system KG(s) by letting s traverse the imaginary axis from
−j∞ to +j∞ (actually, from −jωh to +jωh, where ωh is large enough
that |KG( jω)| is much less than 1 for all ω > ωh). The evaluation of
KG(s) from s = 0 to s = j∞ has already been discussed in Section 6.1
under the context of finding the frequency response of KG(s). Because
G(−jω) is the complex conjugate of G( jω), we can easily obtain the
entire plot of KG(s) by reflecting the 0 ≤ s ≤ + j∞ portion about
the real axis, to get the −j∞ ≤ s < 0 portion. Hence, we see that
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closed-loop stability can be determined in all cases by examination of
the frequency response of the open-loop transfer function on a polar
plot. In some applications, models of physical systems are simplified so
as to eliminate some high-frequency dynamics. The resulting reduced-
order transfer function might have an equal number of poles and zeros.
In that case, the big arc of C1 at infinity needs to be considered.

In practice, many systems behave like those discussed in Section 6.2,
so you need not carry out a complete evaluation of KG(s) with subse-
quent inspection of the−1 encirclements; a simple look at the frequency
response may suffice to determine stability. However, in the case of
a complex system for which the simplistic rules given in Section 6.2
become ambiguous, you will want to perform the complete analysis,
summarized as follows:

Procedure for Determining Nyquist Stability

1. Plot KG(s) for −j∞ ≤ s ≤ + j∞. Do this by first evaluating
KG( jω) for ω= 0 to ωh, where ωh is so large that the magnitude
of KG( jω) is negligibly small for ω > ωh, then reflecting the
image about the real axis and adding it to the preceding image.
The magnitude of KG( jω) will be small at high frequencies for
any physical system. The Nyquist plot will always be symmetric
with respect to the real axis. The plot is normally created by the
NYQUIST Matlab function.

2. Evaluate the number of clockwise encirclements of−1, and call
that number N. Do this by drawing a straight line in any direc-
tion from −1 to∞. Then count the net number of left-to-right
crossings of the straight line by KG(s). If encirclements are in
the counterclockwise direction, N is negative.

3. Determine the number of unstable (RHP) poles of G(s), and
call that number P.

4. Calculate the number of unstable closed-loop roots Z:

Z = N + P. (6.28)

For stability, we wish to have Z = 0; that is, no characteristic
equation roots in the RHP.

Let us now examine a rigorous application of the procedure for
determining stability using Nyquist plots for some examples.

EXAMPLE 6.8 Nyquist Plot for a Second-Order System

Determine the stability properties of the system defined in Fig. 6.20.

Solution. The root locus of the system in Fig. 6.20 is shown in Fig. 6.21.
It shows the system is stable for all values of K. The magnitude of the
frequency response of KG(s) is plotted in Fig. 6.22(a) for K = 1, and the
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Figure 6.20
Control system for
Example 6.8
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Figure 6.22
Open-loop Bode plot for
G(s) = 1
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phase is plotted in Fig. 6.22(b); this is the typical Bode method of pre-
senting frequency response and represents the evaluation of G(s) over
the interesting range of frequencies. The same information is replotted
in Fig. 6.23 in the Nyquist (polar) plot form. Note how the points A,
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Figure 6.23
Nyquist plot9 of the
evaluation of KG(s) for
s = C1 and K = 1
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B, C, D, and E are mapped from the Bode plot to the Nyquist plot in
Fig. 6.23. The arc from G(s) = +1 (ω = 0) to G(s) = 0 (ω = ∞)
that lies below the real axis is derived from Fig. 6.22. The portion of the
C1 arc at infinity from Fig. 6.17 transforms into G(s) = 0 in Fig. 6.23;
therefore, a continuous evaluation of G(s) with s traversing C1 is com-
pleted by simply reflecting the lower arc about the real axis. This creates
the portion of the contour above the real axis and completes the Nyquist
(polar) plot. Because the plot does not encircle −1, N = 0. Also, there
are no poles of G(s) in the RHP, so P = 0. From Eq. (6.28), we con-
clude that Z = 0, which indicates there are no unstable roots of the
closed-loop system for K = 1. Furthermore, different values of K would
simply change the magnitude of the polar plot, but no positive value of
K would cause the plot to encircle−1, because the polar plot will always
cross the negative real axis when KG(s) = 0. Thus the Nyquist stability
criterion confirms what the root locus indicated: the closed-loop system
is stable for all K > 0.

The Matlab statements that will produce this Nyquist plot are

s = tf('s');
sysG = 1/(s+1)^2;
nyquist(sysG);

Often the control systems engineer is more interested in determin-
ing a range of gains K for which the system is stable than in testing
for stability at a specific value of K. To accommodate this requirement,
but to avoid drawing multiple Nyquist plots for various values of the
gain, the test can be modified slightly. To do so, we scale KG(s) by K
and examine G(s) to determine stability for a range of gains K. This
is possible because an encirclement of −1 by KG(s) is equivalent to

9The shape of this Nyquist plot is a cardioid, meaning “heart-shaped,” plane curve. The
name was first used by de Castillon in the Philosophical Transactions of the Royal Society
in 1741. The cardioid is also used in optics.
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an encirclement of −1/K by G(s). Therefore, instead of having to deal
with KG(s), we need only consider G(s), and count the number of the
encirclements of the −1/K point.

Applying this idea to Example 6.8, we see that the Nyquist plot
cannot encircle the −1/K point. For positive K, the −1/K point will
move along the negative real axis, so there will not be an encirclement
of G(s) for any value of K > 0.

(There are also values of K < 0 for which the Nyquist plot shows
the system to be stable; specifically, −1 < K < 0. This result may be
verified by drawing the 0◦ locus.)

EXAMPLE 6.9 Nyquist Plot for a Third-Order System

As a second example, consider the system G(s) = 1/s(s+ 1)2 for which
the closed-loop system is defined in Fig. 6.24. Determine its stability
properties using the Nyquist criterion.

Solution. This is the same system discussed in Section 6.2. The root
locus in Fig. 6.14(b) shows this system is stable for small values of K,
but unstable for large values of K. The magnitude and phase of G(s)
in Fig. 6.25 are transformed into the Nyquist plot shown in Fig. 6.26.
Note how the points A, B, C, D, and E on the Bode plot of Fig. 6.25
map into those on the Nyquist plot of Fig. 6.26. Also note the large
arc at infinity that arises from the open-loop pole at s = 0. This pole
creates an infinite magnitude of G(s) at ω = 0; in fact, a pole anywhere
on the imaginary axis will create an arc at infinity. To correctly deter-
mine the number of−1/K point encirclements, we must draw this arc in
the proper half-plane: Should it cross the positive real axis, as shown in
Fig. 6.26, or the negative one? It is also necessary to assess whether the
arc should sweep out 180◦ (as in Fig. 6.26), 360◦, or 540◦.

A simple artifice suffices to answer these questions. We modify the
C1 contour to take a small detour around the pole either to the right
(see Fig. 6.27) or to the left. It makes no difference to the final stability
question which way the detour goes around the pole, but it is more con-
venient to go to the right because then no poles are introduced within
the C1 contour, keeping the value of P equal to 0. Because the phase
of G(s) is the negative of the sum of the angles from all of the poles,
we see that the evaluation results in a Nyquist plot moving from +90◦
for s just below the pole at s = 0, across the positive real axis to−90◦ for

Figure 6.24
Control system for
Example 6.9
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Figure 6.25
Bode plot for
G(s) = 1/s(s+ 1)2
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Figure 6.26
Nyquist plot10 for
G(s) = 1
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10The shape of this Nyquist plot is a translated strophoid plane curve, meaning “a belt
with a twist.” The curve was first studied by Barrow in 1670.
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Figure 6.27
C1 contour enclosing
the RHP for the system
in Example 6.9
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C1

s just above the pole. Had there been two poles at s = 0, the Nyquist
plot at infinity would have executed a full 360◦ arc, and so on for three
or more poles. Furthermore, for a pole elsewhere on the imaginary axis,
a 180◦ clockwise arc would also result but would be oriented differently
than the example shown in Fig. 6.26.

The Nyquist plot crosses the real axis at ω = 1 with |G| = 0.5,
as indicated by the Bode plot. For K > 0, there are two possibilities
for the location of −1/K: inside the two loops of the Nyquist plot, or
outside the Nyquist contour completely. For large values of K (Kl in
Fig. 6.26),−0.5 < −1/Kl < 0 will lie inside the two loops; hence N = 2,
and therefore, Z = 2, indicating that there are two unstable roots. This
happens for K > 2. For small values of K (Ks in Fig. 6.26), −1/K
lies outside the loops; thus N = 0, and all roots are stable. All this
information is in agreement with the root locus in Fig. 6.14(b). (When
K < 0, −1/K lies on the positive real axis, then N = 1, which means
Z = 1 and the system has one unstable root. The 0◦ root locus will
verify this result.)

For this and many similar systems, we can see that the encirclement
criterion reduces to a very simple test for stability based on the open-
loop frequency response: The system is stable if |KG( jω)| < 1 when the
phase of G( jω) is 180◦. Note this relation is identical to the stability
criterion given in Eq. (6.25); however, by using the Nyquist criterion,
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we don’t require the root locus to determine whether |KG( jω)| < 1 or
|KG( jω)| > 1.

We draw the Nyquist plot using Matlab, with

s = tf('s');
sysG = 1 / (s*(s + 1)^2);
nyquist(sysG)
axis([-3 3 -3 3])

The axis command scaled the plot so only points between +3 and
−3 on the real and imaginary axes were included. Without manual scal-
ing, the plot would be scaled based on the maximum values computed
by Matlab and the essential features in the vicinity of the −1 region
would be lost.

For systems that are open-loop unstable, care must be taken because
now P �= 0 in Eq. (6.28). We shall see that the simple rules from
Section 6.2 will need to be revised in this case.

EXAMPLE 6.10 Nyquist Plot for an Open-Loop Unstable System

The third example is defined in Fig. 6.28. Determine its stability pro-
perties using the Nyquist criterion.

Solution. The root locus for this system is sketched in Fig. 6.29 for
K > 1. The open-loop system is unstable because it has a pole in the
RHP. The open-loop Bode plot is shown in Fig. 6.30. Note in the Bode
that |KG( jω)| behaves exactly the same as if the pole had been in the
LHP. However, ∠G( jω) increases by 90◦ instead of the usual decrease

Figure 6.28
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Figure 6.30
Bode plot for
G(s) = (s+1)
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at a pole. Any system with a pole in the RHP is unstable; hence, it is dif-
ficult11 to determine its frequency response experimentally because the
system never reaches a steady-state sinusoidal response for a sinusoidal
input. It is, however, possible to compute the magnitude and phase of
the transfer function according to the rules in Section 6.1. The pole in
the RHP affects the Nyquist encirclement criterion, because the value
of P in Eq. (6.28) is +1.

We convert the frequency-response information of Fig. 6.30 into
the Nyquist plot in Fig. 6.31(a) as in the previous examples. As before,
the C1 detour around the pole at s = 0 in Fig. 6.31(b) creates a large arc
at infinity in Fig. 6.31(a). This arc crosses the negative real axis because
of the 180◦ phase contribution of the pole in the RHP as shown by
Fig. 6.31(b).

The real-axis crossing occurs at |G(s)| = 1 because in the Bode plot
|G(s)| = 1 when ∠G(s) = +180◦, which happens to be at ω ∼= 3 rad/sec.

By expanding G(jω) into its real and imaginary parts, it can be seen
that the real part approaches −1.1 as ω→±∞. This is shown to be the
case as the asymptotes approach points A and C in Fig. 6.31(a).

11It is possible to determine the frequency response of an unstable plant experimentally
by placing a stabilizing feedback around it, then measuring the amplitude and phase of
the input and output of the plant while providing input to the entire system through the
frequency range of interest.
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Figure 6.31
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The contour shows two different behaviors, depending on the val-
ues of K (> 0). For large values of K (Kl in Fig. 6.31(a)), there
is one counterclockwise encirclement of the −1 point (−1/Kl in the
figure); hence, N = −1. However, because P = 1 from the RHP pole,
Z = N + P = 0, so there are no unstable system roots and the system
is stable for K > 1. For small values of K [Ks in Fig. 6.31(a)], N = +1
because of the clockwise encirclement of −1 (−1/Ks in the figure) and
Z = 2, indicating two unstable roots. These results can be verified qual-
itatively by the root locus in Fig. 6.29 where we see that low values of K
produce the portions of the loci that are in the RHP (unstable) and that
both branches cross into the LHP (stable) for high values of K.
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If K < 0, −1/K is on the positive real axis so N = 0 and Z =
1, indicating the system will have one unstable closed-loop pole. A 0◦
root locus will show a branch of the locus emanating from the pole at
s = +10 to infinity; thus verifying that there will always be one unstable
root.

As with all systems, the stability boundary occurs at |KG( jω)| = 1
for the phase of ∠G( jω) = 180◦. However, in this case, |KG( jω)| must
be greater than 1 to yield the correct number of −1 point encirclements
to achieve stability. This polarity reversal of the normal rules can be
rigorously determined via the Nyquist plot; however, in practice, it is
usually more expedient to sketch the root locus and to determine the
correct rules based on its behavior.

To draw the Nyquist plot using Matlab, use the following com-
mands:

s = tf('s');
sysG = (s + 1)/(s*(s/10 - 1));
nyquist(sysG)
axis([-3 3 -3 3])

The existence of the RHP pole in Example 6.10 affected the Bode
plotting rules of the phase curve and affected the relationship between
encirclements and unstable closed-loop roots because P = 1 in
Eq. (6.28). But we apply the Nyquist stability criterion without any
modifications. The same is true for systems with a RHP zero; that is, a
nonminimum-phase zero has no effect on the Nyquist stability criterion,
but the Bode plotting rules are affected.

EXAMPLE 6.11 Nyquist Plot Characteristics

Find the Nyquist plot for the second-order system

G(s) = s2 + 3
(s+ 1)2

and reconcile the plot with the characteristics of G(s). If the G(s) is to
be included in a feedback system as shown in Fig. 6.18, then determine
whether the system is stable for all positive values of K.

Solution. To draw the Nyquist plot using Matlab, use the following
commands:

s = tf('s')
sysG = (s^2 + 3)/(s + 1)^2;
nyquist(sysG)
axis([−2 3−3 3])
The result is shown in Fig. 6.32. Note there are no arcs at infinity for

this case due to the lack of any poles at the origin or on the jω axis. Also
note the Nyquist curve associated with the Bode plot (s = +jω) starts
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Figure 6.32
Nyquist plot12 for
Example 6.11
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at (3, 0), ends at (1, 0), and, therefore, starts and ends with a phase angle
of 0◦. This is as it should be since the numerator and denominator of
G(s) are equal order and there are no singularities at the origin. So the
Bode plot should start and end with a zero phase. Also note the Nyquist
plot goes through (0, 0) as s goes through s = +j

√
3, as it should since

the magnitude equals zero when s is at a zero. Furthermore, note the
phase goes from −120◦ as s approaches (0, 0) to +60◦ as s departs from
(0, 0). This behavior follows since a Bode plot phase will jump by+180◦
instantaneously as s passes through a zero on the jω axis. The phase ini-
tially decreases as the plot leaves the starting point at (3, 0) because the
lowest frequency singularity is the pole at s = −1.

Changing the gain, K, will increase or decrease the magnitude of
the Nyquist plot but it can never cross the negative-real axis. Therefore,
the closed-loop system will always be stable for positive K. Exercise:
Verify this result by making a rough root-locus sketch by hand.

6.4 Stability Margins
A large fraction of control system designs behave in a pattern roughly
similar to that of the system in Section 6.2 and Example 6.9 in
Section 6.3; that is, the system is stable for all small gain values and
becomes unstable if the gain increases past a certain critical point.
Knowing exactly what the margins are for which a control system
remains stable is of critical importance. Two commonly used quantities
that measure the stability margin for such systems are directly related

12The shape of this Nyquist plot is a limaçon, a fact pointed out by the third author’s son,
who was in a 10th grade trigonometry class at the time. Limaçon means “snail” in French
from the Latin “limax,” and was first investigated by Dürer in 1525.
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to the stability criterion of Eq. (6.25): gain margin and phase margin.
In this section, we will define and use these two concepts to study sys-
tem design. Another measure of stability, originally defined by Smith
(1958), combines these two margins into one called the vector margin
(sometimes called the complex margin) which gives a better indication
of stability for complicated cases.

The gain margin (GM) is the factor by which the gain can beGain margin
increased (or decreased in certain cases) before instability results. For
the typical case, it can be read directly from the Bode plot (see Fig. 6.15)
by measuring the vertical distance between the |KG( jω)| curve and the
magnitude = 1 line at the frequency where ∠G( jω) = −180◦. We see
from the figure that when K = 0.1, the GM = 20 (or 26 db) because
|KG( jω)| = 0.05. When K = 2, the system is neutrally stable with
|KG( jω)| = 1, thus GM = 1 (0 db). For K = 10, |KG( jω)| = 5, the
GM = 0.2 (−14 db) and the system is unstable. Note, for this typi-
cal system, the GM is the factor by which the gain K can be increased
before instability results; therefore, |GM| < 1 (or |GM| < 0 db) indi-
cates an unstable system. The GM can also be determined from a root
locus with respect to K by noting two values of K: (1) at the point where
the locus crosses the jω-axis, and (2) at the nominal closed-loop poles.
The GM is the ratio of these two values.

Another measure that is used to indicate the stability margin in a
system is the phase margin (PM). It is the amount by which the phase ofPhase margin
G( jω) exceeds −180◦ when |KG( jω)| = 1, which is an alternative way
of measuring the degree to which the stability conditions of Eq. (6.25)
are met. For the case in Fig. 6.15, we see that PM ∼= 80◦ for K = 0.1,
PM = 0◦ for K = 2, and PM = −35◦ for K = 10. A positive PM is
required for stability.

The stability margins may also be defined in terms of the Nyquist
plot. Figure 6.33 shows that GM and PM are measures of how close
the complex quantity G( jω) comes to encircling the −1 point, which is
another way of stating the neutral-stability point specified by Eq. (6.24).
Again we can see that the GM indicates how much the gain can be raised
before instability results in a system like the one in Example 6.9. The
PM is the difference between the phase of G( jω) and 180◦ when KG( jω)
crosses the circle |KG(s)| = 1; the positive value of PM is assigned to

Figure 6.33
Nyquist plot for
defining GM and PM
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the stable case (i.e., with no Nyquist encirclements). So we see that the
two margins measure the distance between the Nyquist plot and the −1
point in two dimensions; the GM measures along the horizontal axis,
while the PM measures along the unit circle.

It is easier to determine these margins directly from the Bode
plot than from the Nyquist plot. The term crossover frequency, ωc, isCrossover frequency
often used to refer to the frequency at which the magnitude is unity,
or 0 db. While the crossover frequency is easily determined from the
open-loop frequency-response plot, this frequency is highly correlated
with the closed-loop system bandwidth and, therefore, the speed of
response of the system. The closed-loop system bandwidth was defined
in Section 6.1 and its detailed relationship to the crossover frequency
will be discussed in Section 6.6.

The open-loop frequency-response data shown in Figure 6.34 is the
same data plotted in Fig. 6.25, but for the case with K = 1. The PM (=
22◦) and GM (= 2) are apparent from Figure 6.34 and match those that
could have been obtained (with more difficulty) from the Nyquist plot
shown in Fig. 6.26. The real-axis crossing at −0.5 corresponds to a GM

Figure 6.34
GM and PM from the
magnitude and phase
plot

0.2 1 102

PM = 225

v (rad/sec)

1/GM = 0.5,

GM = 2 (= 6 db)

-20

0

20

d
b

0.2 1 102

v (rad/sec)

10

5

2

1

0.5

0.2

0.1

M
ag

n
it

u
d
e,

 ƒG
(j
v

)ƒ
P

h
as

e,
 j

G
(j
v

)

-905

-1805

-2705



main_1 — 2019/2/5 — 16:00 — page 396 — #44

396 Chapter 6 The Frequency-Response Design Method

Figure 6.35
PM versus K from the
frequency-response
data
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of 1/0.5 or 2 and the PM could be computed graphically by measuring
the angle of G( jω) as it crosses the magnitude = 1 circle.

One of the useful aspects of frequency-response design is the ease
with which we can evaluate the effects of gain changes. In fact, we can
determine the PM from Fig. 6.34 for any value of K without redrawing
the magnitude or phase information. We need only indicate on the figure
where |KG( jω)| = 1 for selected trial values of K, as has been done
with dashed lines in Fig. 6.35. Now we can see that K = 5 yields an
unstable PM of −22◦, while a gain of K = 0.5 yields a PM of +45◦.
Furthermore, if we wish a certain PM (say 70◦), we simply read the
value of |G( jω)| corresponding to the frequency that would create the
desired PM (here ω = 0.2 rad/sec yields 70◦, where |G( jω)| = 5), and
note that the magnitude at this frequency is 1/K. Therefore, a PM of
70◦ will be achieved with K = 0.2.

The PM is more commonly used to specify control system perfor-
mance because it is most closely related to the damping ratio of the
system. This can be seen for the open-loop second-order system
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G(s) = ω2
n

s(s+ 2ζωn)
, (6.29)

which, with unity feedback, produces the closed-loop system

T (s) = ω2
n

s2 + 2ζωns+ ω2
n

. (6.30)

It can be shown that the relationship between the PM and ζ in this
system is

PM = tan−1

⎡
⎣ 2ζ√√

1+ 4ζ 4 − 2ζ 2

⎤
⎦ . (6.31)

This function is plotted in Fig. 6.36. Note the function is approximately
a straight line up to about PM = 60◦. The dashed line shows a straight-
line approximation to the function, where

ζ ∼= PM
100

. (6.32)

It is clear that the approximation holds only for PM below about 70◦.
Furthermore, Eq. (6.31) is only accurate for the second-order system of
Eq. (6.30). In spite of these limitations, Eq. (6.32) is often used as a rule
of thumb for relating the closed-loop damping ratio to PM. It is useful
as a starting point; however, it is always important to check the actual
damping of a design, as well as other aspects of the performance, before
calling the design complete.

The GM for the second-order system [given by Eq. (6.29)] is infinite
(GM = ∞), because the phase curve does not cross −180◦ as the fre-
quency increases. This would also be true for any first- or second-order
system.

Additional data to aid in evaluating a control system based on its
PM can be derived from the relationship between the resonant peak Mr
and ζ seen in Fig. 6.3. Note this figure was derived for the same system
[Eq. (6.9)] as Eq. (6.30). We can convert the information in Fig. 6.36 into
a form relating Mr to the PM. This is depicted in Fig. 6.37, along with
the step-response overshoot Mp. Therefore, we see that, given the PM,
one can determine the overshoot of the closed-loop step response for a

Figure 6.36
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Figure 6.37
Transient-response
overshoot (Mp) and
frequency-response
resonant peak (Mr)
versus PM for
T(s) = ω2
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second-order system with no zeros, which serves as a rough estimate for
any system.

Many engineers think directly in terms of the PM when judgingImportance of PM
whether a control system is adequately stabilized. In these terms, a
PM = 30◦ is often judged to be the lowest adequate value. Further-
more, some value of the PM is often stated specifically as a required
specification of the feedback system design. In addition to testing the
stability of a system design using the PM, a designer would typically
also be concerned with meeting a speed-of-response specification such
as bandwidth, as discussed in Section 6.1. In terms of the frequency-
response parameters discussed so far, the crossover frequency would
best describe a system’s speed of response. This idea will be discussed
further in Sections 6.6 and 6.7.

In some cases, the PM and GM are not helpful indicators of stabil-
ity. For first- and second-order systems, the phase never crosses the 180◦
line; hence, the GM is always∞ and not a useful design parameter. For
higher-order systems, it is possible to have more than one frequency
where |KG( jω)| = 1 or where ∠KG( jω) = 180◦, and the margins as
previously defined need clarification. An example of this can be seen in
Fig. 10.12, where the magnitude crosses 1 three times. In that case, a
decision was made to define PM by the first crossing, because the PM
at this crossing was the smallest of the three values and thus the most
conservative assessment of stability. A Nyquist plot based on the data
in Fig. 10.12 would show that the portion of the Nyquist curve closest
to the −1 point was the critical indicator of stability, and therefore use
of the crossover frequency yielding the minimum value of PM was the
logical choice. Alternatively, the Nichols plot discussed in Section 6.9Nichols Plot
can be used to resolve any uncertainty in the stability margins. At best,
a designer needs to be judicious when applying the margin definitions
described in Fig. 6.33. In fact, the actual stability margin of a system
can be rigorously assessed only by examining the Nyquist or Nichols
plots to determine its closest approach to the −1 point.
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To aid in this analysis, Smith (1958) introduced the vector marginVector margin
(sometimes called the complex margin), which he defined to be the dis-
tance to the −1 point from the closest approach of the Nyquist plot.13

Figure 6.38 illustrates the idea graphically. Because the vector margin
is a single margin parameter, it removes all the ambiguities in assess-
ing stability that come with using GM and PM in combination. In the
past it has not been used extensively due to difficulties in computing it.
However, with the widespread availability of computer aids, the idea of
using the vector margin to describe the degree of stability is much more
feasible.

There are certain practical examples in which an increase in the gain
can make the system stable. As we saw in Chapter W3.8, these systemsConditionally stable

systems are called conditionally stable. A representative root-locus plot for such
systems is shown in Fig. 6.39. For a point on the root locus, such as
A, an increase in the gain would make the system stable by bringing
the unstable roots into the LHP. For point B, either a gain increase
or decrease could make the system become unstable. Therefore, several
GMs exist that correspond to either gain reduction or gain increase, and
the definition of the GM in Fig. 6.33 is not valid.

Figure 6.38
Definition of the vector
margin on the Nyquist
plot
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Figure 6.39
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13This value is closely related to the use of the sensitivity function for design and the
concept of stability robustness, to be discussed in optional Section 6.7.8.
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Figure 6.40
System in which
increasing gain leads
from instability to
stability: (a) root locus;
(b) Nyquist plot
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EXAMPLE 6.12 Stability Properties for a Conditionally Stable System

Determine the stability properties as a function of the gain K for the
system with the open-loop transfer function

KG(s) = K(s+ 10)2

s3 .

Solution. This is a system for which increasing gain causes a transition
from instability to stability. The root locus in Fig. 6.40(a) shows that the
system is unstable for K < 5 and stable for K > 5. The Nyquist plot in
Fig. 6.40(b) was drawn for the stable value K = 7. Determination of the
margins according to Fig. 6.33 yields PM = +10◦ (stable) and GM =
0.7 (unstable). According to the rules for stability discussed earlier, these
two margins yield conflicting signals on the system’s stability.

We resolve the conflict by counting the Nyquist encirclements in
Fig. 6.40(b). There is one clockwise encirclement and one counterclock-
wise encirclement of the−1 point. Hence there are no net encirclements,
which confirms that the system is stable for K = 7. For systems such as
this, it is best to resort to the root locus and/or Nyquist plot (rather than
the Bode plot) to determine stability.

EXAMPLE 6.13 Nyquist Plot for a System with Multiple Crossover
Frequencies

Draw the Nyquist plot for the system

G(s) = 85(s+ 1)(s2 + 2s+ 43.25)
s2(s2 + 2s+ 82)(s2 + 2s+ 101)

= 85(s+ 1)(s+ 1± 6.5j)
s2(s+ 1± 9j)(s+ 1± 10j)

,

and determine the stability margins.
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Figure 6.41
Nyquist plot of the
complex system in
Example 6.13
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Solution. The Nyquist plot (see Fig. 6.41) shows qualitatively that there
are three crossover frequencies of the magnitude = 1 circle; therefore,
there will be three corresponding PM values. The Bode plot for this sys-
tem (see Fig. 6.42) shows the three crossings of magnitude = 1 at 0.75,
9.0, and 10.1 rad/sec which indicate PM’s of 37◦, 80◦, and 40◦, respec-
tively. The key indicator of stability in this case is the proximity of the
Nyquist plot as it approaches the −1 point while crossing the real axis.
Because there is only one crossing of the real axis of the Nyquist plot

Figure 6.42
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M
ag

n
it

u
d
e

100

-100

P
h
as

e

05

0.1 1 10 1000.2 0.4 2 4 6 20 4060

-505

-1005

-1505

-2005

-2505

-3005

-1805

v (rad/sec)

(b)

0.1 1 10 1000.2 0.4 2 4 6 20 4060

v (rad/sec)

(a)

-80

-60

-40

-20

0
20

40

d
b

10

1

0.1

0.01

0.001

0.0001

0.00001

1/GM = 0.79

GM = 1.26

PM = 375



main_1 — 2019/2/5 — 16:00 — page 402 — #50

402 Chapter 6 The Frequency-Response Design Method

(and, therefore, one crossing of the−180◦ line of the Phase plot), there is
only one value of the GM. From the Bode plot, we see the phase crosses
−180◦ at ω = 10.4 rad/sec where the magnitude = 0.79. Therefore, the
GM = 1/0.79 = 1.26 which is the most useful stability margin for this
example. Note if there had been multiple crossings of −180◦, the small-
est value of the GM determined at the various−180◦ crossings would be
the correct value of GM because that is where the system would become
unstable as the gain is increased. (Tischler, 2012, pg. 226.)

In summary, many systems behave roughly like Example 6.9, and
for them, the GM and PM are well defined and useful. There are also
frequent instances of more complicated systems where the Bode plot
has multiple magnitude 1 or −180◦ crossovers for which the stability
criteria defined by Fig. 6.33 are less clear; therefore, we need to deter-
mine possible values of GM and PM, then revert back to the Nyquist
stability criterion for an in-depth understanding and determination of
the correct stability margins.

6.5 Bode’s Gain–Phase Relationship
One of Bode’s important contributions is the following theorem:

For any stable minimum-phase system (i.e., one with no RHP
zeros or poles), the phase of G( jω) is uniquely related to the
magnitude of G( jω).

When the slope of |G( jω)| versus ω on a log–log scale persists at a
constant value for approximately a decade of frequency, the relationship
is particularly simple and is given by

∠G( jω) ∼= n× 90◦, (6.33)

where n is the slope of |G( jω)| in units of decade of amplitude per
decade of frequency. For example, in considering the magnitude curve
alone in Fig. 6.43, we see Eq. (6.33) can be applied to the two frequen-
cies ω1 = 0.1 (where n = −2) and ω2 = 10 (where n = −1), which are
a decade removed from the change in slope, to yield the approximate
values of phase, −180◦ and −90◦. The exact phase curve shown in the
figure verifies that indeed the approximation is quite good. It also shows
that the approximation will degrade if the evaluation is performed at
frequencies closer to the change in slope.

An exact statement of the Bode gain–phase theorem is

∠G( jωo) = 1
π

∫ +∞
−∞

(
dM
du

)
W(u) du in radians, (6.34)
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where

M = log magnitude = ln |G( jω)|,
u = normalized frequency = ln(ω/ωo),

dM/du ∼= slope n, as defined in Eq. (6.33),

W(u) = weighting function = ln(coth|u|/2).
Figure 6.44 is a plot of the weighting function W(u) and shows how

the phase is most dependent on the slope at ωo; it is also dependent,
though to a lesser degree, on slopes at neighboring frequencies. The

Figure 6.43
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figure also suggests that the weighting could be approximated by an
impulse function centered at ωo. We may approximate the weighting
function as

W(u) ∼= π2

2
δ(u),

which is precisely the approximation made to arrive at Eq. (6.33) using
the “sifting”property of the impulse function (and conversion from
radians to degrees).

In practice, Eq. (6.34) is never used, but Eq. (6.33) is used as a guide
to infer stability from |G( jω)| alone. When |KG( jω)| = 1,

∠G( jω) ∼= −90◦ if n = −1,

∠G( jω) ∼= −180◦ if n = −2.

For stability, we want ∠G( jω) > −180◦ for the PM to be > 0. There-
fore, we adjust the |KG( jω)| curve so it has a slope of −1 at the
“crossover” frequency, ωc (i.e., where |KG( jω)| = 1). If the slope is −1Crossover frequency
for a decade above and below the crossover frequency, then PM ∼= 90◦;
however, to ensure a reasonable PM, it is usually necessary only to insist
that a −1 slope (−20 db per decade) persist for a decade in frequency
that is centered at the crossover frequency. We therefore see there is a
very simple design criterion:

Adjust the slope of the magnitude curve |KG( jω)| so it crosses
over magnitude 1 with a slope of −1 for a decade around ωc.

This criterion will usually be sufficient to provide an acceptable PM,
and hence provide adequate system damping. To achieve the desired
speed of response, the system gain is adjusted so the crossover point is
at a frequency that will yield the desired bandwidth or speed of response
as determined by Eq. (3.68). Recall that the natural frequency ωn, band-
width, and crossover frequency are all approximately equal, as will be
discussed further in Section 6.6.

EXAMPLE 6.14 Use of Simple Design Criterion for Spacecraft Attitude
Control

For the spacecraft attitude-control problem defined in Fig. 6.45, find
a suitable expression for KDc(s) that will provide good damping and a
bandwidth of approximately 0.2 rad/sec. Also determine the frequency
where the sensitivity function |S| = 0.7 (= −3 db). This frequency is
often referred to as the “Disturbance Rejection Bandwidth,” or ωDRB.Disturbance Rejection

Bandwidth, ωDRB Solution. The magnitude of the frequency response of the spacecraft
(see Fig. 6.46) clearly requires some reshaping, because it has a slope
of −2 (or −40 db per decade) everywhere. The simplest compensation
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Figure 6.45
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to do the job consists of using proportional and derivative terms (a PD
compensator), which produces the relation

KDc(s) = K(TDs+ 1). (6.35)

We will adjust the gain K to produce the desired bandwidth, and adjust
break point ω1 = 1/TD to provide the −1 slope at the crossover fre-
quency. The actual design process to achieve the desired specifications
is now very simple: We pick a value of K to provide a crossover at
0.2 rad/sec, and choose a value of ω1 that is about four times lower
than the crossover frequency, so the slope will be −1 in the vicinity of
the crossover. Figure 6.47 shows the steps we take to arrive at the final
compensation:

Figure 6.47
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1. Plot |G( jω)|.
2. Modify the plot to include |Dc( jω)|, with ω1 = 0.05 rad/sec (TD =

20), so the slope will be ∼= −1 at ω = 0.2 rad/sec.
3. Determine that |DcG| = 100, where the |DcG| curve crosses the line

ω = 0.2 rad/sec, which is where we want magnitude 1 crossover to
be.

4. In order for crossover to be at ω = 0.2 rad/sec, compute

K = 1
|DcG|ω=0.2

= 1
100
= 0.01.

Therefore,
KDc(s) = 0.01(20s+ 1)

will meet the specifications, thus completing the design.

If we were to draw the phase curve of KDcG, we would find that
PM = 75◦, which is certainly quite adequate. This result follows because
the slope of −1 occurs for a decade centered around the crossover fre-
quency. A plot of the closed-loop frequency-response magnitude, T (s),
(see Fig. 6.48) shows that, indeed, the crossover frequency and the band-
width are almost identical in this case; therefore, the desired bandwidth
of 0.2 rad/sec has been met. The sensitivity function was defined by Eq.
(4.23) and for this problem is

T

S = 1
1+ KDcG

.

S(s) is also shown on Fig. 6.48, where it can be seen that |S| has the

S

value of 0.7 or −3db at ω = 0.15 rad/sec. The concept of a disturbance
rejection characteristic at a certain frequency (ωDRB) is often speci-
fied as a requirement for an acceptable design of a feedback system.

Figure 6.48
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Figure 6.49
Step response for PD
compensation
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Basically, ωDRB is the maximum frequency at which the disturbance
rejection (i.e., the sensitivity function, S ) is below a certain amount, in
this case −3db; so in this example, ωDRB = 0.15 rad/sec.

The step response of the closed-loop system is shown in Fig. 6.49,
and its 14% overshoot confirms the adequate damping.

6.6 Closed-Loop Frequency Response
The closed-loop bandwidth was defined in Section 6.1 and in Fig. 6.5.
Figure 6.3 showed that the natural frequency is always within a factor
of two of the bandwidth for a second-order system. In Example 6.14,
we designed the compensation so the crossover frequency was at the
desired bandwidth and verified by computation that the bandwidth was
identical to the crossover frequency. Generally, the match between the
crossover frequency and the bandwidth is not as good as in Exam-
ple 6.14. We can help establish a more exact correspondence by making
a few observations. Consider a system in which |KG( jω)| shows the
typical behavior

|KG( jω)| 	 1 for ω � ωc,

|KG( jω)| � 1 for ω 	 ωc,

where ωc is the crossover frequency. The closed-loop frequency-
response magnitude is approximated by

|T ( jω)| =
∣∣∣∣

KG( jω)
1+ KG( jω)

∣∣∣∣ ∼=
{

1, ω � ωc,
|KG|, ω 	 ωc.

(6.36)

In the vicinity of crossover, where |KG( jω)| = 1, |T ( jω)| depends
heavily on the PM. A PM of 90◦ means that ∠G( jωc) = −90◦, and
therefore |T ( jωc)| = 0.707. On the other hand, PM = 45◦ yields
|T ( jωc)| = 1.31.

The exact evaluation of Eq. (6.36) was used to generate the curves
of |T ( jω)| in Fig. 6.50. It shows that the bandwidth for smaller values
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Figure 6.50
Closed-loop bandwidth
with respect to PM
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of PM is typically somewhat greater than ωc, though usually it is less
than 2ωc; thus

ωc ≤ ωBW ≤ 2ωc.

Another specification related to the closed-loop frequency response
is the resonant-peak magnitude Mr, defined in Fig. 6.5. Figures 6.3 and
6.37 show that, for linear systems, Mr is generally related to the damping
of the system. In practice, Mr is rarely used; most designers prefer to use
the PM to specify the damping of a system, because the imperfections
that make systems nonlinear or cause delays usually erode the phase
more significantly than the magnitude.

As demonstrated in the last example, it is also important in the
design to achieve certain error characteristics and these are often evalu-
ated as a function of the input or disturbance frequency. In some cases,
the primary function of the control system is to regulate the output to
a certain constant input in the presence of disturbances. For these situ-
ations, the key item of interest for the design would be the closed-loop
frequency response of the error with respect to disturbance inputs.

6.7 Compensation
As discussed in Chapters 4 and 5, dynamic elements (or compensation)
are typically added to feedback controllers to improve the system’s sta-
bility and error characteristics because the process itself cannot be made
to have acceptable characteristics with proportional feedback alone.

Section 4.3 discussed the basic types of feedback: proportional,
derivative, and integral. Section 5.4 discussed three kinds of dynamic
compensation: lead compensation, which approximates proportional-
derivative (PD) feedback, lag compensation, which approximates
proportional-integral (PI) control, and notch compensation, which
has special characteristics for dealing with resonances. In this section,
we discuss these and other kinds of compensation in terms of their
frequency-response characteristics.
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The frequency-response stability analysis to this point has usually
considered the closed-loop system to have the characteristic equation
1 + KG(s) = 0. With the introduction of compensation, the closed-
loop characteristic equation becomes 1 + KDc(s)G(s) = 0, and all
the previous discussion in this chapter pertaining to the frequency
response of KG(s) applies directly to the compensated case if we apply
it to the frequency response of KDc(s)G(s). We call this quantity L(s),
the “loop gain,” or open-loop transfer function of the system, where
L(s) = KDc(s)G(s).

6.7.1 PD Compensation
We will start the discussion of compensation design by using the fre-
quency response with PD control. The compensator transfer function,PD compensation
given by

Dc(s) = (TDs+ 1), (6.37)

was shown in Fig. 5.22 to have a stabilizing effect on the root locus
of a second-order system. The frequency-response characteristics of
Eq. (6.37) are shown in Fig. 6.51. A stabilizing influence is apparent
by the increase in phase and the corresponding +1 slope at frequencies
above the break point 1/TD. We use this compensation by locating 1/TD

Figure 6.51
Frequency response of
PD control
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so the increased phase occurs in the vicinity of crossover (that is, where
|KDc(s)G(s)| = 1), thus increasing the PM.

Note the magnitude of the compensation continues to grow with
increasing frequency. This feature is undesirable because it amplifies the
high-frequency noise that is typically present in any real system and,
as a continuous transfer function, cannot be realized with physical ele-
ments. It is also the reason, as stated in Section 5.4, that pure derivative
compensation gives trouble.

6.7.2 Lead Compensation
In order to alleviate the high-frequency amplification of the PD com-
pensation, a first-order pole is added in the denominator at frequencies
substantially higher than the break point of the PD compensator. Thus
the phase increase (or lead) still occurs, but the amplification at high
frequencies is limited. The resulting lead compensation has a transferLead compensation
function of

Dc(s) = TDs+ 1
αTDs+ 1

, α < 1, (6.38)

where 1/α is the ratio between the pole/zero break-point frequencies.
Figure 6.52 shows the frequency response of this lead compensation.
Note a significant amount of phase lead is still provided, but with much
less amplification at high frequencies. A lead compensator is generally

Figure 6.52
Lead-compensation
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1/α = 10
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used whenever a substantial improvement in damping of the system is
required.

The phase contributed by the lead compensation in Eq. (6.38) is
given by

φ = tan−1(TD ω)− tan−1(αTD ω).
It can be shown (see Problem 6.44) that the frequency at which the phase
is maximum is given by

ωmax = 1
TD
√
α

. (6.39)

The maximum phase contribution—that is, the peak of the ∠Dc(s)
curve in Fig. 6.52—corresponds to

sinφmax = 1− α
1+ α , (6.40)

or

α = 1− sinφmax

1+ sinφmax
.

Another way to look at this is the following: The maximum phase
occurs at a frequency that lies midway between the two break-point
frequencies (sometimes called corner frequencies) on a logarithmic
scale,

logωmax = log
1/
√

TD√
αTD

= log
1√
TD
+ log

1√
αTD

= 1
2

[
log

(
1

TD

)
+ log

(
1

αTD

)]
, (6.41)

as shown in Fig. 6.52. Alternatively, we may state these results in terms
of the pole–zero locations. Rewriting Dc(s) in the form used for root-
locus analysis, we have

Dc(s) = s+ z
s+ p

. (6.42)

Problem 6.44 shows that

ωmax =
√|z| |p| (6.43)

and

logωmax = 1
2
(log |z| + log |p|). (6.44)

These results agree with the previous ones if we choose z = −1/TD and
p = −1/αTD in Eqs. (6.39) and (6.41).

For example, a lead compensator with a zero at s = −2 (TD = 0.5)
and a pole at s = −10 (αTD = 0.1) (and thus α = 1

5 ) would yield the
maximum phase lead at

ωmax =
√

2 · 10 = 4.47 rad/sec.

The amount of phase lead at the midpoint depends only on α in
Eq. (6.40) and is plotted in Fig. 6.53. For α = 1/5, Fig. 6.53 shows that
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Figure 6.53
Maximum phase
increase for lead
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φmax = 40◦. Note from the figure that we could increase the phase lead
up to 90◦ using higher14 values of the lead ratio, 1/α; however, Fig. 6.52Lead ratio
shows that increasing values of 1/α also produces higher amplifications
at higher frequencies. Thus our task is to select a value of 1/α that is a
good compromise between an acceptable PM and an acceptable noise
sensitivity at high frequencies. Usually the compromise suggests that a
lead compensation should contribute a maximum of 70◦ to the phase. If
a greater phase lead is needed, then a double-lead compensation would
be suggested, where

Dc(s) =
(

TDs+ 1
αTDs+ 1

)2

.

Even if a system had negligible amounts of noise present and
the pure derivative compensation of Eq. (6.37) were acceptable, a
continuous compensation would look more like Eq. (6.38) than
Eq. (6.37) because of the impossibility of building a pure differentiator.
No physical system—mechanical or electrical—responds with infinite
amplitude at infinite frequencies, so there will be a limit in the frequency
range (or bandwidth) for which derivative information (or phase lead)
can be provided. This is also true with a digital implementation. Here,
the sample rate limits the high-frequency amplification and essentially
places a pole in the compensation transfer function.

EXAMPLE 6.15 Lead Compensation for a DC Motor

As an example of designing a lead compensator, let us repeat the design
of compensation for the DC motor with the transfer function

G(s) = 1
s(s+ 1)

,

that was carried out in Section 5.4.1. This also represents the model of
a satellite tracking antenna (see Fig. 3.60). This time we wish to obtain
a steady-state error of less than 0.1 for a unit-ramp input. Furthermore,
we desire an overshoot Mp < 25%. Determine the lead compensation
satisfying the specifications.

14Lead ratio = 1/α.
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Solution. The steady-state error is given by

ess = lim
s→0

s
[

1
1+ KDc(s)G(s)

]
R(s), (6.45)

where R(s) = 1/s2 for a unit ramp, so Eq. (6.45) reduces to

ess = lim
s→0

{
1

s+ KDc(s)[1/(s+ 1)]

}
= 1

KDc(0)
.

Therefore, we find that KDc(0), the steady-state gain of the compensa-
tion, cannot be less than 10 (Kv ≥ 10) if it is to meet the error criterion,
so we pick K = 10. To relate the overshoot requirement to PM, Fig. 6.37
shows that a PM of 45◦ should suffice. The frequency response of KG(s)
in Fig. 6.54 shows that the PM = 20◦ if no phase lead is added by com-
pensation. If it were possible to simply add phase without affecting the
magnitude, we would need an additional phase of only 25◦ at the KG(s)
crossover frequency of ω = 3 rad/sec. However, maintaining the same
low-frequency gain and adding a compensator zero would increase the

Figure 6.54
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Figure 6.55
Root locus for lead
compensation design
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crossover frequency; hence more than a 25◦ phase contribution will be
required from the lead compensation. To be safe, we will design the
lead compensator so it supplies a maximum phase lead of 40◦. Fig. 6.53
shows that 1/α = 5 will accomplish that goal. We will derive the great-
est benefit from the compensation if the maximum phase lead from the
compensator occurs at the crossover frequency. With some trial and
error, we determine that placing the zero at ω = 2 rad/sec and the pole
at ω = 10 rad/sec causes the maximum phase lead to be at the crossover
frequency. The compensation, therefore, is

KDc(s) = 10
s/2+ 1

s/10+ 1
.

The frequency-response characteristics of KDc(s)G(s) in Fig. 6.54 can
be seen to yield a PM of 53◦, which satisfies the design goals.

1. The root locus for this design, originally given as Fig. 5.24, is
repeated here as Fig. 6.55, with the root locations marked for
K = 10. The locus is not needed for the frequency-response
design procedure; it is presented here only for comparison with
the root-locus design method presented in Chapter 5, which had
an equivalent gain of K = 14. For further comparison, Fig. 6.56

Figure 6.56
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Example 6.15
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shows the time response of the system to a step command. Com-
paring it to Fig. 5.25, we see the current design is slightly slower,
having a rise time tr = 0.33 sec compared to the tr = 0.26 sec for
Fig. 5.25.

The design procedure used in Example 6.15 can be summarized as
follows:

1. Determine the low-frequency gain so the steady-state errors are
within specification.

2. Select the combination of lead ratio 1/α and zero values (1/TD) that
achieves an acceptable PM at crossover.

3. The pole location is then at (1/αTD).

This design procedure will apply to many cases; however, keep in
mind that the specific procedure followed in any particular design may
need to be tailored to its particular set of specifications.

In Example 6.15, there were two specifications: peak overshoot
and steady-state error. We transformed the overshoot specification into
a PM, but the steady-state error specification we used directly. No
speed-of-response type of specification was given; however, it would
have impacted the design in the same way that the steady-state error
specification did. The speed of response or bandwidth of a system is
directly related to the crossover frequency, as we pointed out earlier
in Section 6.6. Figure W6.1 shows that the crossover frequency was
∼ 5 rad/sec. We could have increased it by raising the gain K and
increasing the frequency of the lead compensator pole and zero in order
to keep the slope of −1 at the crossover frequency. Raising the gain
would also have decreased the steady-state error to be better than the
specified limit. The GM was never introduced into the problem because
the stability was adequately specified by the PM alone. Furthermore,
the GM would not have been useful for this system because the phase
never crossed the 180◦ line, and the GM was always infinite.

In lead-compensation designs, there are three primary design para-Design parameters for lead
networks meters:

1. The crossover frequency ωc, which determines bandwidth ωBW , rise
time tr, and settling time ts;

2. The PM, which determines the damping coefficient ζ and the
overshoot Mp;

3. The low-frequency gain, which determines the steady-state error
characteristics.

The design problem is to find the best values for the parameters,
given the requirements. In essence, lead compensation increases the
value of ωc/L(0) (= ωc/Kv for a Type 1 system). That means that,
if the low-frequency gain is kept the same, the crossover frequency
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will increase. Or, if the crossover frequency is kept the same, the low-
frequency gain will decrease. Keeping this interaction in mind, the
designer can assume a fixed value of one of these three design parame-
ters, then adjust the other two iteratively until the specifications are met.
One approach is to set the low-frequency gain to meet the error spec-
ifications and add a lead compensator to increase PM at the crossover
frequency. An alternative is to pick the crossover frequency to meet a
time response specification, then adjust the gain and lead characteristics
so the PM specification is met. A step-by-step procedure is outlined next
for these two cases. They apply to a sizable class of problems for which
a single lead is sufficient. As with all such design procedures, it provides
only a starting point; the designer will typically find it necessary to go
through several design iterations in order to meet all the specifications.

Design Procedure for
Lead Compensation

1. Determine the gain K to satisfy error or bandwidth require-
ments:

(a) to meet error requirements, pick K to satisfy error con-
stants (Kp, Kv, or Ka) so ess error specification is met, or
alternatively,

(b) to meet bandwidth requirements, pick K so the open-loop
crossover frequency is a factor of two below the desired
closed-loop bandwidth.

2. Evaluate the PM of the uncompensated system using the value
of K obtained from Step 1.

3. Allow for extra margin (about 10◦), and determine the needed
phase lead φmax.

4. Determine α from Eq. (6.40) or Fig. 6.53.
5. Pick ωmax to be at the crossover frequency; thus the zero is at

1/TD = ωmax
√
α and the pole is at 1/αTD = ωmax/

√
α.

6. Draw the compensated frequency response and check the PM.
7. Iterate on the design. Adjust compensator parameters (poles,

zeros, and gain) until all specifications are met. Add an addi-
tional lead compensator (that is, a double-lead compensation)
if necessary.

While these guidelines will not apply to all the systems you will
encounter in practice, they do suggest a systematic trial-and-error
process to search for a satisfactory compensator that will usually be
successful.

EXAMPLE 6.16 Lead Compensator for a Temperature Control System

The third-order system

KG(s) = K
(s/0.5+ 1)(s+ 1)(s/2+ 1)
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is representative of a typical temperature control system. Design a lead
compensator such that Kp = 9 and the PM is at least 25◦.
Solution. Let us follow the design procedure:

1. Given the specification for Kp, we solve for K:

Kp = lim
s→0

KG(s) = K = 9.

2. The Bode plot of the uncompensated system, KG(s), with K = 9
can be created by the Matlab statements below, and is shown in
Fig. 6.57 along with the two compensated cases.

s = tf('s');
sysG = 9/((s/0.5 + 1)*(s + 1)*(s/2 + 1));
w=logspace(−1,1);
[mag,phase] = bode(sysG,w);
loglog(w,squeeze(mag)),grid;
semilogx(w,squeeze(phase)),grid;

It is difficult to read the PM and crossover frequencies accu-
rately from the Bode plots; therefore, the Matlab command

[GM,PM,Wcg,Wcp] = margin(mag,phase,w);

can be invoked. The quantity PM is the phase margin and Wcp is
the frequency at which the gain crosses magnitude 1. (GM and, Wcg
are the GM and the frequency at which the phase crosses −180◦
respectively.) For this example, the output is

GM =1.25, PM = 7.14, Wcg = 1.87, Wcp = 1.68,

Figure 6.57
Bode plot for the
lead-compensation
design in Example 6.16
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which says that the PM of the uncompensated system is 7◦ and that
this occurs at a crossover frequency of 1.7 rad/sec.

3. Allowing for 10◦ of extra margin, we want the lead compensator
to contribute 25◦ + 10◦ − 7◦ = 28◦ at the crossover frequency. The
extra margin is typically required because the lead will increase the
crossover frequency from the open-loop case, at which point more
phase increase will be required.

4. From Fig. 6.53, we see that α = 1/3 will produce approximately 30◦
phase increase midway between the zero and pole.

5. As a first cut, let’s place the zero at 1 rad/sec (TD = 1) and the pole
at 3 rad/sec (αTD = 1/3), thus bracketing the open-loop crossover
frequency and preserving the factor of 3 between pole and zero, as
indicated by α = 1/3. The lead compensator is

Dc1(s) = s+ 1
s/3+ 1

= 1
0.333

(
s+ 1
s+ 3

)
.

6. The Bode plot of the system with Dc1(s) (see Fig. 6.57, middle
curve) has a PM of 16◦. We did not achieve the desired PM of 30◦,
because the lead shifted the crossover frequency from 1.7 rad/sec
to 2.3 rad/sec, thus increasing the required phase increase from the
lead. The step response of the system with Dc1(s) (see Fig. 6.58)
shows a very oscillatory response, as we might expect from the low
PM of 16◦.

7. We repeat the design with extra phase increase and move the zero
location slightly to the right so the crossover frequency won’t be
shifted so much. We choose α = 1/10 with the zero at s = −1.5, so

Dc2(s) = s/1.5+ 1
s/15+ 1

= 1
0.1

(
s+ 1.5
s+ 15

)
.

This compensation produces a PM = 38◦, and the crossover fre-
quency lowers slightly to 2.2 rad/sec. Figure 6.57 (upper curve)
shows the frequency response of the revised design. Figure 6.58
shows a substantial reduction in the oscillations, which you should
expect from the higher PM value.

Figure 6.58
Step response for
lead-compensation
design in Example 6.16
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EXAMPLE 6.17 Lead-Compensator Design for a Type 1
Servomechanism System

Consider the third-order system

KG(s) = K
10

s(s/2.5+ 1)(s/6+ 1)
.

This type of system would result for a DC motor with a lag in the shaft
position sensor. Design a lead compensator so that the PM = 45◦ and
Kv = 10.

Solution. Again, we follow the design procedure given earlier:

1. As given, KG(s) will yield Kv = 10 if K = 1. Therefore, the Kv
requirement is met by K = 1 and the low-frequency gain of the
compensation should be 1.

2. The Bode plot of the system is shown in Fig. 6.59. The PM of the
uncompensated system (lower curve) is approximately −4◦, and
the crossover frequency is at ωc ∼= 4 rad/sec.

3. Allowing for 5◦ of extra PM, we need PM = 45◦+5◦−(−4◦) = 54◦
to be contributed by the lead compensator.

4. From Fig. 6.53 we find α must be 0.1 to achieve a maximum phase
lead of 54◦.

5. The new gain crossover frequency will be higher than the open-
loop value of ωc = 4 rad/sec, so let’s select the pole and zero of the
lead compensation to be at 20 and 2 rad/sec, respectively. So the
candidate compensator is

Dc1(s) = s/2+ 1
s/20+ 1

= 1
0.1

s+ 2
s+ 20

.

Figure 6.59
Bode plot for the
lead-compensation
design in Example 6.17
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6. The Bode plot of the compensated system (see Fig. 6.59, mid-
dle curve) shows a PM of 23◦. Further iteration will show that a
single-lead compensator cannot meet the specification because of
the high-frequency slope of −3.

7. We need a double-lead compensator in this system. If we try a
compensator of the form

Dc2(s) = 1
(0.1)2

(s+ 2)(s+ 4)
(s+ 20)(s+ 40)

= (s/2+ 1)(s/4+ 1)
(s/20+ 1)(s/40+ 1)

,

we obtain PM = 46◦. The Bode plot for this case is shown as the
upper curve in Fig. 6.59.

Both Examples 6.16 and 6.17 are third order. Example 6.17 was more
difficult to design compensation for, because the error requirement, Kv,
forced the crossover frequency, ωc, to be so high that a single lead could
not provide enough PM.

6.7.3 PI Compensation
In many problems, it is important to keep the bandwidth low and also to
reduce the steady-state error. For this purpose, a proportional-integral
(PI) or lag compensator is useful. From Eq. (4.73), we see that PI controlPI compensation
has the transfer function

Dc(s) = K
s

(
s+ 1

TI

)
, (6.46)

which results in the frequency-response characteristics shown in Fig.
6.60. The desirable aspect of this compensation is the infinite gain at
zero frequency, which reduces the steady-state errors. This is accom-
plished, however, at the cost of a phase decrease at frequencies lower
than the break point at ω = 1/TI . Therefore, 1/TI is usually located at a
frequency substantially less than the crossover frequency so the system’s
PM is not affected significantly.

6.7.4 Lag Compensation
As we discussed in Section 5.4, lag compensation approximates PI con-Lag compensation
trol. Its transfer function was given by Eq. (5.72) for root-locus design,
but for frequency-response design, it is more convenient to write the
transfer function of the lag compensation alone in the Bode form

Dc(s) = α TI s+ 1
αTI s+ 1

, α > 1, (6.47)

where α is the ratio between the zero/pole break-point frequencies. The
complete controller will almost always include an overall gain K and
perhaps other dynamics in addition to the lag compensation. Although
Eq. (6.47) looks very similar to the lead compensation in Eq. (6.38), the
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Figure 6.60
Frequency response of
PI control
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fact is that α > 1 causes the pole to have a lower break-point frequency
than the zero. This relationship produces the low-frequency increase in
amplitude and phase decrease (lag) apparent in the frequency-response
plot in Fig. 6.61 and gives the compensation the essential feature of inte-
gral control—an increased low-frequency gain. The typical objective of
lag-compensation design is to provide additional gain of α in the low-
frequency range and to leave the system sufficient PM. Of course, phase
lag is not a useful effect, and the pole and zero of the lag compensator
are selected to be at much lower frequencies than the uncompensated
system crossover frequency in order to keep the effect on the PM to
a minimum. Thus, the lag compensator increases the open-loop DC
gain, thereby improving the steady-state response characteristics, with-
out changing the transient-response characteristics significantly. If the
pole and zero are relatively close together and near the origin (that is,
if the value of TI is large), we can increase the low-frequency gain (and
thus Kp, Kv, or Ka) by a factor α without moving the closed-loop poles
appreciably. Hence, the transient response remains approximately the
same while the steady-state response is improved.

We now summarize a step-by-step procedure for lag-compensator
design.
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Figure 6.61
Frequency response of
lag compensation with
α = 10
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1. Determine the open-loop gain K that will meet the PM require-
ment without compensation.

2. Draw the Bode plot of the uncompensated system with cross-
over frequency from Step 1, and evaluate the low-frequency
gain.

3. Determine α to meet the low-frequency gain error requirement.
4. Choose the corner frequency ω = 1/TI (the zero of the lag

compensator) to be one octave to one decade below the new
crossover frequency ωc.

5. The other corner frequency (the pole location of the lag com-
pensator) is then ω = 1/αTI .

6. Iterate on the design. Adjust compensator parameters (poles,
zeros, and gain) to meet all the specifications.

EXAMPLE 6.18 Lag-Compensator Design for Temperature Control System

Again consider the third-order system of Example 6.16:

Design Procedure for Lag
Compensation

KG(s) = K(
1

0.5 s+ 1
)
(s+ 1)

(
1
2 s+ 1

) .

Design a lag compensator so the PM is at least 40◦ and Kp = 9.
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Solution. We follow the design procedure previously enumerated.

1. From the open-loop plot of KG(s), shown for K = 9 in Fig. 6.57, it
can be seen a PM > 40◦ will be achieved if the crossover frequency
ωc � 1 rad/sec. This will be the case if K = 3. So we pick K = 3 in
order to meet the PM specification.

2. The Bode plot of KG(s) in Fig. 6.62 with K = 3 shows the PM is
≈ 50◦ and the low-frequency gain is now 3. Exact calculation of
the PM using Matlab’s margin shows that PM = 53◦.

3. The low-frequency gain should be raised by a factor of 3, which
means the lag compensation needs to have α = 3.

4. We choose the corner frequency for the zero to be approximately a
factor of 5 slower than the expected crossover frequency—that is,
at 0.2 rad/sec. So, 1/TI = 0.2, or TI = 5.

5. We then have the value for the other corner frequency: ω = 1/αTI =
1

(3)(5) = 1/15 rad/sec. The compensator is thus

Dc(s) = 3
5s+ 1

15s+ 1
.

The compensated frequency response is also shown in Fig. 6.62.
The low-frequency gain of KDc(0)G(0) = 3K = 9, thus Kp = 9
and the PM lowers slightly to 44◦, which satisfies the specifications.
The step response of the system, shown in Fig. 6.63, illustrates the
reasonable damping that we would expect from PM = 44◦.

6. No iteration is required in this case.

Figure 6.62
Frequency response of
lag-compensation
design in Example 6.18
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Figure 6.63
Step response of
lag-compensation
design in Example 6.18
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Note Examples 6.16 and 6.18 are both for the same plant, and
both had the same steady-state error requirement. One was compen-
sated with lead, and one was compensated with lag. The result is the
bandwidth of the lead-compensated design is higher than that for the
lag-compensated design by approximately a factor of 3. This result can
be seen by comparing the crossover frequencies of the two designs.

A beneficial effect of lag compensation, an increase in the low-
frequency gain for better error characteristics, was just demonstrated
in Example 6.18. However, in essence, lag compensation reduces the
value of ωc/L(0) (= ωc/Kv for a Type 1 system). That means that,
if the crossover frequency is kept the same, the low-frequency gain
will increase. Likewise, if the low-frequency gain is kept the same, the
crossover frequency will decrease. Therefore, lag compensation could
also be interpreted to reduce the crossover frequency and thus obtain
a better PM. The procedure for design in this case is partially mod-
ified. First, pick the low-frequency gain to meet error requirements,
then locate the lag compensation pole and zero in order to provide a
crossover frequency with adequate PM. The next example illustrates
this design procedure. The end result of the design will be the same no
matter what procedure is followed.

EXAMPLE 6.19 Lag Compensation of the DC Motor

Repeat the design of the DC motor control in Example 6.15, this time
using lag compensation. Fix the low-frequency gain in order to meet the
error requirement of Kv = 10; then use the lag compensation to meet
the PM requirement of 45◦. Compare the open-loop Bode magnitude
plots and the time responses for Examples 6.15 and 6.19.

Solution. The frequency response of the system KG(s), with the
required gain of K = 10, is shown in Fig. 6.64. The uncompensated
system has a crossover frequency at approximately 3 rad/sec where the
PM = 20◦. The designer’s task is to select the lag compensation break
points so the crossover frequency is lowered and more favorable PM
results. To prevent detrimental effects from the compensation phase lag,
the pole and zero position values of the compensation need to be sub-
stantially lower than the new crossover frequency. One possible choice
is shown in Fig. 6.64: The lag zero is at 0.1 rad/sec, and the lag pole is at
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Figure 6.64
Frequency response of
lag-compensation
design in Example 6.19
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0.01 rad/sec. This selection of parameters produces a PM of 50◦, thus
satisfying the specifications. Here the stabilization is achieved by keep-
ing the crossover frequency to a region where G(s) has favorable phase
characteristics. However, note ωc ∼= 0.8 rad/sec for this case compared
to the ωc ∼= 5 rad/sec for the Example 6.15 where lead compensation
was used. The criterion for selecting the pole and zero locations 1/TI is to
make them low enough to minimize the effects of the phase lag from the
compensation at the crossover frequency. Generally, however, the pole
and zero are located no lower than necessary, because the additional
system root (compare with the root locus of a similar system design in
Fig. 5.28) introduced by the lag will be in the same frequency range as
the compensation zero and will have some effect on the output response,
especially the response to disturbance inputs.

The response of the system to a step reference input is shown in
Fig. 6.65. It shows no steady-state error to a step input, because this
is a Type 1 system. However, the introduction of the slow root from
the lag compensation has caused the response to require about 25 sec
to settle down to the zero steady-state value and the rise time, tr = 2
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Figure 6.65
Step response of
lag-compensation
design in Example 6.19
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sec compared to tr = 0.33 sec for Example 6.15. This difference in rise
time is to be expected based on the difference in crossover frequencies.
The overshoot Mp is somewhat larger than you would expect from the
guidelines, based on a second-order system shown in Fig. 6.37 for a PM
= 50◦; however, the performance is adequate.

As we saw previously for a similar situation, Examples 6.15 and
6.19 meet an identical set of specifications for the same plant in very
different ways. In the first case, the specifications are met with a lead
compensation, and a crossover frequency ωc = 5 rad/sec (ωBW

∼=
6 rad/sec) results. In the second case, the same specifications are met
with a lag compensation, and ωc ∼= 0.8 rad/sec (ωBW

∼= 0.9 rad/sec)
results. Clearly, had there been specifications for rise time or bandwidth,
they would have influenced the choice of compensation (lead or lag).
Likewise, if the slow settling to the steady-state value was a problem, it
might have suggested the use of lead compensation instead of lag.

In more realistic systems, dynamic elements usually represent the
actuator and sensor as well as the process itself, so it is typically impossi-
ble to raise the crossover frequency much beyond the value representing
the speed of response of the components being used. Although linearImportant caveat on

design strategy analysis seems to suggest that almost any system can be compensated,
in fact, if we attempt to drive a set of components much faster than their
natural frequencies, the system will saturate, the linearity assumptions
will no longer be valid, and the linear design will represent little more
than wishful thinking. With this behavior in mind, we see that simply
increasing the gain of a system and adding lead compensators to achieve
an adequate PM may not always be possible. It may be preferable to sat-
isfy error requirements by adding a lag network so that the closed-loop
bandwidth is kept at a more reasonable frequency.

6.7.5 PID Compensation
For problems that need PM improvement at ωc and low-frequency gain
improvement, it is effective to use both derivative and integral control.
By combining Eqs. (6.37) and (6.46), we obtain PID control. A common
way to write its transfer function isPID compensation
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Figure 6.66
Frequency response of
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and its frequency-response characteristics are shown in Fig. 6.66. This
form is slightly different from that given by Eq. (4.75); however, the
effect of the difference is inconsequential. This compensation is roughly
equivalent to combining lead and lag compensators in the same design,
and so is sometimes referred to as a lead–lag compensator. Hence, it
can provide simultaneous improvement in transient and steady-state
responses.

EXAMPLE 6.20 PID Compensation Design for Spacecraft Attitude Control

A simplified design for spacecraft attitude control was presented in
Section 6.5; however, here we have a more realistic situation that
includes a sensor lag and a disturbing torque. Figure 6.67 defines the
system.

1. Design a PID controller to have zero steady-state error to a
constant-disturbance torque, a PM of 65◦, and as high a band-
width as is reasonably possible.
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Figure 6.67
Block diagram of
spacecraft control using
PID design in
Example 6.20 ©
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2. Plot the step response versus a command input and the step
response to a constant disturbance torque.

3. Plot the closed-loop frequency response, 
c

, and the sensitivity
function, S.

4. Determine ωBW and ωDRB.
5. For a torque disturbance from solar pressure that acts as a sinusoid

at the orbital rate (ω = 0.001 rad/sec or ≈ 100-minute period),
comment on the usefulness of this controller to attenuate solar
pressure effects.

Solution. First, let us take care of the steady-state error. For the space-
craft to be at a steady final value, the total input torque, Td + Tc, must
equal zero. Therefore, if Td �= 0, then Tc = −Td . The only way this
can be true with no error (ess = 0) is for Dc(s) to contain an integral
term. Hence, including integral control in the compensation will meet
the steady-state requirement. This could also be verified mathematically
by use of the Final Value Theorem (see Problem 6.47).

The frequency response of the spacecraft and sensor, GH, where

G(s) = 0.9
s2 and H(s) =

(
2

s+ 2

)
, (6.49)

is shown in Fig. 6.68. The slopes of −2 (that is, −40 db per decade) and
−3 (−60 db per decade) show that the system would be unstable for any
value of K if no derivative feedback were used. This is clear because
of Bode’s gain–phase relationship, which shows that the phase would
be −180◦ for the −2 slope and −270◦ for the −3 slope, which would
correspond to a PM of 0◦ or −90◦, respectively. Therefore, derivative
control is required to bring the slope to −1 at the crossover frequency
that was shown in Section 6.5 to be a requirement for stability. The
problem now is to pick values for the three parameters in Eq. (6.48)—K,
TD, and TI —that will satisfy the specifications.

The easiest approach is to work first on the phase so PM = 65◦ is
achieved at a reasonably high frequency. This can be accomplished pri-
marily by adjusting TD, noting that TI has a minor effect if sufficiently
larger than TD. Once the phase is adjusted, we establish the crossover
frequency; then we can easily determine the gain K.
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Figure 6.68
Compensation for PID
design in Example 6.20
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We examine the phase of the PID controller in Fig. 6.66 to
determine what would happen to the compensated spacecraft system,
Dc(s)G(s), as TD is varied. If 1/TD ≥ 2 rad/sec, the phase lead from
the PID control would simply cancel the sensor phase lag, and the
composite phase would never exceed −180◦, an unacceptable situation.
If 1/TD ≤ 0.01, the composite phase would approach −90◦ for some
range of frequencies and would exceed −115◦ for an even wider range
of frequencies; the latter threshold would provide a PM of 65◦. In the
compensated phase curve shown in Fig. 6.68, 1/TD = 0.1, which is the
largest value of 1/TD that could provide the required PM of 65◦. The
phase would never cross the −115◦ (65◦ PM) line for any 1/TD > 0.1.
For 1/TD = 0.1, the crossover frequency ωc that produces the 65◦ PM is
0.5 rad/sec. For a value of 1/TD � 0.05, the phase essentially follows the
dotted curve in Fig. 6.68, which indicates that the maximum possible ωc
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is approximately 1 rad/sec and is provided by 1/TD = 0.05. Therefore,
0.05 < 1/TD < 0.1 is the only sensible range for 1/TD; anything less than
0.05 would provide no significant increase in bandwidth, while anything
more than 0.1 could not meet the PM specification. Although the final
choice is somewhat arbitrary, we have chosen 1/TD = 0.1 for our final
design.

Our choice for 1/TI is a factor of 20 lower than 1/TD; that is,
1/TI = 0.005. A factor less than 20 would negatively impact the phase at
crossover, thus lowering the PM. Furthermore, it is generally desirable
to keep the compensated magnitude as large as possible at frequencies
below ωc in order to have a faster transient response and smaller errors;
maintaining 1/TD and 1/TI at the highest possible frequencies will bring
this about. An alternate approach for this problem would have been to
pick 1/TD = 0.05 in order to have a larger phase increase. This would
have allowed a higher value of 1/TI which would have provided for a
faster response of the integral portion of the controller. Note for this
system that the sensor break point at 2 rad/sec is limiting how high 1/TD

can be selected. Problem 6.63 examines alternate designs for this system.
The only remaining task is to determine the proportional part of

the PID controller, or K. Unlike the system in Example 6.18, where
we selected K in order to meet a steady-state error specification, here
we select a value of K that will yield a crossover frequency at the point
corresponding to the required PM of 65◦. The basic procedure for find-
ing K (discussed in Section 6.6) consists of plotting the compensated
system amplitude with K = 1, finding the amplitude value at crossover,
then setting 1/K equal to that value. Figure 6.68 shows that when K = 1,
|Dc(s)G(s)| = 20 at the desired crossover frequency ωc = 0.5 rad/sec.
Therefore,

1
K
= 20, so K = 1

20
= 0.05.

The compensation equation that satisfies all of the specifications is now
complete:

Dc(s) = 0.05
s

[(10s+ 1)(s+ 0.005)].

It is interesting to note this system would become unstable if the
gain were lowered so that ωc ≤ 0.02 rad/sec, the region in Fig. 6.68
where the phase of the compensated system is less than −180◦. As men-
tioned in Section 6.4, this situation is referred to as a conditionally
stable system. A root locus with respect to K for this and any condition-
ally stable system would show the portion of the locus corresponding to
very low gains in the RHP.

The response of the system for a unit step θcom is found from

T (s) = 

c
= DcG

1+DcGH
,

and is shown in Fig. 6.69(a). It exhibits well damped behavior, as should
be expected with a 65◦ PM. The response of the system for a step
disturbance torque of Td is found from
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Figure 6.69
Transient response for PID example: (a) unit step command response; (b) step torque disturbance
response



Td
= G

1+DcGH
.

Very low values of disturbance torques exist in space, for example a
constant Td = 0.0175 N-m yields the response shown in Fig. 6.69(b).
Note that the integral control term does eventually drive the error to
zero; however, it is slow due to the presence of a closed-loop pole and
zero both in the vicinity of s = −0.005. They resulted from the integral
term 1/TI being located slow enough to not impact the PM unduly. If the
slow disturbance response is not acceptable, increasing 1/TI will speed
up the response; however, it will also decrease the PM and damping
of the system. Alternatively, it would also be possible to select a lower
value of 1/TD, thus giving some extra PM and allowing for a higher
value of 1/TI without sacrificing the desired PM. Problem 6.63 provides
the reader with the opportunity to examine other design possibilities for
this system.

The sensitivity function, S, represents a general indication of the
response of a system to errors and is often plotted along with the closed-
loop frequency response. The frequency response of T (s) and S(s) [Eqs.
(4.12) and (4.13)] for the system are shown in Fig. 6.70, where

S(s) = 1
1+DcGH

.

When these two curves cross the magnitude 0.707 (−3 db) line, the val-
ues of ωBW and ωDRB are determined as shown in the figure. The result
is that ωBW = 0.7 rad/sec and ωDRB = 0.3 rad/sec. Most disturbances
on satellites have a periodicitiy at the orbital rate of 0.001 rad/sec. We
see from the figure that the sensitivity function, S, is approximately 10−5

at that frequency, which implies a large attenuation of errors. There is
decreasing error attenuation as the disturbance frequency increases, and
there is almost no error attenuation at the system bandwidth of ≈0.7
rad/sec, as you would expect. Another guide to the errors on orbit is
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Figure 6.70
Frequency responses of
the closed-loop transfer
function, ( jω), and
the sensitivity function,
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apparent from Fig. 6.69(b). Here we see a step error essentially dies

T

S

out to zero in approximately 1000 sec due to the integral control fea-
ture. This compares with the orbital period of 100 min, or 6000 sec.
Therefore, we see orbital disturbances will be heavily attenuated by this
controller.

Note from the design process that the bandwidth was limited by
the response characteristics of the sensor, which had a bandwidth of
2 rad/sec. Therefore, the only way to improve the error characteristics
would be to increase the bandwidth of the sensor. On the other hand,
increasing the bandwidth of the sensor may introduce jitter from the
high-frequency sensor noise. Thus we see one of the classic trade-off
dilemmas: the designer has to make a judgment as to which feature (low
errors due to disturbances or low errors due to sensor noise) is the more
important to the overall system performance.

Summary of
Compensation
Characteristics

1. PD control adds phase lead at all frequencies above the break
point. If there is no change in gain on the low-frequency
asymptote, PD compensation will increase the crossover fre-
quency and the speed of response. The increase in magnitude
of the frequency response at the higher frequencies will increase
the system’s sensitivity to noise.

2. Lead compensation adds phase lead at a frequency band
between the two break points, which are usually selected to
bracket the crossover frequency. If there is no change in gain on
the low-frequency asymptote, lead compensation will increase
both the crossover frequency and the speed of response over
the uncompensated system.
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3. PI control increases the frequency-response magnitude at fre-
quencies below the break point, thereby decreasing steady-
state errors. It also contributes phase lag below the break
point, which must be kept at a low enough frequency to avoid
degrading the stability excessively.

4. Lag compensation increases the frequency-response magnitude
at frequencies below the two break points, thereby decreasing
steady-state errors. Alternatively, with suitable adjustments in
K, lag compensation can be used to decrease the frequency-
response magnitude at frequencies above the two break points,
so that ωc yields an acceptable PM. Lag compensation also
contributes phase lag between the two break points, which
must be kept at frequencies low enough to keep the phase
decrease from degrading the PM excessively. This compensa-
tion will typically provide a slower response than using lead
compensation.

6.7.6 Design Considerations
We have seen in the preceding designs that characteristics of the open-
loop Bode plot of the loop gain, L(s) (= KDcG), determine perfor-
mance with respect to steady-state errors, low-frequency errors, and
dynamic response including stability margins. Other properties of feed-
back, developed in Chapter 4, include reducing the effects of sensor
noise and parameter changes on the performance of the system.

The consideration of steady-state errors or low-frequency errors
due to command inputs and disturbances has been an important
design component in the different design methods presented. Design
for acceptable errors due to command inputs and disturbances can be
thought of as placing a lower bound on the low-frequency gain of the
open-loop system. Another aspect of the sensitivity issue concerns the
high-frequency portion of the system. So far, Chapter 4 and Sections 5.4
and 6.7 have briefly discussed the idea that, to alleviate the effects of
sensor noise, the gain of the system at high frequencies must be kept low.
In fact, in the development of lead compensation, we added a pole to
pure derivative control specifically to reduce the effects of sensor noise
at the higher frequencies. It is not unusual for designers to place an extra
pole in the compensation, that is, to use the relation

Dc(s) = TDs+ 1
(αTDs+ 1)2

,

in order to introduce even more attenuation for noise reduction.
A second consideration affecting high-frequency gains is that many

systems have high-frequency dynamic phenomena, such as mechani-
cal resonances, that could have an impact on the stability of a system.
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In very-high-performance designs, these high-frequency dynamics are
included in the plant model, and a compensator is designed with a spe-
cific knowledge of those dynamics. A standard approach to designing
for unknown high-frequency dynamics is to keep the high-frequency
gain low, just as we did for sensor-noise reduction. The reason for
this can be seen from the gain–frequency relationship of a typical sys-
tem, as shown in Fig. 6.71. The only way instability can result from
high-frequency dynamics is if an unknown high-frequency resonance
causes the magnitude to rise above 1. Conversely, if all unknown high-
frequency phenomena are guaranteed to remain below a magnitude
of 1, stability can be guaranteed. The likelihood of an unknown res-
onance in the plant G rising above 1 can be reduced if the nominal
high-frequency loop gain (L) is lowered by the addition of extra poles
in Dc(s). When the stability of a system with resonances is assured
by tailoring the high-frequency magnitude never to exceed 1, we refer
to this process as amplitude or gain stabilization. Of course, if theGain stabilization
resonance characteristics are known exactly, a specially tailored com-
pensation, such as one with a notch at the resonant frequency, can
be used to change the phase at a specific frequency to avoid encir-
clements of −1, thus stabilizing the system even though the amplitude
does exceed magnitude 1. This method of stabilization is referred to as
phase stabilization. A drawback to phase stabilization is that the res-Phase stabilization
onance information is often not available with adequate precision or
varies with time; therefore, the method is more susceptible to errors in
the plant model used in the design. Thus, we see sensitivity to plant
uncertainty and sensor noise are both reduced by sufficiently low loop
gain at high-frequency.

These two aspects of sensitivity—high- and low-frequency beha-
vior—can be depicted graphically, as shown in Fig. 6.72. There is a
minimum low-frequency gain allowable for acceptable steady-state and
low-frequency error performance, and a maximum high-frequency gain
allowable for acceptable noise performance and for low probability
of instabilities caused by plant-modeling errors. We define the low-
frequency lower bound on the frequency response as W1 and the upper

Figure 6.71
Effect of high-frequency
plant uncertainty
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bound as W−1
2 , as shown in the figure. Between these two bounds the

control engineer must achieve a gain crossover near the required band-
width; as we have seen, the crossover must occur at a slope of −1 or
slightly steeper for good PM and hence damping.

For example, if a control system was required to follow a sinusoidal
reference input with frequencies from 0 to ω1 with errors no greater
than 1%, the function W1 would be 100 from ω = 0 to ω1. Similar ideas
enter into defining possible values for the W−1

2 function which would
constrain the open-loop gain to be below W−1

2 for frequencies above
ω2. These ideas will be discussed further in the following subsections.

6.7.7 Specifications in Terms of the Sensitivity Function
We have seen how the gain and phase margins give useful information

�
about the relative stability of nominal systems and can be used to guide
the design of lead and lag compensations. However, the GM and PM
are only two numbers and have limitations as guides to the design of
realistic control problems. We can express more complete design speci-
fications in the frequency domain if we first give frequency descriptions
for the external signals, such as the reference and disturbance, and con-
sider the sensitivity function defined in Section 4.1. For example, we
have so far described dynamic performance by the transient response
to simple steps and ramps. A more realistic description of the actual
complex input signals is to represent them as random processes with
corresponding frequency power density spectra. A less sophisticated
description, which is adequate for our purposes, is to assume the signals
can be represented as a sum of sinusoids with frequencies in a speci-
fied range. For example, we can usually describe the frequency content
of the reference input as a sum of sinusoids with relative amplitudes
given by a magnitude function |R|, such as that plotted in Fig. 6.73,
which represents a signal with sinusoidal components having about the
same amplitudes up to some value ω1 and very small amplitudes for

Figure 6.72
Design criteria for low
sensitivity
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Figure 6.73
Plot of typical reference
spectrum
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frequencies above that. With this assumption, the response tracking
specification can be expressed by a statement such as “the magnitude
of the system error is to be less than the bound eb (a value such as 0.01)
for any sinusoid of frequency ωo in the range 0 ≤ ωo ≤ ω1 with ampli-
tude given by |R( jωo)|.” To express such a performance requirement in
terms that can be used in design, we consider again the unity-feedback
system drawn in Fig. 6.74. For this system, the error is given by

E( jω) = 1
1+DcG

R �= S( jω)R, (6.50)

where we have used the sensitivity functionSensitivity function

S �= 1
1+DcG

. (6.51)

In addition to being the factor multiplying the system error, the sen-
sitivity function is also the reciprocal of the distance of the Nyquist
curve, DcG, from the critical point −1. A large value for S indicates a
Nyquist plot that comes close to the point of instability. The frequency-
based error specification based on Eq. (6.50) can be expressed as |E| =
|S| |R| ≤ eb. In order to normalize the problem without needing to

Figure 6.74
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Figure 6.75
Plot of example
performance function,
W1
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define both the spectrum R and the error bound each time, we define
the real function of frequency W1(ω) = |R| /eb and the requirement
can be written as

|S|W1 ≤ 1. (6.52)

EXAMPLE 6.21 Performance Bound Function

A unity-feedback system is to have an error less than 0.005 for all unity
amplitude sinusoids below frequency 100 Hertz. Draw the performance
frequency function W1(ω) for this design.

Solution. The spectrum, from the problem description, is unity for 0 ≤
ω ≤ 200π rad/sec. Because eb = 0.005, the required function is given
by a rectangle of amplitude 1/0.005 = 200 over the given range. The
function is plotted in Fig. 6.75.

The expression in Eq. (6.52) can be translated to the more famil-
iar Bode plot coordinates and given as a requirement on loop gain
by observing that over the frequency range when errors are small the
loop gain is large. In that case |S| ≈ 1/|DcG|, and the requirement is
approximately

W1

|DcG| ≤ 1,

|DcG| ≥W1. (6.53)
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This requirement can be seen as an extension of the steady-state error
requirement from just ω = 0 to the range 0 ≤ ωo ≤ ω1.

In addition to the requirement on dynamic performance, the
designer is usually required to design for stability robustness. By thisStability robustness
we mean that, while the design is done for a nominal plant transfer
function, the actual system is expected to be stable for an entire class of
transfer functions that represents the range of changes that are expected
to be faced as temperature, age, and other operational and environmen-
tal factors vary the plant dynamics from the nominal case. A realistic
way to express this uncertainty is to describe the plant transfer function
as having a multiplicative uncertainty:

G( jω) = Go( jω)[1+W2(ω)�( jω)]. (6.54)

In Eq. (6.54), the real function W2 is a magnitude function that
expresses the size of changes as a function of frequency that the trans-
fer function is expected to experience. In terms of G and Go, the
expression is

W2 =
∣∣∣∣
G − Go

Go

∣∣∣∣ . (6.55)

The shape of W2 is almost always very small for low frequencies (we
know the model very well there) and increases substantially as we go
to higher frequencies, where unmodeled system dynamics are com-
mon. A typical shape is sketched in Fig. 6.76. The complex function,
�( jω), represents the uncertainty in phase and is restricted only by the
constraint

0 ≤ |�| ≤ 1. (6.56)

Figure 6.76
Plot of typical plant
uncertainty, W2
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We assume the nominal design has been done and is stable, so that the
Nyquist plot of DcGo satisfies the Nyquist stability criterion. In this
case, the nominal characteristic equation 1 + DcGo = 0 is never satis-
fied for any real frequency. If the system is to have stability robustness,
the characteristic equation using the uncertain plant as described by
Eq. (6.54) must not go to zero for any real frequency for any value of�.
The requirement can be written as

1+DcG �= 0, (6.57)

1+DcGo[1+W2�] �= 0,

(1+DcGo)(1+ T W2�) �= 0,

where we have defined the complementary sensitivity function asComplementary sensitivity
function T ( jω) �=DcGo/(1+DcGo) = 1− S. (6.58)

Because the nominal system is stable, the first term in Eq. (6.57),
(1 + DcGo), is never zero. Thus, if Eq. (6.57) is not to be zero for any
frequency and any �, then it is necessary and sufficient that

|T W2�| < 1,

which reduces to
|T |W2 < 1, (6.59)

making use of Eq. (6.56). As with the performance specification, for
single-input–single-output unity-feedback systems this requirement can
be approximated by a more convenient form. Over the range of high fre-
quencies where W2 is non-negligible because there is significant model
uncertainty, DcGo is small. Therefore we can approximate T ≈ DcGo,
and the constraint reduces to

|DcGo|W2 < 1,

|DcGo| < 1
W2

. (6.60)

The robustness issue is important to design and can affect the high-
frequency open-loop frequency response, as discussed earlier. However,
as also discussed earlier, it is important to limit the high-frequency
magnitude in order to attenuate noise effects.

EXAMPLE 6.22 Typical Plant Uncertainty

The uncertainty in a plant model is described by a function W2 that is
zero until ω = 3000, increases linearly from there to a value of 100
at ω = 10,000, and remains at 100 for higher frequencies. Plot the
constraint on DcGo to meet this requirement.

Solution. Where W2 = 0, there is no constraint on the magnitude of
loop gain; above ω = 3000, 1/W2 = DcGo is a hyperbola from ∞ to
0.01 at ω = 10,000 and remains at 0.01 for ω > 10,000. The bound is
sketched in Fig. 6.77.
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Figure 6.77
Plot of constraint on
|DcGo|(= |W−12 |)
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In practice, the magnitude of the loop gain is plotted on log–log
(Bode) coordinates, and the constraints of Eqs. (6.53) and (6.60) are
included on the same plot. A typical sketch is drawn in Fig. 6.72. The
designer is expected to construct a loop gain that will stay above W1 for
frequencies below ω1, cross over the magnitude 1 line (|DcG| = 0) in the
range ω1 ≤ ω ≤ ω2, and stay below 1/W2 for frequencies above ω2.

6.7.8 Limitations on Design in Terms of the Sensitivity
Function

One of the major contributions of Bode was to derive important

�

limitations on transfer functions that set limits on achievable design
specifications. For example, one would like to have the system error kept
small for the widest possible range of frequencies, and yet have a system
that is robustly stable for a very uncertain plant. In terms of the plot in
Fig. 6.78, we want W1 and W2 to be very large in their respective fre-
quency ranges, and for ω1 to be pushed up close to ω2. Thus the loop
gain is expected to plunge with a large negative slope from being greater
than W1 to being less than 1/W2 in a very short span, while maintain-
ing a good PM to assure stability and good dynamic performance. The
Bode gain–phase formula given earlier shows that this is impossible with
a linear controller, by showing that the minimum possible phase is deter-
mined by an integral depending on the slope of the magnitude curve. If
the slope is constant for a substantial range around ωo, then Eq. (6.34)
can be approximated by

φ(ωo) ≈ π

2
dM
du

∣∣∣∣
u=0

, (6.61)
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Figure 6.78
Tracking and stability
robustness constraints
on the Bode plot; an
example of impossible
constraints
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where M is the log magnitude and u = logω/ωo. If, for example,
the phase is to be kept above −150◦ to maintain a 30◦ PM, then the
magnitude slope near ωo is estimated to be

dM
du
≈ 2
π

(
−150

π

180

)

≈ −1.667.
If we try to make the average slope steeper (more negative) than this,
we will lose the PM. From this condition, the design rule was developed
that the asymptotes of the Bode plot magnitude, which are restricted
to be integral values for rational functions, should be made to cross
over the zero-db line at a slope of −1 over a frequency range of about
one decade around the crossover frequency, as already discussed in
Section 6.5. Modifications to this rule need to be made in particular
cases, of course, but the limitation implied by Eq. (6.61) is a hard limit
that cannot be avoided. Thus, it is clear that it would be impossible to
stabilize the system of Fig. 6.78.

EXAMPLE 6.23 Robustness Constraints

If W1 =W2 = 100, and we want PM = 30◦, what is the minimum ratio
of ω2/ω1?

Solution. The slope is
log W1 − log 1

W2

logω1 − logω2
= 2+ 2

log ω1
ω2

= −1.667.

Thus, the log of the ratio is logω1/ω2 = −2.40 and ω2 = 251ω1.
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An alternative to the standard Bode plot as a design guide can be
based on a plot of the sensitivity function as a function of frequency. In
this format, Eq. (6.52) requires that |S| < 1

W1
over the range 0 ≤ ω ≤ ω1

for performance, and Eq. (6.60) requires that |S| ≈ 1 over the range
ω2 ≤ ω for stability robustness. It should come as no surprise that Bode
found a limitation on the possibilities in this case, too. The constraint,
extended by Freudenberg and Looze (1985), shows that an integral of
the sensitivity function is determined by the presence of poles in the
RHP. Suppose the loop gain DcGo has np poles, pi, in the RHP and
“rolls off” at high frequencies at a slope faster than −1. For rational
functions, this means that there is an excess of at least two more finite
poles than zeros. Then it can be shown that

∫ ∞
0

ln(|S|) dω = π
np∑

i=1

Re{pi}. (6.62)

If there are no RHP poles, then the integral is zero. This means that
if we make the log of the sensitivity function very negative over some
frequency band to reduce errors in that band, then, of necessity, ln |S|
will be positive over another part of the band, and errors will be ampli-
fied there. This characteristic is sometimes referred to as the “water bed
effect.” If there are unstable poles, the situation is worse, because theWater bed effect
positive area where sensitivity magnifies the error must exceed the neg-
ative area where the error is reduced by the feedback. If the system is
minimum phase, then it is, in principle, possible to keep the magni-
tude of the sensitivity small by spreading the sensitivity increase over all
positive frequencies to infinity, but such a design requires an excessive
bandwidth and is rarely practical. If a specific bandwidth is imposed,
then the sensitivity function is constrained to take on a finite, possibly
large, positive value at some point below the bandwidth. As implied by
the definition of the vector margin (VM) in Section 6.4 (Fig. 6.38), aVector margin
large Smax corresponds to a Nyquist plot that comes close to the −1
critical point and a system having a small vector margin, because

VM = 1
Smax

. (6.63)

If the system is not minimum-phase, the situation is worse. An alter-
native to Eq. (6.62) is true if there is a nonminimum-phase zero of DcGo,
a zero in the RHP. Suppose the zero is located at zo = σo + jωo, where
σo > 0. Again, we assume there are np RHP poles at locations pi with
conjugate values pi. Now, the condition can be expressed as a two-sided
weighted integral

∫ ∞
−∞

ln(|S|) σo

σ 2
o + (ω − ωo)2

dω = π
np∑

i=1

ln

∣∣∣∣
pi + zo

pi − zo

∣∣∣∣ . (6.64)

In this case, we do not have the “roll-off” restriction, and there is no
possibility of spreading the positive area over high frequencies, because
the weighting function goes to zero with frequency. The important point
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Figure 6.79
Sensitivity function for
Example 6.24
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about this integral is that if the nonminimum-phase zero is close to a
RHP pole, the right side of the integral can be very large, and the excess
of positive area is required to be correspondingly large. Based on this
result, one expects especially great difficulty meeting both tracking and
robustness specifications on sensitivity with a system having RHP poles
and zeros close together.

EXAMPLE 6.24 Sensitivity Function for Antenna

Compute and plot the sensitivity function for the design of the antenna
for which G(s) = 1/s(s+ 1) and Dc(s) = 10(0.5s+ 1)/(0.1s+ 1).

Solution. The sensitivity function for this case is

S = s(s+ 1)(s+ 10)
s3 + 11s2 + 60s+ 100

, (6.65)

and the plot shown in Fig. 6.79 is given by the Matlab commands

s = tf('s');
sysS = s*(s + 1)*(s + 10)/(s^3 + 11*s^2 + 60*s + 100);
[mag,ph,w] = bode(sysS);
loglog(w,squeeze(mag)),grid

The largest value of S is given by M = max(mag) and is 1.366, from
which the vector margin is VM = 0.732.

6.8 Time Delay
The Laplace transform of a pure time delay is GD(s) = e−sTd , which can

�
be approximated by a rational function (Padé approximate) as shown in
online Appendix W5.6.3. Although this same approximation could be
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Figure 6.80
Phase lag due to pure
time delay
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used with frequency-response methods, an exact analysis of the delay is
possible.

The frequency response of the delay is given by the magnitude and
phase of e−sTd |s=jω. The magnitude isTime-delay magnitude

|GD( jω)| = |e−jωTd | = 1, for all ω. (6.66)

This result is expected, because a time delay merely shifts the signal inTime-delay phase
time and has no effect on its magnitude. The phase is

∠GD( jω) = −ωTd (6.67)

in radians, and it grows increasingly negative in proportion to the fre-
quency. This, too, is expected, because a fixed time delay Td becomes
a larger fraction or multiple of a sine wave as the period drops, due
to increasing frequency. A plot of ∠GD( jω) is drawn in Fig. 6.80.
Note the phase lag is greater than 270◦ for values of ωTd greater than
about 5 rad. This trend implies it would be virtually impossible to
stabilize a system (or to achieve a positive PM) with a crossover fre-
quency greater than ω = 5/Td , and it would be difficult for frequencies
greater than ω ∼= 3/Td . These characteristics essentially place a con-
straint on the achievable bandwidth of any system with a time delay.
(See Problem 6.64 for an illustration of this constraint.)

The frequency domain concepts such as the Nyquist criterion apply
directly to systems with pure time delay. This means that no approxima-
tions (Padé type or otherwise) are needed and the exact effect of time
delay can be applied to a Bode plot, as shown in the following example.

EXAMPLE 6.25 Effect of Sampling on Stability

When implementing a control system with a digital computer to create
compensation, the output of the plant is sampled periodically, used for
computer calculations, then output as the control at the same sample
rate. The effect of this is to create a delay that, on average, is half the
sample period, Ts. Determine the effect on the PM in Example 6.15 if
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it were implemented with a digital controller with a sample period of
Ts = 0.05 sec and estimate what that would do to the step response
overshoot. How slowly could you sample if it was necessary to limit the
decrease in the PM to less than 20◦?
Solution. A sample period of Ts = 0.05 sec will inject a time delay of
Ts/2 = 0.05/2 = 0.025 = Td sec. From Eq. (6.67), we see the phase lag
due to this sampling at Example 6.15’s crossover frequency of 5 rad/sec,
where we measure the PM, is ∠GD = −ωTd = −(5)(0.025) = −0.125
rad= −7◦. Therefore, the PM will decrease from 53◦ for the continuous
implementation to approximately 46◦ for the digital implementation.
Figure 6.37 shows that the overshoot, Mp, will be degraded from≈16%
to ≈22%. This is a very approximate analysis, but gives a rough idea
of what to expect when implementing a controller via sampling and a
digital computer.

In order to limit the phase lag to 20◦ at ω = 5 rad/sec, we see from
Eq.(6.67) that the maximum tolerable Td = 20/(5 ∗ 57.3) = 0.07 sec, so
the slowest sampling acceptable would be Ts = 0.14 sec. Note, however,
this large decrease in the PM would result in the overshoot increasing
from ≈20% to ≈40%.

The example illustrates that a time delay, whether introduced by
digital sampling or by any other source, has a very severe effect on the
achievable bandwidth. Evaluation of the effect using Eq. (6.67) or Fig.
6.80 is simple and straightforward, thus giving a quick analysis of the
limitations imposed by any delay in the system.

6.8.1 Time Delay via the Nyquist Diagram
One can also evaluate the effect of a time delay using a Nyquist
diagram, and this is shown in Appendix W6.8.1 available online at
www.pearsonglobaleditions.com.

6.9 Alternative Presentation of Data
Other ways to present frequency-response data have been developed to

�
aid both in understanding design issues and in easing the designer’s
work load. Their use in easing the work load has largely been
eliminated with the common use of computer-aided design; how-
ever, one technique that continues to be widely used in the design
process is the Nichols chart. For those interested, we also present
the inverse Nyquist method in online Appendix W6.9.2 available at
www.pearsonglobaleditions.com.

6.9.1 Nichols Chart
A rectangular plot of log |G( jω)| versus ∠G( jω) can be drawn by sim-
ply transferring the information directly from the separate magnitude

www.pearsonglobaleditions.com
www.pearsonglobaleditions.com
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and phase portions in a Bode plot; one point on the new curve thus
results from a given value of the frequency ω. This means the new curve
is parameterized as a function of frequency. As with the Bode plots, the
magnitude information is plotted on a logarithmic scale, while the phase
information is plotted on a linear scale. This template was suggested by
N. Nichols and is usually referred to as a Nichols chart. The idea of plot-
ting the magnitude of G( jω) versus its phase is similar to the concept of
plotting the real and imaginary parts of G( jω), which formed the basis
for the Nyquist plots shown in Sections 6.3 and 6.4. However, it is dif-
ficult to capture all the pertinent characteristics of G( jω) on the linear
scale of the Nyquist plot. The log scale for magnitude in the Nichols
chart alleviates this difficulty, allowing this kind of presentation to be
useful for design.

For any value of the complex transfer function G( jω), Section 6.6
showed there is a unique mapping to the unity-feedback closed-loop
transfer function

T ( jω) = G( jω)
1+ G( jω)

, (6.68)

or in polar form,
T ( jω) =M(ω)e jα(ω), (6.69)

where M(ω) is the magnitude of the closed-loop transfer function and
α(ω) is the phase of the closed-loop transfer function. Specifically, let
us define M and N such that

M =
∣∣∣∣

G
1+ G

∣∣∣∣ , (6.70)

α = tan−1(N) = ∠ G
1+ G

. (6.71)

It can be proven that the contours of constant closed-loop magni-
tude and phase are circles when G( jω) is presented in the linear Nyquist
plot. These circles are referred to as the M and N circles, respectively.M and N circles

The Nichols chart also contains contours of constant closed-
loop magnitude and phase based on these relationships, as shown in
Fig. 6.81; however, they are no longer circles, because the Nichols charts
are semilog plots of magnitude versus linear phase. A designer can
therefore graphically determine the bandwidth of a closed-loop system
from the plot of the open-loop data on a Nichols chart by noting where
the open-loop curve crosses the 0.70 contour of the closed-loop mag-
nitude and determining the frequency of the corresponding data point.
Likewise, a designer can determine the resonant-peak amplitude Mr by
noting the value of the magnitude of the highest closed-loop contour
tangent to the curve. The frequency associated with the magnitude and
phase at the point of tangency is sometimes referred to as the resonantResonant frequency
frequency ωr. Similarly, a designer can determine the GM by observing
the value of the gain where the Nichols plot crosses the −180◦ line, and
the PM by observing the phase where the plot crosses the amplitude
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Figure 6.81
Nichols chart

1 line.15 Matlab provides for easy drawing of a Nichols chart via the
nichols command.

EXAMPLE 6.26 Nichols Chart for PID Example

Determine the a) bandwidth, b) resonant-peak magnitude, and c) PM
of the compensated system whose frequency response is shown in
Fig. 6.68.

Solution. The open-loop magnitude and phase information of the com-
pensated design example seen in Fig. 6.68 is shown on a Nichols chart in
Fig. 6.82. When comparing the two figures, it is important to divide the
magnitudes in Fig. 6.68 by a factor of 20 in order to obtain |Dc(s)G(s)|
rather than the normalized values used in Fig. 6.68. Because the curve

15James, H. M., N. B. Nichols, and R. S. Phillips (1947).
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Figure 6.82
Nichols chart for determining bandwidth, Mr , and PM for Example 6.26

crosses the closed-loop magnitude 0.70 contour at ω = 0.8 rad/sec, we
see that the bandwidth of this system is 0.8 rad/sec. The PM is deter-
mined by the phase when the curve crosses the magnitude = 1 line.
Because the largest-magnitude contour touched by the curve is 1.20, we
also see that Mr = 1.2.

EXAMPLE 6.27 Stability Margins from Nichols Chart for Complex System

For the system of Example 6.13, whose Nyquist plot is shown in
Fig. 6.41, determine the PM and GM using the Nichols plot. Comment
on which margin is the more critical.

Solution. Figure 6.83 shows a Nichols chart with frequency-response
data from Fig. 6.42. Note the PM for the magnitude 1 crossover fre-
quency is 37◦ and the GM is 1.26 (= 1/0.8). It is clear from this
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Nichols chart of the complex system in Examples 6.13 and 6.27

presentation of the data that the most critical portion of the curve is
where it crosses the −180◦ line; hence, the GM is the most relevant
stability margin in this example.

For complex systems for which the −1 encirclements need to be
evaluated, the magnitude log scale of the Nichols chart enables us to
examine a wider range of frequencies than a Nyquist plot does, as well
as allowing us to read the gain and phase margins directly. Although
Matlab will directly compute PM and GM, the algorithm may lead to
suspicious results for very complex cases, and the analyst may want
to verify the result using the Matlab nichols m-file so the actual encir-
clements can be examined and the bases for the PM and GM better
understood. In some cases, the specifications for the desired marginsExclusion zone for a

stability specification are stated in terms of an “exclusion zone” around the −1 point on the
Nichols chart (magnitude =1, phase = −180◦). The zone is typically



main_1 — 2019/2/5 — 16:00 — page 450 — #98

450 Chapter 6 The Frequency-Response Design Method

an ellipse or similar shape with the vertical and horizontal axes limits
given. To satisfy the specification, the frequency-response data on the
Nichols chart must not pierce any portion of the ellipse; thus, this sort
of stability margin requirement is similar to the vector margin described
in Section 6.7.8

Historically, the Nichols chart was used to aid the design process
when done without benefit of a computer. A change in gain, for exam-
ple, can be evaluated by sliding the curve vertically on transparent paper
over a standard Nichols chart as shown in Fig. 6.81. The GM, PM, and
bandwidth were then easy to read off the chart, thus allowing evalua-
tions of several values of gain with a minimal amount of effort. With
access to computer-aided methods, however, we can now calculate the
bandwidth and perform many repetitive evaluations of the gain or any
other parameter with a few key strokes. Some modern design tech-
niques, such as the Quantitative Feedback Theory (“QFT,” Horowitz
and Sidi, 1992), still heavily rely on the Nichols chart as the central tool
to guide the feedback design.

6.9.2 The Inverse Nyquist Diagram
The inverse Nyquist diagram simplifies a determination of the stability
margins and has been used in the past. It is described in more detail in
Appendix W6.9.2 available online at www.pearsonglobaleditions.com.

6.10 Historical Perspective
As discussed in Chapter 5, engineers before 1960s did not have access
to computers to help in their analyses. Therefore, any method that
allowed the determination of stability or response characteristics that
did not require factoring the characteristic equation was highly use-
ful. The invention of the electronic feedback amplifier by H. S. Black
in 1927 at Bell Telephone Laboratories provided extra incentive to
develop methods for feedback control design, and the development
of the frequency-response method was the first that enabled design
iteration for this purpose.

The development of the feedback amplifier is briefly described
in an interesting article based on a talk by Hendrik W. Bode (1960)
reproduced in Bellman and Kalaba (1964). With the introduction of
electronic amplifiers, long-distance telephoning became possible in the
decades following World War I. However, as distances increased, so
did the loss of electrical energy; in spite of using larger-diameter wire,
increasing numbers of amplifiers were needed to replace the lost energy.
Unfortunately, large numbers of amplifiers resulted in much distortion
since the small nonlinearity of the vacuum tubes then used in electronic
amplifiers was multiplied many times. To solve the problem of reduc-
ing distortion, Black proposed the feedback amplifier. As discussed
in Chapter 4, the more we wish to reduce errors (or distortion), the

www.pearsonglobaleditions.com
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higher the feedback needs to be. The loop gain from actuator to plant
to sensor to actuator must be made very large. But the designers found
that too high a gain produced a squeal and the feedback loop became
unstable. In this technology, the dynamics were so complex (with differ-
ential equations of order 50 being common) that Routh’s criterion, the
only way of solving for stability at the time, was not very helpful. So
the communications engineers at Bell Telephone Laboratories, familiar
with the concept of frequency response and the mathematics of complex
variables, turned to complex analysis. In 1932, H. Nyquist published a
paper describing how to determine stability from a graphical plot of the
open-loop frequency response. Bode then developed his plotting meth-
ods in 1938 that made them easy to create without extensive calculations
or help from a computer. From the plotting methods and Nyquist’s sta-
bility theory, an extensive methodology of feedback amplifier design
was developed by Bode (1945) and extensively used still in the design of
feedback controls. The reasons for using the method today are primar-
ily to allow for a good design no matter what the unmodeled dynamics
are, to expedite the design process even when carried out with a com-
puter that is fully capable of solving the characteristic equation, and
to provide a visual tool to examine the design. After developing the
frequency-response design methods prior to World War II, Bode went
on to help in electronic fire control devices during the war. The methods
that he had developed for feedback amplifiers proved highly applicable
to servomechanisms for the effort. Bode characterized this crossover of
control system design methods as being a “sort of shotgun marriage.”

SUMMARY

• The frequency-response Bode plot is a graph of the transfer function
magnitude in logarithmic scale and the phase in linear scale versus
frequency in logarithmic scale. For a transfer function G(s),

M = |G( jω)| = |G(s)|s=jω

=
√
{Re[G( jω)]}2 + {Im[G( jω)]}2

φ = tan−1
[

Im[G( jω)]
Re[G( jω)]

]
= ∠G( jω).

• For a transfer function in Bode form,

KG(ω) = K0(jω)n
( jωτ1 + 1)( jωτ2 + 1) · · ·
( jωτa + 1)( jωτb + 1) · · · ,

the Bode frequency response can be easily plotted by hand using
the rules described in Section 6.1.1.

• Bode plots can be obtained using computer algorithms (bode in
Matlab), but hand-plotting skills are still extremely helpful.
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• For a second-order system, the peak magnitude of the Bode plot is
related to the damping by

|G( jω)| = 1
2ζ

at ω = ωn.

• A method of determining the stability of a closed-loop system
based on the frequency response of the system’s open-loop trans-
fer function is the Nyquist stability criterion. Rules for plotting
the Nyquist plot are described in Section 6.3. The number of RHP
closed-loop roots is given by

Z = N + P,

where

N = number of clockwise encirclements of the −1 point,

P = number of open-loop poles in the RHP.

For a stable closed-loop system, Z must be 0, resulting in N = −P.
• The Nyquist plot may be obtained using computer algorithms

(nyquist in Matlab).
• The gain margin (GM) and phase margin (PM) can be determined

directly by inspecting the open-loop Bode plot or the Nyquist plot.
Also, use of Matlab’s margin function determines the values directly.

• For a standard second-order system, the PM is related to the
closed-loop damping by Eq. (6.32),

ζ ∼= PM
100

.

• The bandwidth of the system is a measure of speed of response.
For control systems, it is defined as the frequency corresponding
to 0.707 (−3 db) in the closed-loop magnitude Bode plot and is
approximately given by the crossover frequency ωc, which is the
frequency at which the open-loop gain curve crosses magnitude 1.

• The vector margin is a single-parameter stability margin based on
the closest point of the Nyquist plot of the open-loop transfer
function to the critical point −1/K.

• For a stable minimum-phase system, Bode’s gain–phase relation-
ship uniquely relates the phase to the gain of the system and is
approximated by Eq. (6.33),

∠G( jω) ∼= n× 90◦,

where n is the slope of |G( jω)| in units of decade of amplitude per
decade of frequency. The relationship shows that, in most cases,
stability is ensured if the gain plot crosses the magnitude 1 line with
a slope of −1.

• Experimental frequency-response data of the open-loop system can
be used directly for analysis and design of a closed-loop control
system with no analytical model.
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Figure 6.84
Typical unity feedback
system
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• For the system shown in Fig. 6.84, the open-loop Bode plot is the
frequency response of GDc, and the closed-loop frequency response
is obtained from T (s) = GDc/(1+ GDc).

• The frequency-response characteristics of several types of compen-
sation have been described, and examples of design using these
characteristics have been discussed. Design procedures were given
for lead and lag compensators in Section 6.7. The examples in that
section show the ease of selecting specific values of design vari-
ables, a result of using frequency-response methods. A summary
was provided at the end of Section 6.7.5.

• Lead compensation, given by Eq. (6.38),

Dc(s) = TDs+ 1
αTDs+ 1

, α < 1,

is a high-pass filter and approximates PD control. It is used when-
ever substantial improvement in damping of the system is required.
It tends to increase the speed of response of a system for a fixed
low-frequency gain.

• Lag compensation, given by Eq. (6.47),

Dc(s) = α TI s+ 1
αTI s+ 1

, α > 1, (6.72)

is a low-pass filter and approximates PI control. It is usually
used to increase the low-frequency gain of the system so as to
improve steady-state response for fixed bandwidth. For a fixed low-
frequency gain, it will decrease the speed of response of a system.

• PID compensation can be viewed as a combination of lead and lag
compensation.

• Tracking-error reduction and disturbance rejection can be specified
in terms of the low-frequency gain of the Bode plot. Sensor-noise
rejection can be specified in terms of high-frequency attenuation of
the Bode plot (see Fig. 6.72).

• The Nichols plot is an alternate representation of the frequency�
response as a plot of gain versus phase and is parameterized as a
function of frequency.

• Time delay can be analyzed exactly in a Bode plot or a Nyquist plot.�

REVIEW QUESTIONS

6.1 Why did Bode suggest plotting the magnitude of a frequency response on
log–log coordinates?
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6.2 Define a decibel.

6.3 What is the transfer-function magnitude if the gain is listed as 14 db?

6.4 Define gain crossover.

6.5 Define phase crossover.

6.6 Define phase margin, PM.

6.7 Define gain margin, GM.

6.8 What Bode plot characteristic is the best indicator of the closed-loop step
response overshoot?

6.9 What Bode plot characteristic is the best indicator of the closed-loop step
response rise time?

6.10 What is the principal effect of a lead compensation on Bode plot
performance measures?

6.11 What is the principal effect of a lag compensation on Bode plot perfor-
mance measures?

6.12 How do you find the Kv of a Type 1 system from its Bode plot?

6.13 Why do we need to know beforehand the number of open-loop unstable
poles in order to tell stability from the Nyquist plot?

6.14 What is the main advantage in control design of counting the encir-
clements of −1/K of Dc( jω)G( jω) rather than encirclements of −1 of
KDc( jω)G( jω)?

6.15 Define a conditionally stable feedback system. How can you identify one
on a Bode plot?

6.16 A certain control system is required to follow sinusoids, which may be�
any frequency in the range 0 ≤ ω� ≤ 450 rad/sec and have amplitudes up
to 5 units, with (sinusoidal) steady-state error to be never more than 0.01.
Sketch (or describe) the corresponding performance function W1(ω).

PROBLEMS

Problems for Section 6.1: Frequency Response

6.1 (a) Show α0 in Eq. (6.2), with A = Uo and ωo = ω, is

α0 =
[

G(s)
U0ω

s− jω

]∣∣∣∣
s=−jω

= −U0G(−jω)
1
2j

,

and

α∗
0
=
[

G(s)
U0ω

s+ jω

]∣∣∣∣
s=+jω

= U0G( jω)
1
2j

.

(b) By assuming the output can be written as

y(t) = α0 e−jωt + α∗
0

e jωt,

derive Eqs. (6.4)–(6.6).

6.2 (a) Calculate the magnitude and phase of

G(s) = 1
s+ 7

by hand for ω = 1, 2, 7, 10, 20, 50, and 100 rad/sec.
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(b) Sketch the asymptotes for G(s) according to the Bode plot rules, and
compare these with your computed results from part (a).

6.3 Sketch the asymptotes of the Bode plot magnitude and phase for each
of the following open loop transfer functions. After completing the hand
sketches verify your results using Matlab. Turn in your hand sketches and
the Matlab results on the same scales.

(a) L(s) = 6000
s(s+ 300)

(b) L(s) = 500
s(0.2s+ 1)(0.1s+ 1)

(c) L(s) = 1
s(5s+ 1)(s+ 40)

(d) L(s) = 5000
(s+ 7)(s+ 18)3

(e) L(s) = 10(s+ 2)
s(s+ 20)(s+ 200)

(f) L(s) = 2(s+ 0.3)
s(s+ 0.1)(s+ 0.5)2

(g) L(s) = (s+ 17)(s+ 13)
s(s+ 52)(s+ 5)

(h) L(s) = 10s(s+ 50)
(s+ 10)(s+ 70)

(i) L(s) = 1000s
(s+ 2)(s+ 60)(s+ 500)

6.4 Real poles and zeros. Sketch the asymptotes of the Bode plot magnitude
and phase for each of the following open-loop transfer functions. After
completing the hand sketches verify your results using Matlab. Turn in
your hand sketches and the Matlab results on the same scales.

(a) L(s) = 5
s(s+ 4)(s+ 9)(s+ 17)

(b) L(s) = 5(s+ 12)
s(s+ 4)(s+ 9)(s+ 17)

(c) L(s) = 5(s+ 7)(s+ 12)
s(s+ 4)(s+ 9)(s+ 17)

(d) L(s) = 5(s+ 7)(s+ 1)
s(s+ 4)(s+ 9)(s+ 17)

6.5 Complex poles and zeros. Sketch the asymptotes of the Bode plot magni-
tude and phase for each of the following open-loop transfer functions.
After completing the hand sketches verify your results using Matlab.
Turn in your hand sketches and the Matlab results on the same scales.

(a) L(s) = 1
s2+ 4s+ 21

(b) L(s) = 1
s(s2+ 2s+ 9)

(c) L(s) = (s2+ 5s+ 11)
s(s2+ 5s+ 15)

(d) L(s) = (s2+ 1)
s(s2+ 6)

(e) L(s) = (s2+ 6)
s(s2+ 1)
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6.6 Multiple poles at the origin. Sketch the asymptotes of the Bode plot mag-
nitude and phase for each of the following open-loop transfer functions.
After completing the hand sketches, verify your results using Matlab.
Turn in your hand sketches and the Matlab results on the same scales.
(a) L(s) = 1

s2(s+ 0.7)

(b) L(s) = 100
s3(s+ 80)

(c) L(s) = 1
s4(2s+ 5)

(d) L(s) = s+ 7.5
s2(s+ 75)

(e) L(s) = 1.5s+ 1
s3(s+ 0.1)

(f) L(s) = (s+ 9)2

s3(s+ 50)

(g) L(s) = (s+ 0.6)2

s3(s+ 1.3)2

6.7 Mixed real and complex poles. Sketch the asymptotes of the Bode plot
magnitude and phase for each of the following open-loop transfer func-
tions. After completing the hand sketches verify your results using
Matlab. Turn in your hand sketches and the Matlab results on the same
scales.

(a) L(s) = (s+ 0.5)
s(5s+ 1)(s2+ 0.2s+ 0.6)

(b) L(s) = (2s+ 4)
s2(s+ 8)(s2+ 5s+ 27)

(c) L(s) = (s+ 0.75)2

s2(1.2s+ 8.1)(s2+ 5s+ 27)

(d) L(s) = (s+ 50)(2s2+ 5s+ 4)
s2(s+ 5)(s2+ 60s+ 120)

(e) L(s) = [(s+ 2)2+ 2]
s2(s2+ 7s+ 5)

6.8 Right half-plane poles and zeros. Sketch the asymptotes of the Bode
plot magnitude and phase for each of the following open-loop transfer
functions. Make sure the phase asymptotes properly take the RHP singu-
larity into account by sketching the complex plane to see how the ∠L(s)
changes as s goes from 0 to + j∞. After completing the hand sketches
verify your results using Matlab. Turn in your hand sketches and the
Matlab results on the same scales.

(a) L(s) = s+ 4
s+12

1
s2−9

; (The model for a case of magnetic levitation with
lead compensation.)

(b) L(s) = s+ 4
s(s+ 6)

1
s2−22

; (The magnetic levitation system with integral
control and lead compensation.)

(c) L(s) = 11s−7
s2

(d) L(s) = s2+ 4s+3
s(s+2.5)2(s2−3s+5)
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(e) L(s) = (s+ 7.5)
s(s−0.5)(s+ 20)2

(f) L(s) = 1
(s−9)[(s+ 2)2+ 5)]

6.9 A certain system is represented by the asymptotic Bode diagram shown
in Fig. 6.85. Find and sketch the response of this system to a unit step
input (assuming zero initial conditions).

Figure 6.85
Magnitude portion of
Bode plot for
Problem 6.9.

10

1

0.1
1 10 100 100001000

v

ƒG ƒ

6.10 Prove that magnitude slope of −2 in a Bode plot corresponds to −40 db
per decade or −12 db per octave.

6.11 A second-order system with a damping ratio ζ = 0.6 and an additional
zero is given by

G(s) =
( s
α + 1

)

s2 + 1.2s+ 1
.

Use Matlab to compare the Mp from the step response of the system for
a = 0.01, 0.1, 1, 10, and 100 with the Mr from the frequency response of
each case. Is there a correlation between Mr and Mp?

6.12 A second order system with ζ = 0.6 and an additional pole is given by

G(s) = 2[(
s
p

)
+ 1

]
(s2 + 1.2

√
2s+ 2)

Draw Bode plots with p = 0.01, 0.1, 1, 10, and 100. What conclusions can
you draw about the effect of an extra pole on the bandwidth compared
to the bandwidth for the second-order system with no extra pole?

6.13 For the closed-loop transfer function

T(s) = ω2
n

s2 + 2ζωns+ ω2
n

,

derive the following expression for the bandwidth ωBW of T(s) in terms
of ωn and ζ :

ωBW = ωn

√
1− 2ζ 2 +

√
2+ 4ζ 4 − 4ζ 2.

Assuming ωn = 1, plot ωBW for 0 ≤ ζ ≤ 1.

6.14 Consider the system whose transfer function is

G(s) = A0ω0s

s2 + ω0
Q s+ ω2

0

.
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This is a model of a tuned circuit with quality factor Q.

(a) Compute the magnitude and phase of the transfer function analyt-
ically, and plot them for Q = 0.5, 1, 2, and 5 as a function of the
normalized frequency ω/ω0.

(b) Define the bandwidth as the distance between the frequencies on
either side of ω0 where the magnitude drops to 3 db below its value
at ω0, and show the bandwidth is given by

BW = 1
2π

(
ω0
Q

)
.

(c) What is the relation between Q and ζ ?

6.15 A DC voltmeter schematic is shown in Fig. 6.86. The pointer is damped
so its maximum overshoot to a step input is 10%.

(a) What is the undamped natural frequency of the system?
(b) What is the damped natural frequency of the system?
(c) Plot the frequency response using Matlab to determine what input

frequency will produce the largest magnitude output?
(d) Suppose this meter is now used to measure a 1-V AC input with a

frequency of 2 rad/sec. What amplitude will the meter indicate after
initial transients have died out? What is the phase lag of the output
with respect to the input? Use a Bode plot analysis to answer these
questions. Use the lsim command in Matlab to verify your answer in
part (d).

Problems for Section 6.2: Neutral Stability

6.16 Determine the range of K for which the closed-loop systems (see
Fig. 6.18) are stable for each of the cases below by making a Bode plot
for K = 1 and imagining the magnitude plot sliding up or down until
instability results. Verify your answers by using a very rough sketch of a
root-locus plot.

(a) KG(s) = K(s+ 2)
s+ 20

Figure 6.86
Voltmeter schematic

u

T

k

y

I = 40 * 10-6 kg · m2

k = 4 * 10-6 kg · m2/sec2

T = input torque = Kmy

y = input voltage

Km = 4 * 10-6 N · m/V

I
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(b) KG(s) = K
(s+ 10)(s+ 1)2

(c) KG(s) = K(s+ 10)(s+ 1)
(s+ 100)(s+ 5)3

6.17 Determine the range of K for which each of the listed systems is stable by
making a Bode plot for K = 1 and imagining the magnitude plot sliding
up or down until instability results. Verify your answers by using Matlab
with the marginal stability value of K.

(a) KG(s) = K(s+ 1)
s(s+ 10)

(b) KG(s) = K(s+ 1)
s2(s+ 10)

(c) KG(s) = K
(s+ 2)(s2+ 9)

(d) KG(s) = K(s+ 1)2

s3(s+ 10)

Problems for Section 6.3: The Nyquist Stability Criterion

6.18 (a) Sketch the Nyquist plot for an open-loop system with transfer func-
tion 1/s2; that is, sketch

1

s2

∣∣∣∣
s=C1

,

where C1 is a contour enclosing the entire RHP, as shown in Fig.
6.17. (Hint: Assume C1 takes a small detour around the poles at s =
0, as shown in Fig. 6.27)

(b) Repeat part (a) for an open-loop system whose transfer function is
G(s) = 1

s2+ω2
0

.

6.19 Sketch the Nyquist plot based on the Bode plots for each of the following
systems, then compare your result with that obtained by using the Matlab
command nyquist: Don’t be concerned with the details of exactly where
the curve goes, but do make sure it crosses the real axis at the right spot,
has the correct number of−1 encirclements and goes off to infinity in the
correct direction.

(a) KG(s) = K(s+ 2)
s+ 10

(b) KG(s) = K
(s+ 10)(s+ 2)2

(c) KG(s) = K(s+ 10)(s+ 1)
(s+ 100)(s+ 2)3

(d) Using your plots, estimate the range of K for which each system is
stable, and qualitatively verify your result by using a rough sketch of
a root-locus plot.

6.20 Draw a Nyquist plot for

KG(s) = K(s+ 1)
s(s+ 3)

, (6.73)

choosing the contour to be to the right of the singularity on the jω-axis.
Next, using the Nyquist criterion, determine the range of K for which
the system is stable. Then redo the Nyquist plot, this time choosing the
contour to be to the left of the singularity on the imaginary axis. Again,
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using the Nyquist criterion, check the range of K for which the system is
stable. Are the answers the same? Should they be?

6.21 Draw the Nyquist plot for the system in Fig. 6.87. Using the Nyquist
stability criterion, determine the range of K for which the system is stable.
Consider both positive and negative values of K.

Figure 6.87
Control system for
Problem 6.21

K©
-

+
R Y

s + 1

1

s2 + 2s + 2

1

6.22 (a) For ω = 0.1 to 100 rad/sec, sketch the phase of the minimum-phase
system

G(s) = s+ 1
s+ 10

∣∣∣∣
s=jω

and the nonminimum-phase system

G(s) = − s− 1
s+ 10

∣∣∣∣
s=jω

,

noting that ∠( jω − 1) decreases with ω rather than increasing.
(b) Does an RHP zero affect the relationship between the −1 encir-

clements on a polar plot and the number of unstable closed-loop
roots in Eq. (6.28)?

(c) Sketch the phase of the following unstable system for ω = 0.1 to 100
rad/sec:

G(s) = s+ 1
s− 10

∣∣∣∣
s=jω

.

(d) Check the stability of the systems in (a) and (c) using the Nyquist
criterion on KG(s). Determine the range of K for which the closed-
loop system is stable, and check your results qualitatively by using a
rough root-locus sketch.

6.23 Nyquist plots and the classical plane curves: Determine the Nyquist plot,
using Matlab, for the systems given below, with K = 1, and verify that
the beginning point and end point for the jω > 0 portion have the correct
magnitude and phase:

(a) The classical curve called Cayley’s Sextic, discovered by Maclaurin in
1718:

KG(s) = K
1

(s+ 1)3
.

(b) The classical curve called the Cissoid, meaning ivy-shaped:

KG(s) = K
1

s(s+ 1)
.

(c) The classical curve called the Folium of Kepler, studied by Kepler in
1609:

KG(s) = K
1

(s− 1)(s+ 1)2
.
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(d) The classical curve called the Folium (not Kepler’s):

KG(s) = K
1

(s− 1)(s+ 2)
.

(e) The classical curve called the Nephroid, meaning kidney-shaped:

KG(s) = K
2(s+ 1)(s2 − 4s+ 1)

(s− 1)3
.

(f) The classical curve called Nephroid of Freeth, named after the
English mathematician T. J. Freeth:

KG(s) = K
(s+ 1)(s2 + 3)

4(s− 1)3
.

(g) A shifted Nephroid of Freeth:

KG(s) = K
(s2 + 1)

(s− 1)3
.

Problems for Section 6.4: Stability Margins

6.24 The Nyquist plots for some actual control systems resemble the one
shown in Fig. 6.88. What are the gain and phase margin(s) for the system
of Fig. 6.88, given that α = 0.4, β = 1.3, and φ = 40◦. Describe what
happens to the stability of the system as the gain goes from zero to a very
large value. Sketch what the corresponding root locus must look like for
such a system. Also, sketch what the corresponding Bode plots would
look like for the system.

Figure 6.88
Nyquist plot for
Problem 6.24

Re[G(s)]

Im[G(s)]

vo vL

b
a

f

v*

vH

-1

1

6.25 The Bode plot for

G(s) = 100[(s/10)+ 1]
s[(s/1)− 1][(s/100)+ 1]
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is shown in Fig. 6.89.

(a) Why does the phase start at −270◦ at the low frequencies?
(b) Sketch the Nyquist plot for G(s).
(c) Is the closed-loop system for the Bode plot shown in Fig. 6.89 stable?
(d) Will the system be stable if the gain is lowered by a factor of 100?

Make a rough sketch of a root locus for the system, and qualitatively
confirm your answer.

Figure 6.89
Bode plot for
Problem 6.25

v (rad/sec)

0.01 0.1 1 10 100 1000

v (rad/sec)

0.01 0.1 1 10 100 1000
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0.001

60

40

20

0

-20

-40

-60

-905

-1805

-2705

ƒG ƒ db

jG

6.26 Suppose in Fig. 6.90,

G(s) = 25(s+ 1)

s(s+ 2)(s2 + 2s+ 16)
.

Use Matlab’s margin to calculate the PM and GM for G(s) and, on the
basis of the Bode plots, conclude which margin would provide more
useful information to the control designer for this system.

Figure 6.90
Control system for
Problem 6.26

©
-

+
R YG(s)
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6.27 Consider the system given in Fig. 6.91.

(a) Use Matlab to obtain Bode plots for K = 1, then use the plots to
estimate the range of K for which the system will be stable.

(b) Verify the stable range of K by using margin to determine PM for
selected values of K.

(c) Use rlocus to determine the values of K at the stability boundaries.
(d) Sketch the Nyquist plot of the system, and use it to verify the number

of unstable roots for the unstable ranges of K.
(e) Using Routh’s criterion, determine the ranges of K for closed-loop

stability of this system.

Figure 6.91
Control system for
Problem 6.27

©
 - 

 + 
R YK

s - 1
1

(s + 1)2 + 1
s + 2

6.28 Suppose in Fig. 6.90,

G(s) = 3.2(s+ 1)

s(s+ 2)(s2 + 0.2s+ 16)
.

Use Matlab’s margin to calculate the PM and GM for G(s), and com-
ment on whether you think this system will have well-damped closed-loop
roots.

6.29 For a given system, show that the ultimate period Pu and the correspond-
ing ultimate gain Ku for the Ziegler–Nichols method can be found by
using the following:

(a) Nyquist diagram
(b) Bode plot
(c) Root locus

6.30 If a system has the open-loop transfer function

G(s) = ω2
n

s(s+ 2ζωn)
,

with unity feedback, then the closed-loop transfer function is given by

T(s) = ω2
n

s2 + 2ζωns+ ω2
n

.

Verify the values of the PM shown in Fig. 6.36 for ζ = 0.1, 0.4, and 0.7.

6.31 Consider the unity feedback system with the open-loop transfer function

G(s) = K

s
( s

0.4 + 1
) ( s2

4 + s
5 + 1

)
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(a) Use Matlab to draw the Bode plots for G( jω) assuming K = 1.
(b) What gain K is required for a PM of 50◦? What is the GM for this

value of K?
(c) What is Kv when the gain K is set for PM = 50◦?
(d) Create a root locus with respect to K, and indicate the roots for a PM

of 50◦.
6.32 For the system depicted in Fig. 6.92(a), the transfer-function blocks are

defined by

G(s) = 1

(s+ 2)2(s+ 4)
and H(s) = 1

s+ 1
.

(a) Using rlocus and rlocfind, determine the value of K at the stability
boundary.

(b) Using rlocus and rlocfind, determine the value of K that will produce
roots with damping corresponding to ζ = 0.707.

(c) What is the GM of the system if the gain is set to the value
determined in part (b)? Answer this question without using any
frequency-response methods.

(d) Create the Bode plots for the system, and determine the GM that
results for PM = 65◦. What damping ratio would you expect for this
PM?

(e) Sketch a root locus for the system shown in Fig. 6.92 (b). How does
it differ from the one in part (a)?

(f) For the systems in Figs. 6.92 (a) and (b), how does the transfer func-
tion Y2(s)/R(s) differ from Y1(s)/R(s)? Would you expect the step
response to r(t) to be different for the two cases?

Y1©
 - 

 + 
R K H(s) G(s) Y2©

 - 

 + 
R K G(s)

H(s)

(b)(a)

Figure 6.92
Block diagram for Problem 6.32: (a) unity feedback; (b) H(s) in feedback

6.33 For the system shown in Fig. 6.93, use Bode and root-locus plots to deter-
mine the gain and frequency at which instability occurs. What gain (or
gains) gives a PM of 20◦? What is the GM when PM = 20◦?

Figure 6.93
Control system for
Problem 6.33

©
 - 

 + 
R Y

s2(s + 3)(s2 + 2s + 25)

(s + 1)(s + 2)K
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6.34 A magnetic tape-drive speed-control system is shown in Fig. 6.94. The
speed sensor is slow enough that its dynamics must be included. The
speed-measurement time constant is τm = 0.5 sec; the reel time con-
stant is τr = J/b = 4 sec, where b = the output shaft damping constant
= 1 N·m· sec; and the motor time constant is τ1 = 1 sec.

(a) Determine the gain K required to keep the steady-state speed error
to less than 7% of the reference-speed setting.

(b) Determine the gain and phase margins of the system. Is this a good
system design?

Figure 6.94
Magnetic tape-drive
speed control ©

 - 

 + 
t1s + 1

K
Js + b

1

tms + 1
1

Torque
vc

Amplifier

and motor
Tape drive

Sensor

v

6.35 For the system in Fig. 6.95, determine the Nyquist plot and apply the
Nyquist criterion

(a) to determine the range of values of K (positive and negative) for
which the system will be stable, and

(b) to determine the number of roots in the RHP for those values of K
for which the system is unstable. Check your answer by using a rough
root-locus sketch.

Figure 6.95
Control system for
Problems 6.35, 6.69,
and 6.70

©
 - 

 + 
K s(s + 1)(s + 3)

3
R

E F Y

Ŷ
Sensor

1

6.36 For the system shown in Fig. 6.96, determine the Nyquist plot and apply
the Nyquist criterion

(a) to determine the range of values of K (positive and negative) for
which the system will be stable, and

Figure 6.96
Control system for
Problem 6.36

©
 - 

 + 
KR

E F Y

Sensor

1

(s - 1)2

s + 1



main_1 — 2019/2/5 — 16:00 — page 466 — #114

466 Chapter 6 The Frequency-Response Design Method

(b) to determine the number of roots in the RHP for those values of K
for which the system is unstable. Check your answer by using a rough
root-locus sketch.

6.37 For the system shown in Fig. 6.97, determine the Nyquist plot and apply
the Nyquist criterion

(a) to determine the range of values of K (positive and negative) for
which the system will be stable, and

(b) to determine the number of roots in the RHP for those values of K
for which the system is unstable. Check your answer by using a rough
root-locus sketch.

Figure 6.97
Control system for
Problem 6.37

©
 - 

 + 
KR

E Y

Sensor

1

(s + 1)2

s - 1F

6.38 The Nyquist diagrams for two stable, open-loop systems are sketched in
Fig. 6.98. The proposed operating gain is indicated as K0, and arrows
indicate increasing frequency. In each case, give a rough estimate of the
following quantities for the closed-loop (unity feedback) system:

(a) Phase margin;
(b) Damping ratio;
(c) Range of gain for stability (if any);
(d) System type (0, 1, or 2).

Figure 6.98
Nyquist plots for
Problem 6.38

Re[G(s)]

Im[G(s)]

Im[G(s)]

Re[G(s)]

(a) (b)

K0

1-

K0

1-

6.39 The steering dynamics of a ship are represented by the transfer function

V(s)
δr(s)

= G(s) = K[−(s/0.142)+ 1]
s(s/0.325+ 1)(s/0.0362+ 1)

,

where V is the ship’s lateral velocity in meters per second, and δr is the
rudder angle in radians.
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(a) Use the Matlab command bode to plot the log magnitude and phase
of G( jω) for K = 0.2.

(b) On your plot, indicate the crossover frequency, PM, and GM.
(c) Is the ship-steering system stable with K = 0.2?
(d) What value of K would yield a PM of 30◦, and what would the

crossover frequency be?

6.40 For the open-loop system

KG(s) = K(s+ 0.1)

s2(s+ 9)2
,

determine the value of K at the stability boundary and the values of K at
the points where PM = 50◦.

Problems for Section 6.5: Bode’s Gain–Phase Relationship

6.41 The frequency response of a plant in a unity feedback configuration with
no controller is sketched in Fig. 6.99. Assume the plant is open-loop
stable and is minimum phase, and it has an integrator.

(a) What is the velocity constant Kv for the system as drawn?
(b) What is the damping ratio of the complex poles?
(c) What is the PM of the system as shown? (Estimate to within ±10◦)
(d) Assuming the reference input is corrupted with a noise consisting of

a sinusoidal signal of ω = 20 rad/sec? Approximately estimate the
factor by which the noise is attenuated at the output.

Figure 6.99
Magnitude frequency
response for
Problem 6.41
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6.42 For the system

G(s) = 100(s/a+ 1)
s(s+ 1)(s/b+ 1)

,

where b = 10a, find the approximate value of a that will yield the
best PM by sketching only candidate values of the frequency-response
magnitude.
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Problem for Section 6.6: Closed-Loop Frequency Response

6.43 For the open-loop system

KG(s) = K(s+ 0.1)

s2(s+ 9)2
,

determine the value for K that will yield PM ≥ 30◦ and the maximum
possible closed-loop bandwidth. Use Matlab to find the bandwidth.

Problems for Section 6.7: Compensation Design

6.44 For the lead compensator

Dc(s) = TDs+ 1
αTDs+ 1

,

where α < 1,

(a) Show the phase of the lead compensator is given by

φ = tan−1(TDω)− tan−1(αTDω).

(b) Show the frequency where the phase is maximum is given by

ωmax = 1
TD
√
α

and the maximum phase corresponds to

sinφmax = 1− α
1+ α .

(c) Rewrite your expression for ωmax to show the maximum-phase fre-
quency occurs at the geometric mean of the two corner frequencies
on a logarithmic scale:

logωmax = 1
2

(
log

1
TD
+ log

1
αTD

)
.

(d) To derive the same results in terms of the pole–zero locations, rewrite
Dc(s) as

Dc(s) = s+ z
s+ p

,

then show that the phase is given by

φ = tan−1
(
ω

|z|
)
− tan−1

(
ω

|p|
)

,

such that
ωmax =

√|z| |p|.
Hence, the frequency at which the phase is maximum is the square
root of the product of the pole and zero locations.

6.45 For the third-order servo system

G(s) = 10,000
s(s+ 20)(s+ 30)

,
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design a lead compensator so that PM ≥ 60◦ and ωBW ≥ 10 rad/sec
using Bode plot sketches.

6.46 For the system shown in Fig. 6.100, suppose

G(s) = 5
s(s+ 1)(s/5+ 1)

.

Use Bode plot sketches to design a lead compensation Dc(s) with unity
DC gain so that PM ≥ 40◦. Then verify and refine your design by using
Matlab. What is the approximate bandwidth of the system?

Figure 6.100
Control system for
Problem 6.46

Y©
 - 

 + 
R

E
Dc G

6.47 Derive the transfer function from Td to θ for the system in Fig. 6.67.
Then apply the Final Value Theorem (assuming Td = constant) to
determine whether θ(∞) is nonzero for the following two cases:

(a) When Dc(s) has no integral term: lim
s→0

Dc(s) = constant;

(b) When Dc(s) has an integral term:

Dc(s) = D′c(s)
s

In this case, lim
s→0

D′c(s) = constant.

6.48 The inverted pendulum has a transfer function given by Eq. (2.31), which
is similar to

G(s) = 1

s2 − 1
.

(a) Use Bode plot sketches to design a lead compensator to achieve a
PM of 30◦. Then verify and refine your design by using Matlab.

(b) Sketch a root locus and correlate it with the Bode plot of the system.
(c) Could you obtain the frequency response of this system experimen-

tally?

6.49 The open-loop transfer function of a unity feedback system is

G(s) = K

s
( s

3 + 1
) ( s

40 + 1
) .

(a) Design a lag compensator for G(s) using Bode plot sketches so that
the closed-loop system satisfies the following specifications:

(i) The steady-state error to a unit ramp reference input is less than
0.05.

(ii) PM ≥ 40◦.
(b) Verify and refine your design by using Matlab.
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6.50 The open-loop transfer function of a unity feedback system is

G(s) = K

(s+ 10)
(

s2

5 + s
6 + 1

) .

(a) Design a lead compensator for G(s) using Bode plot sketches so that
the closed-loop system satisfies the following specifications:

(i) The steady-state error to a unit step reference input is less than
0.01.

(ii) For the dominant closed-loop poles the damping ratio ζ ≥ 0.4.

(b) Verify your design with a direct computation of the damping of the
dominant closed-loop poles.

6.51 A DC motor with negligible armature inductance is to be used in a
position control system. Its open-loop transfer function is given by

G(s) = 37

s
( s

7 + 1
) .

(a) Design a compensator for the motor using Bode plot sketches so that
the closed-loop system satisfies the following specifications:

(i) The steady-state error to a unit ramp input is less than 1/150.
(ii) The unit step response has an overshoot of less than 20%.

(iii) The bandwidth of the compensated system is no less than that of
the uncompensated system.

(b) Verify and/or refine your design including a direct computation step
response overshoot.

6.52 The open-loop transfer function of a unity feedback system is

G(s) = K

s
(
1+ s

0.5
) (

1+ s
1.5
) .

(a) Sketch the system block diagram including input reference com-
mands and sensor noise.

(b) Design a compensator for G(s) using Bode plot sketches so that the
closed-loop system satisfies the following specifications:

(i) The steady-state error to a unit ramp input is less than 0.03.
(ii) PM ≥ 45◦.

(iii) The steady-state error for sinusoidal inputs with ω < 0.02 rad/sec
is less than 1/300.

(iv) Noise components introduced with the sensor signal at frequen-
cies greater than 50 rad/sec are to be attenuated at the output by
at least a factor of 1000.

(c) Verify and/or refine your design including a computation of the
closed-loop frequency response to verify (iv).

6.53 The transfer function for a quadrotor attitude control system between a
pitch control input, Tlon, and the pitch angle, θ , is

θ(s)
Tlon(s)

= G1(s) = 1

s2(s+ 2)
.
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Design a lead compensator, Dc(s), using frequency design so:

ωn ≥ 1 rad/sec,

ζ ≥ 0.44.

Compare your design with that arrived at using root locus design in
Example 5.12.

6.54 Consider a satellite attitude-control system with the transfer function

G(s) = 0.05(s+ 25)

s2(s2 + 0.1s+ 4)
.

Amplitude-stabilize the system using lead compensation so that GM ≥
2 (6 db), and PM ≥ 45◦, keeping the bandwidth as high as possible with
a single lead.

6.55 In one mode of operation, the autopilot of a jet transport is used to con-
trol altitude. For the purpose of designing the altitude portion of the
autopilot loop, only the long-period airplane dynamics are important.
The linearized relationship between altitude and elevator angle for the
long-period dynamics is

G(s) = h(s)
δ(s)
= 20(s+ 0.01)

s(s2 + 0.01s+ 0.0025)

ft/ sec
deg

.

The autopilot receives from the altimeter an electrical signal proportional
to altitude. This signal is compared with a command signal (propor-
tional to the altitude selected by the pilot), and the difference provides
an error signal. The error signal is processed through compensation, and
the result is used to command the elevator actuators. A block diagram
of this system is shown in Fig. 6.101. You have been given the task of
designing the compensation. Begin by considering a proportional control
law Dc(s) = K.

Figure 6.101
Control system for
Problem 6.55
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(a) Use Matlab to draw a Bode plot of the open-loop system for Dc(s) =
K = 1.

(b) What value of K would provide a crossover frequency (i.e., where
|G| = 1) of 0.16 rad/sec?

(c) For this value of K, would the system be stable if the loop were
closed?

(d) What is the PM for this value of K?
(e) Sketch the Nyquist plot of the system, and locate carefully any points

where the phase angle is 180◦ or the magnitude is unity.
(f) Use Matlab to plot the root locus with respect to K, and locate the

roots for your value of K from part (b).
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(g) What steady-state error would result if the command was a step
change in altitude of 1000 ft?

For parts (h) and (i), assume a compensator of the form

Dc(s) = TDs+ 1
αTDs+ 1

.

(h) Choose the parameters K, TD, and α so the crossover frequency is
0.16 rad/sec and the PM is greater than 50◦. Verify your design by
superimposing a Bode plot of Dc(s)G(s)/K on top of the Bode plot
you obtained for part (a), and measure the PM directly.

(i) Use Matlab to plot the root locus with respect to K for the system,
including the compensator you designed in part (h). Locate the roots
for your value of K from part (h).

(j) Altitude autopilots also have a mode in which the rate of climb is
sensed directly and commanded by the pilot.

(i) Sketch the block diagram for this mode.
(ii) Modify the G(s) stated above for the case where the variable to

be controlled is the rate of altitude change.
(iii) Design Dc(s) so the system has the same crossover frequency as

the altitude hold mode and the PM is greater than 50◦.
6.56 For a system with open-loop transfer function

G(s) = 10
s[(s/1.4)+ 1][(s/3)+ 1]

,

design a lag compensator with unity DC gain so that PM ≥ 35◦. What is
the approximate bandwidth of this system?

6.57 For the ship-steering system in Problem 6.39,

(a) Design a compensator that meets the following specifications:

(i) Velocity constant Kv = 2,
(ii) PM ≥ 50◦, and

(iii) Unconditional stability (PM > 0 for all ω ≤ ωc, the crossover
frequency).

(b) For your final design, draw a root locus with respect to K, and
indicate the location of the closed-loop poles.

6.58 Consider a unity-feedback system with

G(s) = 1

s (s/20+ 1)
(
s2/1002 + 0.5s/100+ 1

) . (6.74)

(a) A lead compensator is introduced with α = 1/5 and a zero at 1/T =
20. How must the gain be changed to obtain crossover at ωc = 31.6
rad/sec, and what is the resulting value of Kv?

(b) With the lead compensator in place, what is the required value of K
for a lag compensator that will readjust the gain to a Kv value of 100?

(c) Place the pole of the lag compensator at 3.16 rad/sec, and deter-
mine the zero location that will maintain the crossover frequency at
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ωc = 31.6 rad/sec. Plot the compensated frequency response on the
same graph.

(d) Determine the PM of the compensated design.

6.59 Golden Nugget Airlines had great success with their free bar near the
tail of the airplane. (See Problem 5.39.) However, when they purchased
a much larger airplane to handle the passenger demand, they discovered
there was some flexibility in the fuselage that caused a lot of unpleas-
ant yawing motion at the rear of the airplane when in turbulence, which
caused the revelers to spill their drinks. The approximate transfer func-
tion for the rigid body roll/yawl motion, called the “Dutch roll” mode
(see Section 10.3.1) is

r(s)
δr(s)

= 8.75(4s2 + 0.4s+ 1)

(s/0.01+ 1)(s2 + 0.24s+ 1)
,

where r is the airplane’s yaw rate and δr is the rudder angle. In performing
a finite element analysis (FEA) of the fuselage structure and adding those
dynamics to the Dutch roll motion, they found that the transfer function
needed additional terms which reflected the fuselage lateral bending that
occurred due to excitation from the rudder and turbulence. The revised
transfer function is

r(s)
δr(s)

= 8.75(4s2 + 0.4s+ 1)

(s/0.01+ 1)(s2 + 0.24s+ 1)
· 1

(s2/ω2
b + 2ζ s/ωb + 1)

,

where ωb is the frequency of the bending mode (= 10 rad/sec) and ζ is the
bending mode damping ratio (=0.02). Most swept-wing airplanes have a
“yaw damper,” which essentially feeds back yaw rate measured by a rate
gyro to the rudder with a simple proportional control law. For the new
Golden Nugget airplane, the proportional feedback gain K = 1, where

δr(s) = −Kr(s). (6.75)

(a) Make a Bode plot of the open-loop system, determine the PM and
GM for the nominal design, and plot the step response and Bode
magnitude of the closed-loop system. What is the frequency of the
lightly damped mode that is causing the difficulty?

(b) Investigate remedies to quiet down the oscillations, but maintain the
same low-frequency gain in order not to affect the quality of the
Dutch roll damping provided by the yaw rate feedback. Specifically,
investigate each of the following, one at a time:

(i) Increasing the damping of the bending mode from ζ = 0.02 to
ζ = 0.04 and (would require adding energy-absorbing material
in the fuselage structure).

(ii) Increasing the frequency of the bending mode from ωb = 10
rad/sec to ωb = 20 rad/sec (would require stronger and heavier
structural elements).

(iii) Adding a low-pass filter in the feedback—that is, replacing K in
Eq. (6.75) with KDc(s), where

Dc(s) = 1
s/τp + 1
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(iv) Adding a notch filter as described in Section 5.4.3. Pick the
frequency of the notch zero to be at ωb, with a damping of
ζ = 0.04, and pick the denominator poles to be (s/100+ 1)2,
keeping the DC gain of the filter = 1.

(c) Investigate the sensitivity of the preceding two compensated designs
(iii and iv) by determining the effect of a reduction in the bending
mode frequency of −10%. Specifically, reexamine the two designs
by tabulating the GM, PM, closed-loop bending mode damping
ratio, and resonant-peak amplitude, and qualitatively describe the
differences in the step response.

(d) What do you recommend to Golden Nugget to help their customers
quit spilling their drinks? (Telling them to get back in their seats is
not an acceptable answer for this problem! Make the recommenda-
tion in terms of improvements to the yaw damper.)

6.60 Consider a system with the open-loop transfer function (loop gain)�

G(s) = 1
s(s+ 1)(s/10+ 1)

.

(a) Create the Bode plot for the system, and find GM and PM.
(b) Compute the sensitivity function and plot its magnitude frequency

response.
(c) Compute the vector margin (VM).

6.61 Prove the sensitivity function S(s) has magnitude greater than 1 inside�
a circle with a radius of 1 centered at the −1 point. What does this
imply about the shape of the Nyquist plot if closed-loop control is to
outperform open-loop control at all frequencies?

6.62 Consider the system in Fig. 6.100 with the plant transfer function�

G(s) = 10
s(s/10+ 1)

.

(a) We wish to design a compensator Dc(s) that satisfies the following
design specifications:

(i) Kv = 100,
(ii) PM ≥ 45◦,

(iii) Sinusoidal inputs of up to 1 rad/sec to be reproduced with ≤ 2%
error, and

(iv) Sinusoidal inputs with a frequency of greater than 100 rad/sec to
be attenuated at the output to ≤ 5% of their input value.

(b) Create the Bode plot of G(s), choosing the open-loop gain so that
Kv = 100.

(c) Show a sufficient condition for meeting the specification on sinu-
soidal inputs is that the magnitude plot lies outside the shaded
regions in Fig. 6.102. Recall that

Y
R
= KG

1+ KG
and

E
R
= 1

1+ KG
.
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Figure 6.102
Control system
constraints for
Problem 6.62

0.01 0.1 1

v (rad/sec)

10 100 1000

M
ag

n
it

u
d
e,

 ƒL
(j
v

)ƒ
0.01

0.1

1

10

100

1000

W1

W2
-1

(d) Explain why introducing a lead network alone cannot meet the design
specifications.

(e) Explain why a lag network alone cannot meet the design specifica-
tions.

(f) Develop a full design using a lead–lag compensator that meets all
the design specifications without altering the previously chosen low-
frequency open-loop gain.

6.63 The transfer function for a quadrotor drone between altitude control
input, Falt, and the altitude, h, is

h(s)
Falt(s)

= Gh(s) =
1

s2(s+ 10)
.

(a) Based on the rotor arrangements discussed in Example 2.5, deter-
mine how to command the four rotors so a vertical force, Falt, is
commanded with no effect on the pitch, roll, or yaw angles.

(b) Design a lead compensator, Dc(s), with a lead ratio of 20 using fre-
quency design so that ζ ≥ 0.6, while achieving the maximum possible
natural frequency, ωn.

Problems for Section 6.8: Time Delay�
6.64 Assume the system

G(s) = e−Td s

s+ 10
has a 0.2-sec time delay (Td = 0.2 sec). While maintaining a phase margin
≥ 40◦, find the maximum possible bandwidth by using the following:

(a) One lead-compensator section

Dc(s) = K
s+ a
s+ b

,

where b/a = 100.
(b) Two lead-compensator sections

Dc(s) = K
(

s+ a
s+ b

)2
,

where b/a = 10.
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(c) Comment on the statement in the text about the limitations on the
bandwidth imposed by a delay.

6.65 Determine the range of K for which the following systems are stable:

(a) G(s) = K e−4s

s

(b) G(s) = K e−s

s(s+2)

6.66 Consider the heat exchanger of Example 2.18 with the open-loop transfer
function

G(s) = e−5s

(10s+ 1)(60s+ 1)
.

(a) Design a lead compensator that yields PM ≥ 45◦ and the maximum
possible closed-loop bandwidth.

(b) Design a PI compensator that yields PM ≥ 45◦ and the maximum
possible closed-loop bandwidth.

Problems for Section 6.9: Alternative Presentations of Data�
6.67 A feedback control system is shown in Fig. 6.103. The closed-loop system

is specified to have an overshoot of less than 30% to a step input.

Figure 6.103
Control system for
Problem 6.67
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(a) Determine the corresponding PM specification in the frequency
domain and the corresponding closed-loop resonant-peak value Mr.
(See Fig. 6.37.)

(b) From Bode plots of the system, determine the maximum value of K
that satisfies the PM specification.

(c) Plot the data from the Bode plots [adjusted by the K obtained in part
(b)] on a copy of the Nichols chart in Fig. 6.81, and determine the
resonant-peak magnitude Mr. Compare that with the approximate
value obtained in part (a).

(d) Use the Nichols chart to determine the resonant-peak frequency ωr
and the closed-loop bandwidth.

6.68 The Nichols plots of an uncompensated and a compensated system are
shown in Fig. 6.104.

(a) What are the resonance peaks of each system?
(b) What are the PM and GM of each system?
(c) What are the bandwidths of each system?
(d) What type of compensation is used?
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Figure 6.104
Nichols plots for Problem 6.68

6.69 Consider the system shown in Fig. 6.95.

(a) Construct an inverse Nyquist plot of [Y( jω)/E( jω)]−1. (See
Appendix W6.9.2 online at www.pearsonglobaleditions.com.)

(b) Show how the value of K for neutral stability can be read directly
from the inverse Nyquist plot.

(c) For K = 4, 2, and 1, determine the gain and phase margins.
(d) Construct a root-locus plot for the system, and identify correspond-

ing points in the two plots. To what damping ratios ζ do the GM and
PM of part (c) correspond?

6.70 An unstable plant has the transfer function

Y(s)
F(s)

= s+ 1

(s− 1)2
.

A simple control loop is to be closed around it, in the same manner as in
the block diagram in Fig. 6.95.

www.pearsonglobaleditions.com
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(a) Construct an inverse Nyquist plot of Y/F . (See Appendix W6.9.2.)
(b) Choose a value of K to provide a PM of 45◦. What is the correspond-

ing GM?
(c) What can you infer from your plot about the stability of the system

when K < 0?
(d) Construct a root-locus plot for the system, and identify correspond-

ing points in the two plots. In this case, to what value of ζ does
PM = 45◦ correspond?

6.71 Consider the system shown in Fig. 6.105(a).

(a) Construct a Bode plot for the system.
(b) Use your Bode plot to sketch an inverse Nyquist plot. (See

Appendix W6.9.2.)
(c) Consider closing a control loop around G(s), as shown in Fig.

6.105(b). Using the inverse Nyquist plot as a guide, read from your
Bode plot the values of GM and PM when K = 0.7, 1.0, 1.4, and 2.
What value of K yields PM = 30◦?

(d) Construct a root-locus plot, and label the same values of K on the
locus. To what value of ζ does each pair of PM/GM values corre-
spond? Compare ζ versus PM with the rough approximation in Fig.
6.36.

Figure 6.105
Control system for
Problem 6.71
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A Perspective on State-Space Design
In addition to the transform techniques of root locus and frequency
response, there is a third major method of designing feedback con-
trol systems: the state-space method. We will introduce the state-
variable method of describing differential equations. In state-space
design, the control engineer designs a dynamic compensation by
working directly with the state-variable description of the system.
Like the transform techniques, the aim of the state-space method
is to find a compensation Dc(s) (such as that shown in Fig. 7.1) that
satisfies the design specifications. Because the state-space method
of describing the plant and computing the compensation is so differ-
ent from the transform techniques, it may seem at first to be solving
an entirely different problem. We selected the examples and analy-
sis given toward the end of this chapter to help convince you that,
indeed, state-space design results in a compensator with a trans-
fer function Dc(s) that is equivalent to those Dc(s) compensators
obtained with the other two methods.

Because it is particularly well suited to the use of computer tech-
niques, state-space design is increasingly studied and used today by
control engineers.

479
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Figure 7.1
A control system design
definition

+

-
R Y

Compensation Plant

G(s)

E U

Dc(s)
©

Chapter Overview
This chapter begins by considering the purposes and advantages of
using state-space design. We will discuss selection of state-variables
and state-space models for various dynamic systems through sev-
eral examples in Section 7.2. Models in state-variable form enhance
our ability to apply the computational efficiency of computer-aided
design tools such as Matlab. In Section 7.3, we will show that it is
beneficial to look at the state-variable form in terms of an analog
computer simulation model. In Section 7.4, we will review the devel-
opment of state-variable equations from block diagrams. We then
solve for the dynamic response, using state equations for both hand
and computer analysis. Having covered these preliminary fundamen-
tals, we next proceed to the major task of control system design via
state-space. The steps of the design method are as follows:

1. Select closed-loop pole (root as referred to in previous chap-
ters) locations and develop the control law for the closed-loop
system that corresponds to satisfactory dynamic response (see
Sections 7.5 and 7.6).

2. Design an estimator (see Section 7.7).
3. Combine the control law and the estimator (see Section 7.8).
4. Introduce the reference input (see Sections 7.5.2 and 7.9).

After working through the central design steps, we will briefly
explore the use of integral control in state-space (Section 7.10). The
next three sections of this chapter consider briefly some additional
concepts pertaining to the state-space method; because they are rel-
atively advanced, they may be considered optional to some courses or
readers. Finally, Section 7.15 provides some historical perspective for
the material in this chapter.

7.1 Advantages of State-Space
The idea of state-space comes from the state-variable method of describ-
ing differential equations. In this method, the differential equations
describing a dynamic system are organized as a set of first-order differ-
ential equations in the vector-valued state of the system, and the solu-
tion is visualized as a trajectory of this state vector in space. State-space
control design is the technique in which the control engineer designs
a dynamic compensation by working directly with the state-variable
description of the system. We will see that the ordinary differential
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equations (ODEs) of physical dynamic systems can be manipulated into
state-variable form. In the field of mathematics, where ODEs are stud-
ied, the state-variable form is called the normal form for the equations.Normal form
There are several good reasons for studying equations in this form, three
of which are listed here:

• To study more general models: The ODEs do not have to be lin-
ear or stationary. Thus, by studying the equations themselves,
we can develop methods that are very general. Having them in
state-variable form gives us a compact, standard form for study.
Furthermore, the techniques of state-space analysis and design eas-
ily extend to systems with multiple inputs and/or multiple outputs.
Of course, in this text, we study mainly linear time-invariant (LTI)
models with single input and output (for the reasons given earlier).

• To introduce the ideas of geometry into differential equations: In
physics, the plane of position versus velocity of a particle or rigid
body is called the phase plane, and the trajectory of the motion canPhase plane
be plotted as a curve in this plane. The state is a generalization of
that idea to include more than two dimensions. While we cannot
easily plot more than three dimensions, the concepts of distance,
of orthogonal and parallel lines, and other concepts from geometry
can be useful in visualizing the solution of an ODE as a path in
state-space.

• To connect internal and external descriptions: The state of a dynamic
system often directly describes the distribution of internal energy
in the system. For example, for electro-mechanical systems, it is
common to select the following as state-variables: position (poten-
tial energy), velocity (kinetic energy), capacitor voltage (electric
energy), inductor current (magnetic energy), and thermal systems
temperature (thermal energy). The internal energy can always be
computed from the state-variables. By a system of analysis to be
described shortly, we can relate the state to the system inputs and
outputs, and thus connect the internal variables to the external
inputs and to the sensed outputs. In contrast, the transfer function
relates only the input to the output and does not show the inter-
nal behavior. The state form keeps the latter information, which is
sometimes important.

Use of the state-space approach has often been referred to as mod-
ern control design, and use of transfer-function-based methods, such as
root locus and frequency response, referred to as classical control design.
However, because the state-space method of description for ODEs has
been in use for over 100 years and was introduced to control design in
the late 1950s, it seems somewhat misleading to refer to it as modern. We
prefer to refer to the two design approaches as the state-space methods
and the transform methods.

Advantages of state-space design are especially apparent when the
system to be controlled has more than one control input or more than
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one sensed output. However, in this book, we shall examine the ideas of
state-space design using the simpler Single-Input-Single-Output (SISO)
systems. The design approach used for the systems described in state
form is “divide and conquer.” First, we design the control as if all of
the state were measured and available for use in the control law. This
provides the possibility of assigning arbitrary dynamics for the sys-
tem. Having a satisfactory control law based on full-state feedback,
we introduce the concept of an observer and construct estimates of the
state based on the sensed output. We then show that these estimates
can be used in place of the actual state-variables. Finally, we introduce
the external reference-command inputs to complete the structure. Only
at this point can we recognize that the resulting compensation has the
same essential structure as that developed with transform methods.

Before we can begin the design using state descriptions, it is nec-
essary to develop some analytical results and tools from matrix linear
algebra for use throughout the chapter. We assume you are familiar
with such elementary matrix concepts as the identity matrix, trian-
gular and diagonal matrices, and the transpose of a matrix. We also
assume that you have some familiarity with the mechanics of matrix
algebra, including adding, multiplying, and inverting matrices. More
advanced results will be developed in Section 7.4 in the context of the
dynamic response of a linear system. All of the linear algebra results
used in this chapter are repeated in Appendix WB available online at
www.pearsonglobaleditions.com for your reference and review.

7.2 System Description in State-Space
The motion of any finite dynamic system can be expressed as a set of
first-order ODEs. This is often referred to as the state-variable represen-
tation. For example, the use of Newton’s law and the free-body diagram
in Section 2.1 typically lead to second-order differential equations—that
is, equations that contain the second derivative, such as ẍ in Eq. (2.3) or
θ̈ in Eq. (2.11). The latter equation can be expressed as

ẋ1 = x2, (7.1)

ẋ2 = u
I

, (7.2)

where

u = Fcd +MD,

x1 = θ ,

x2 = θ̇ ,

ẋ2 = θ̈ .

The output of this system is θ , the satellite attitude. These same equa-Standard form of linear
differential equations tions can be represented in the state-variable form as the vector equation

ẋ = Ax+ Bu, (7.3)

www.pearsonglobaleditions.com


main_1 — 2019/2/5 — 15:24 — page 483 — #5

7.2 System Description in State-Space 483

where the input is u and the output is
y = Cx+Du. (7.4)

The column vector x is called the state of the system and contains n ele-
ments for an nth-order system. For mechanical systems, the state vector
elements usually consist of the positions and velocities of the separate
bodies, as is the case for the example in Eqs. (7.1) and (7.2). The quan-
tity A is an n× n system matrix, B is an n× 1 input matrix, C is a 1× n
row matrix referred to as the output matrix, and D is a scalar called the
direct transmission term. To save space, we will sometimes refer to a state
vector by its transpose,

x = [ x1 x2 . . . xn ]T ,
which is equivalent to

x =

⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ .

The differential equation models of more complex systems, such as
those developed in Chapter 2 on mechanical, electrical, and electrome-
chanical systems, can be described by state-variables through selection
of positions, velocities, capacitor voltages, and inductor currents as
suitable state-variables.

In this chapter, we will consider control systems design using the
state-variable form. For the case in which the relationships are nonlinear
[such as the case in Eqs. (2.22) and (2.97)], the linear form cannot be
used directly. One must linearize the equations as we did in Chapter 2
to fit the form (see also Chapter 9).

The state-variable method of specifying differential equations is
used by computer-aided control systems design software packages (for
example Matlab). Therefore, in order to specify linear differential equa-
tions to the computer, you need to know the values of the matrices A,
B, C, and the constant D.

EXAMPLE 7.1 Satellite Attitude Control Model in State-Variable Form

Determine the A, B, C, D matrices in the state-variable form for the
satellite attitude control model in Example 2.3 with MD = 0.

Solution. Define the attitude and the angular velocity of the satellite
as the state-variables so that x � [θ ω]T.1 The single second-order equa-
tion (2.11) can then be written in an equivalent way as two first-order
equations:

θ̇ = ω,

ω̇ = d
I

Fc.

1The symbol � means “is to be defined.”
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These equations are expressed, using Eq. (7.3), ẋ = Ax+ Bu, as[
θ̇

ω̇

]
=
[

0 1
0 0

] [
θ

ω

]
+
[

0
d/I

]
Fc.

The output of the system is the satellite attitude, y = θ . Using Eq. (7.4),
y = Cx+Du, this relation is expressed as

y = [ 1 0 ]
[
θ

ω

]
.

Therefore, the matrices for the state-variable form are

A =
[

0 1
0 0

]
, B =

[
0

d/I

]
, C = [ 1 0 ], D = 0,

and the input u �= Fc.
For this very simple example, the state-variable form is a more cum-

bersome way of writing the differential equation than the second-order
version in Eq. (2.11). However, the method is not more cumbersome for
most systems, and the advantages of having a standard form for use in
computer-aided design have led to widespread use of the state-variable
form.

The next example has more complexity and shows how to use
Matlab to find the solution of linear differential equations.

EXAMPLE 7.2 Cruise Control Step Response

(a) Rewrite the equation of motion from Example 2.1 in state-variable
form, where the output is the car position x.

(b) Use Matlab to find the response of the velocity of the car for the
case in which the input jumps from being u = 0 at time t = 0 to a
constant u = 750 N thereafter. Assume the car mass m is 1500 kg,
and b = 60 N·sec/m.

Solution.

(a) Equations of motion: First, we need to express the differential
equation describing the plant, Eq. (2.3), as a set of simultaneous
first-order equations. To do so, we define the position and the
velocity of the car as the state-variables x and v, so x = [x v]T .
The single second-order equation, Eq. (2.3), can then be rewritten
as a set of two first-order equations:

ẋ = v,

v̇ = − b
m

v+ 1
m

u.

Next, we use the standard form of Eq. (7.3), ẋ = Ax + Bu, to
express these equations:[

ẋ
v̇

]
=
[

0 1
0 −b/m

] [
x
v

]
+
[

0
1/m

]
u. (7.5)
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The output of the system is the car position y = x, which is exp-
ressed in matrix form as

y = [ 1 0 ]
[

x
v

]
,

or
y = Cx.

So the state-variable-form matrices defining this example are

A =
[

0 1
0 −b/m

]
, B =

[
0

1/m

]
, C = [ 1 0 ], D = 0.

(b) Time response: The equations of motion are those given in part (a),
except that now the output is v. Therefore, the output matrix is

C = [ 0 1 ].

The coefficients required are b/m = 0.04 and 1/m = 6.67 × 10−4.
The numerical values for the matrices defining the system are thus

A =
[

0 1
0 −0.04

]
, B =

[
0

6.67× 10−4

]
, C = [ 0 1 ], D = 0.

The step function in Matlab computes the time response of a linear
system to a unit-step input. Because the system is linear, the output
for this case can be multiplied by the magnitude of the input step to
derive a step response of any amplitude. Equivalently, the B matrix
can be multiplied by the magnitude of the unit step.

The statementsStep response with Matlab

A = [0 1;0 -0.04];
B = [0; 1/1500];
C = [0 1];
D = 0;
sys = ss(A, 750*B,C,D); % step gives unit step response,

so 750*B gives %u=750 N.
step(sys); % plots the step response

compute and plot the time response for a unit step with a 750-N
magnitude. The step response is shown in Fig. 7.2.

EXAMPLE 7.3 Motion of a Hanging Crane in State Variable Form

Based on Example 2.8, determine the state-space equation for the
motion of a hanging crane shown in Fig. 2.21. Assume the friction term
can be neglected.

Solution. In order to write the equations in the state-variable form (that
is, a set of simultaneous first-order differential equations), the angular
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Figure 7.2
Response of the car
velocity to a step in u

0

2

0

4

6

8

10

12

14

20 40 60 80 100 120 160140 180 200

Time (sec)

V
el

o
ci

ty
 (

m
/s

)

position and velocity for the hanging crane as the state elements (that is
x = [x1 x2] = [

θ θ̇
]

and the force being applied to the trolley is taken
as the input u and the output is θ = [1 0]x. Hence, ẋ1 = x2. Before ẋ2
can be defined, Eq. (2.28) can be simplified such that the acceleration
term for the trolley can be eliminated and thus,

(mt +mp)(I +mpl2)θ̈ + (mt +mp)mpglθ = (mpl)2θ̈ − (mpl)u (7.6)

Re-arranging it into the standard form and expressing it in terms of x1
and ẋ2, we get

ẋ2 = − (mt +mp)mpgl

(mt +mp)(I +mpl2)− (mpl)2
x1− mpl

(mt +mp)(I +mpl2)− (mpl)2
u

(7.7)
Therefore, the standard matrices that define the state equations are

A =
⎡
⎣

0 1

− (mt+mp)mpgl
(mt+mp)(I+mpl2)−(mpl)2

0

⎤
⎦ ,

B =
⎡
⎣

0

−mpl
(mt+mp)(I+mpl2)−(mpl)2

⎤
⎦ ,

C = [
1 0

]
, D = 0.
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EXAMPLE 7.4 Loudspeaker with Circuit in State-Variable Form

For the loudspeaker in Fig. 2.31 and the circuit driving it in Fig. 2.32,
find the state-space equations relating the input voltage va to the output
cone displacement x. Assume effective circuit resistance is R = 0.5 �
and the inductance is L = 0.15 mH, and keep the mass M and friction
coefficient b as unknowns.

Solution. Recall the two coupled equations, (2.54) and (2.58), that
constitute the dynamic model for the loudspeaker:

Mẍ+ bẋ = 0.43i,

L
di
dt
+ Ri = va − 0.43ẋ.

A logical state vector for this third-order system would be x�= [x ẋ iT
]
,

which leads to the standard matrices

A =
⎡
⎣

0 1 0
0 −b/M 0.43/M
0 −2867 −3333

⎤
⎦ , B =

⎡
⎣

0
0

6667

⎤
⎦ ,

C = [
1 0 0

]
, D = 0,

where now the input u �= va.

EXAMPLE 7.5 Modeling a DC Motor in State-Variable Form

Find the state-space equations for the DC motor with the equivalent
electric circuit shown in Fig. 2.34(a).

Solution. Recall the equations of motion [Eqs. (2.62) and (2.63)] from
Chapter 2:

Jmθ̈m + bθ̇m = Ktia,

La
dia
dt
+ Raia = va − Keθ̇m.

A state vector for this third-order system is x�= [θm θ̇m ia
]T , which

leads to the standard matrices

A =
⎡
⎢⎣

0 1 0
0 − b

Jm

Kt
Jm

0 −Ke
La
−Ra

La

⎤
⎥⎦ , B =

⎡
⎢⎣

0
0

1
La

⎤
⎥⎦ ,

C = [
1 0 0

]
, D = 0,

where the input u �= va.

The state-variable form can be applied to a system of any order.
Example 7.6 illustrates the method for a fourth-order system.
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EXAMPLE 7.6 Flexible Satellite in State-Variable Form

Find the state-variable form of the differential equations for Example
2.4, where the output is θ2.

Solution. Define the state vector to be

x = [
θ1 θ̇1 θ2 θ̇2

]T .

Then solve the differential equations for θ̈1 and θ̈2 so the state-variable
form is more apparent. The resulting matrices for the θ2 output are

A =

⎡
⎢⎢⎣

0 1 0 0
− k

I1
− b

I1

k
I1

b
I1

0 0 0 1
k
I2

b
I2
− k

I2
− b

I2

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
1
I1
0
0

⎤
⎥⎥⎦ ,

C = [
0 0 1 0

]
, D = 0.

Difficulty arises when the differential equation contains derivatives
of the input u. Techniques to handle this situation will be discussed in
Section 7.4.

7.3 Block Diagrams and State-Space
Perhaps the most effective way of understanding the state-variable equa-
tions is via an analog computer block-diagram representation. The
structure of the representation uses integrators as the central element,
which are quite suitable for a first-order, state-variable representation
of dynamic equations for a system. Even though the analog comput-
ers are almost extinct, analog computer implementation is still a useful
concept for state-variable design, and in the circuit design of analog
compensation.2

The analog computer was a device composed of electric compo-
nents designed to simulate ODEs. The basic dynamic component of
the analog computer is an integrator, constructed from an operational
amplifier with a capacitor feedback and a resistor feed-forward as
shown in Fig. 2.30. Because an integrator is a device whose input is the
derivative of its output (as shown in Fig. 7.3) if, in an analog-computer
simulation, we identify the outputs of the integrators as the state, we
will then automatically have the equations in state-variable form. Con-
versely, if a system is described by state-variables, we can construct an

Figure 7.3
An integrator

1
s

xx

2As well as due to its historical significance.
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analog-computer simulation of that system by taking one integrator for
each state-variable and connecting its input according to the given equa-
tion for that state-variable, as expressed in the state-variable equations.
The analog-computer diagram is a picture of the state equations.

The components of a typical analog computer used to accomplish
these functions are shown in Fig. 7.4. Notice the operational amplifier
has a sign change that gives it a negative gain.

EXAMPLE 7.7 Analogue-Computer Implementation

Find a state-variable description and the transfer function of the third-
order system shown in Fig. 7.5 whose differential equation is

...
y + 7.5ÿ+ 13ẏ+ 6.5y = 7u.

Solution. We solve for the highest derivative term in the ODE to obtain

...
y = −7.5ÿ− 13ẏ− 6.5y+ 7u. (7.8)

Now we assume we have this highest derivative, and note the lower order
terms can be obtained by integration as shown in Fig. 7.6(a). Finally
we apply Eq. (7.8) to complete the realization shown in Fig. 7.6(b). To
obtain the state description, we simply define the state-variables as the
output of the integrators x1 = ÿ, x2 = ẏ, x3 = y, to obtain

Figure 7.4
Components of an
analog computer
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Figure 7.6
Block diagram
of a system to solve...
y +7.5ÿ+13ẏ+6.5y =
7u, using only
integrators as dynamic
elements: (a) inter-
mediate diagram;
(b) final diagram
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ẋ1 = −7.5x1 − 13x2 − 6.5x3,

ẋ2 = x1,

ẋ3 = x2,

which provides the state-variable description

A =
⎡
⎣
−7.5 −13 −6.5

1 0 0
0 1 0

⎤
⎦ , B =

⎡
⎣

7
0
0

⎤
⎦ , C = [ 0 0 1 ], D = 0.

The Matlab statement

[num,den] = ss2tf(A,B,C,D);

will yield the transfer function

Y(s)
U(s)

= 7
s3 + 7.5s2 + 13s+ 6.5

.

If the transfer function were desired in factor form, it could be obtained
by transforming either the ss or tf description. Therefore, either of the
Matlab statements

[z,p,k] = ss2zp(A,B,C,D)

and

[z,p,k] = tf2zp(num,den)

would result in

z = [ ], p = [ −5.26 −1.23 −1
]′ , k = 7.

This means the transfer function could also be written in factored
form as

Y(s)
U(s)

= G(s) = 7
(s+ 5.26)(s+ 1.23)(s+ 1)

.



main_1 — 2019/2/5 — 15:24 — page 491 — #13

7.4 Analysis of the State Equations 491

7.4 Analysis of the State Equations
In the previous section, we introduced and illustrated the process of
selecting a state and organizing the equations in state form. In this
section, we review that process and describe how to analyze the dynamic
response using the state description. In Section 7.4.1, we begin by relat-
ing the state description to block diagrams and the Laplace transform
description and to consider the fact that for a given system the choice
of state is not unique. We show how to use this nonuniqueness to select
among several canonical forms for the one that will help solve the par-
ticular problem at hand; a control canonical form makes feedback gains
of the state easy to design. After studying the structure of state equa-
tions in Section 7.4.2, we consider the dynamic response and show
how transfer-function poles and zeros are related to the matrices of the
state descriptions. To illustrate the results with hand calculations, we
offer a simple example that represents the model of a thermal system.
For more realistic examples, a computer-aided control systems design
software package such as Matlab is especially helpful; relevant Matlab
commands will be described from time to time.

7.4.1 Block Diagrams and Canonical Forms
We begin with a thermal system that has a simple transfer function

G(s) = b(s)
a(s)
= s+ 2

s2 + 7s+ 12
= 2

s+ 4
+ −1

s+ 3
. (7.9)

The roots of the numerator polynomial b(s) are the zeros of the
transfer function, and the roots of the denominator polynomial a(s) are
the poles. Notice we have represented the transfer function in two forms,
as a ratio of polynomials and as the result of a partial-fraction expan-
sion. In order to develop a state description of this system (and this is
a generally useful technique), we construct a block diagram that corre-
sponds to the transfer function (and the differential equations) using
only isolated integrators as the dynamic elements. We present several
special forms which we call canonical forms. One such block diagram,
structured in control canonical form, is illustrated in Fig. 7.7. The cen-
tral feature of this structure is that each state-variable feeds back to the
control input, u, through the coefficients of the system matrix Ac.

Once we have drawn the block diagram in this form, we can iden-
tify the state description matrices simply by inspection; this is possible
because when the output of an integrator is a state-variable, the input of
that integrator is the derivative of that variable. For example, in Fig. 7.7,
the equation for the first state-variable is

ẋ1 = −7x1 − 12x2 + u.

Continuing in this fashion, we get

ẋ2 = x1,

y = x1 + 2x2.
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Figure 7.7
A block diagram
representing Eq. (7.9)
in control canonical
form
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These three equations can then be rewritten in the matrix form

ẋ = Acx+ Bcu, (7.10)

y = Ccx, (7.11)

where

Ac =
[ −7 −12

1 0

]
, Bc =

[
1
0

]
, (7.12a)

Cc = [ 1 2 ], Dc = 0, (7.12b)

and where the subscript c refers to control canonical form.
Two significant facts about this form are that the coefficients 1

and 2 of the numerator polynomial b(s) appear in the Cc matrix, and
(except for the leading term) the coefficients 7 and 12 of the denomi-
nator polynomial a(s) appear (with opposite signs) as the first row of
the Ac matrix. Armed with this knowledge, we can thus write down
by inspection the state matrices in control canonical form for any sys-
tem whose transfer function is known as a ratio of numerator and
denominator polynomials. If b(s) = b1sn−1 + b2sn−2 + · · · + bn and
a(s) = sn + a1sn−1 + a2sn−2 + · · · + an, the Matlab steps areMatlab tf2ss

num = b = [b1 b2 · · · bn ]
den = a = [1 a1 a2 · · · an]
[Ac, Bc, Cc, Dc] = tf2ss(num,den).

We read tf2ss as “transfer function to state-space.” The result will beControl canonical form

Ac =

⎡
⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · · · · −an
1 0 · · · · · · 0
0 1 0 · · · 0
...

. . . 0
...

0 0 · · · · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

, Bc =

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

, (7.13a)

Cc =
[

b1 b2 · · · · · · bn
]

, Dc = 0. (7.13b)

The block diagram of Fig. 7.7 and the corresponding matrices of
Eq. (7.12) are not the only way to represent the transfer function G(s). A
block diagram corresponding to the partial-fraction expansion of G(s)
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Figure 7.8
Block diagram for
Eq. (7.12) in modal
canonical form
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is given in Fig. 7.8. Using the same technique as before, with the state-
variables marked as shown in the figure, we can determine the matrices
directly from the block diagram as being

ż = Amz+ Bmu,

y = Cmz+Dmu,

where

Am =
[−4 0

0 −3

]
, Bm =

[
1
1

]
, (7.14a)

Cm = [ 2 −1 ], Dm = 0, (7.14b)

and the subscript m refers to modal canonical form. The name for thisModal form
form derives from the fact that the poles of the system transfer function
are sometimes called the normal modes of the system. The important
fact about the matrices in this form is that the system poles (in this case
−4 and−3) appear as the elements along the diagonal of the Am matrix,
and the residues, the numerator terms in the partial-fraction expansion
(in this example 2 and −1), appear in the Cm matrix.

Expressing a system in modal canonical form can be complicated
by two factors: (1) the elements of the matrices will be complex when
the poles of the system are complex, and; (2) the system matrix can-
not be diagonal when the partial-fraction expansion has repeated poles.
To solve the first problem, we express the complex poles of the partial-
fraction expansion as conjugate pairs in second-order terms so that all
the elements remain real. The corresponding Am matrix will then have
2 × 2 blocks along the main diagonal representing the local coupling
between the variables of the complex-pole set. To handle the second
difficulty, we also couple the corresponding state-variables so the poles
appear along the diagonal with off-diagonal terms indicating the cou-
pling. A simple example of this latter case is the satellite system from
Example 7.1, whose transfer function is G(s) = 1/s2. The system
matrices for this transfer function in a modal form are

Am =
[

0 1
0 0

]
, Bm =

[
0
1

]
, Cm = [ 1 0 ], Dm = 0.

(7.15)
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EXAMPLE 7.8 State Equations in Modal Canonical Form

A “quarter car model” [see Example 2.2] with one resonant model has
a transfer function given by

G(s) = 5s+ 10
s2(s2 + 5s+ 10)

= 1
s2 −

1
s2 + 5s+ 10

(7.16)

Find state matrices in model form describing this system.

Solution. The transfer function has been given in real partial-fraction
form. To get state-description matrices, we draw a corresponding block
diagram with integrators only, assign the state, and write down the cor-
responding matrices. This process is not unique, so there are several
acceptable solutions to the problem as stated, but they will differ in only
trivial ways. A block diagram with a satisfactory assignment of variables
is given in Fig. 7.9.

Notice the second-order term to represent the complex poles has
been realized in control canonical form. There are a number of other
possibilities that can be used as alternatives for this part. This particular
form allows us to write down the system matrices by inspection:

A =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
0 0 −5 −10
0 0 1 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ ,

C = [ 0 1 0 −1 ], D = 0. (7.17)

Thus far, we have seen that we can obtain the state description
from a transfer function in either control or modal form. Because these
matrices represent the same dynamic system, we might ask as to what is
the relationship between the matrices in the two forms (and their corre-
sponding state-variables)? More generally, suppose we have a set of state
equations that describe some physical system in no particular form, and
we are given a problem for which the control canonical form would

Figure 7.9
Block diagram for a
fourth-order system in
modal canonical form
with shading indicating
portion in control
canonical form
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be helpful. (We will see such a problem in Section 7.5.) Is it possible
to calculate the desired canonical form without obtaining the transfer
function first? Answering these questions requires a look at the topic of
state transformations.

Consider a system described by the state equationsState description and
output
equation ẋ = Ax+ Bu, (7.18a)

y = Cx+Du. (7.18b)

As we have seen, this is not a unique description of the dynamic system.
We consider a change of state from x to a new state z that is a linear
transformation of x. For a nonsingular transformation matrix T, we let

x = Tz. (7.19)

By substituting Eq. (7.19) into Eq. (7.18a), we have the dynamic
equations in terms of the new state z:

ẋ = Tż = ATz+ Bu, (7.20a)

ż = T−1ATz+ T−1Bu, (7.20b)

ż = Āz+ B̄u. (7.20c)

In Eq. (7.20c),Transformation of state

Ā = T−1AT, (7.21a)

B̄ = T−1B. (7.21b)

We then substitute Eq. (7.19) into Eq. (7.18b) to get the output in terms
of the new state z:

y = CTz+Du

= C̄z+ D̄u.

Here
C̄ = CT, D̄ = D. (7.22)

Given the general matrices A, B, and C and scalar D, we would like
to find the transformation matrix T such that Ā, B̄, C̄, and D̄ are in a
particular form, for example, control canonical form. To find such a T,
we assume that A, B, C, and D are already in the required form, further
assume the transformation T has a general form, and match terms. Here
we will work out the third-order case; how to extend the analysis to the
general case should be clear from the development. It goes like this.

First, we rewrite Eq. (7.21a) as

ĀT−1 = T−1A.

If Ā is in control canonical form, and we describe T−1 as a matrix with
rows t1, t2, and t3, then⎡

⎣
−a1 −a2 −a3

1 0 0
0 1 0

⎤
⎦
⎡
⎣

t1
t2
t3

⎤
⎦ =

⎡
⎣

t1A
t2A
t3A

⎤
⎦ . (7.23)
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Working out the third and second rows gives the matrix equations

t2 = t3A, (7.24a)

t1 = t2A = t3A2. (7.24b)

From Eq. (7.21b), assuming B̄ is also in control canonical form, we have
the relation

T−1B = B̄,

or ⎡
⎣

t1B
t2B
t3B

⎤
⎦ =

⎡
⎣

1
0
0

⎤
⎦ . (7.25)

Combining Eqs. (7.24) and (7.25), we get

t3B = 0,

t2B = t3AB = 0,

t1B = t3A2B = 1.

These equations can, in turn, be written in matrix form as

t3[ B AB A2B ] = [ 0 0 1 ],

or
t3 = [ 0 0 1 ]C−1, (7.26)

where the controllability matrix C = [ B AB A2B ]. Having t3, weControllability matrix
transformation to control
canonical form

can now go back to Eq. (7.24) and construct all the rows of T−1.
To sum up, the recipe for converting a general state description of

dimension n to control canonical form is as follows:

• From A and B, form the controllability matrix

C = [ B AB · · · An−1B ]. (7.27)

• Compute the last row of the inverse of the transformation matrix as

tn = [ 0 0 · · · 1 ]C−1. (7.28)

• Construct the entire transformation matrix as

T−1 =

⎡
⎢⎢⎢⎣

tnAn−1

tnAn−2

...
tn

⎤
⎥⎥⎥⎦ . (7.29)

• Compute the new matrices from T−1, using Eqs. (7.21a), (7.21b),
and (7.22).

When the controllability matrix C is nonsingular, the corresponding
A and B matrices are said to be controllable. This is a technical propertyControllable systems
that usually holds for physical systems and will be important when we
consider feedback of the state in Section 7.5. We will also consider a few
physical illustrations of loss of controllability at that time.
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Because computing the transformation given by Eq. (7.29) is
numerically difficult to do accurately, it is almost never done. The rea-
son for developing this transformation in some detail is to show how
such changes of state could be done in theory and to make the following
important observation:

One can always transform a given state description to control
canonical form if (and only if) the controllability matrix C is
nonsingular.

If we need to test for controllability in a real case with numbers, we
use a numerically stable method that depends on converting the system
matrices to “staircase” form rather than on trying to compute the con-
trollability matrix. Problem 7.30 at the end of the chapter will call for
consideration of this method.

An important question regarding controllability follows directly
from our discussion so far: What is the effect of a state transformation
on controllability? We can show the result by using Eqs. (7.27), (7.21a),
and (7.21b). The controllability matrix of the system (A, B) is

Cx = [ B AB · · · An−1B ]. (7.30)

After the state transformation, the new description matrices are given
by Eqs. (7.21a) and (7.21b), and the controllability matrix changes to

Cz = [ B̄ ĀB̄ · · · Ān−1B̄ ] (7.31a)

= [ T−1B T−1ATT−1B · · · T−1An−1TT−1B ] (7.31b)

= T−1Cx. (7.31c)

Thus, we see that Cz is nonsingular if and only if Cx is nonsingular,
yielding the following observation:

A change of state by a nonsingular linear transformation does
not change controllability.

We return once again to the transfer function of Eq. (7.9), this time
to represent it with the block diagram having the structure known asObserver canonical form
observer canonical form (Fig. 7.10). The corresponding matrices for this
form are

Ao =
[ −7 1
−12 0

]
, Bo =

[
1
2

]
, (7.32a)

Co =
[

1 0
]

, Do = 0. (7.32b)

The significant fact about this canonical form is that the output feeds
back to each one of the state-variables through the coefficients of the
system matrix Ao.
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Figure 7.10
Observer canonical form
for the second-order
thermal system
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Let us now consider what happens to the controllability of this
system as the zero at −2 is varied. For this purpose, we replace the
second element 2 of Bo with the variable zero location −zo and form
the controllability matrix:

Cx = [ Bo AoBo ] (7.33a)

=
[

1 −7− zo
−zo −12

]
. (7.33b)

The determinant of this matrix is a function of zo:

det(Cx) = −12+ zo(−7− zo)

= −(z2
o + 7zo + 12).

This polynomial is zero for zo = −3 or−4, implying that controllability
is lost for these values. What does this mean? In terms of the parameter
zo, the transfer function is

G(s) = s− zo

(s+ 3)(s+ 4)
.

If zo = −3 or −4, there is a pole–zero cancellation and the transfer
function reduces from a second-order system to a first-order one. When
zo = −3, for example, the mode at −3 is decoupled from the input and
control of this mode is lost.

Notice we have taken the transfer function given by Eq. (7.9) and
given it two realizations, one in control canonical form, and one in
observer canonical form. The control form is always controllable for
any value of the zero, while the observer form loses controllability if the
zero cancels either of the poles. Thus, these two forms may represent
the same transfer function, but it may not be possible to transform the
state of one to the state of the other (in this case, from observer to con-
trol canonical form). Although a transformation of state cannot affect
controllability, the particular state selected from a transfer function can:

Controllability is a function of the state of the system and
cannot be decided from a transfer function.
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To discuss controllability more at this point would take us too far
afield. The closely related property of observability and the observer
canonical form will be discussed in Section 7.7.1. A more detailed dis-
cussion of these properties of dynamic systems is given in Appendix WC
available online www.pearsonglobaleditions.com, for those who would
like to learn more.

We return now to the modal form for the equations, given by
Eqs. (7.14a) and (7.14b) for the example transfer function. As men-
tioned before, it is not always possible to find a modal form for transfer
functions that have repeated poles, so we assume our system has only
distinct poles. Furthermore, we assume the general state equations given
by Eqs. (7.18a) and (7.18b) apply. We want to find a transformation
matrix T defined by Eq. (7.19) such that the transformed Eqs. (7.21a)
and (7.22) will be in modal form. In this case, we assume the A matrix
is diagonal, and T is composed of the columns t1, t2, and t3. With this
assumption, the state transformation Eq. (7.21a) becomes

TĀ = AT

[
t1 t2 t3

]
⎡
⎣

p1 0 0
0 p2 0
0 0 p3

⎤
⎦ = A[ t1 t2 t3 ]. (7.34)

Equation (7.34) is equivalent to the three vector-matrix equationsTransformation to modal
form

piti = Ati, i = 1, 2, 3. (7.35)

In matrix algebra, Eq. (7.35) is a famous equation, whose solution is
known as the eigenvector/eigenvalue problem. Recall that ti is a vector,Eigenvectors
A is a matrix, and pi is a scalar. The vector ti is called an eigenvector of
A, and pi is called the corresponding eigenvalue. Because we saw earlier
that the modal form is equivalent to a partial-fraction-expansion repre-Eigenvalues
sentation with the system poles along the diagonal of the state matrix,
it should be clear that these eigenvalues are precisely the poles of our
system. The transformation matrix that will convert the state descrip-
tion matrices to modal form has as its columns the eigenvectors of A,
as shown in Eq. (7.34) for the third-order case. As it happens, there are
robust, reliable computer algorithms to compute eigenvalues and the
eigenvectors of quite large systems using the QR algorithm. In Matlab,
the command p = eig(A) is the way to compute the poles if the systemMatlab eig
equations are in state form.

Notice also that Eq. (7.35) is homogeneous in that, if ti is an eigen-
vector, so is αti, for any scalar α. In most cases, the scale factor is
selected so the length (square root of the sum of squares of the mag-
nitudes of the elements) is unity. Matlab will perform this operation.
Another option is to select the scale factors so that the input matrix B̄ is
composed of all 1’s. The latter choice is suggested by a partial-fraction
expansion with each part realized in control canonical form. If the sys-
tem is real, then each element of A is real, and if p = σ + jω is a pole,
so is the conjugate, p∗ = σ − jω. For these eigenvalues, the eigenvectors

www.pearsonglobaleditions.com
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are also complex and conjugate. It is possible to compose the trans-
formation matrix using the real and complex parts of the eigenvectors
separately, so the modal form is real but has 2×2 blocks for each pair of
complex poles. Later, we will see the result of the Matlab function that
does this, but first, let us look at the simple real-poles case.

EXAMPLE 7.9 Transformation of Thermal System from Control to Modal
Form

Find the matrix to transform the control form matrices in Eq. (7.12)
into the modal form of Eq. (7.14).

Solution. According to Eqs. (7.34) and (7.35), we need first to find the
eigenvectors and eigenvalues of the Ac matrix. We take the eigenvec-
tors to be [

t11
t21

]
and

[
t12
t22

]
.

The equations using the eigenvector on the left are
[ −7 −12

1 0

] [
t11
t21

]
= p

[
t11
t21

]
, (7.36a)

−7t11 − 12t21 = pt11, (7.36b)

t11 = pt21. (7.36c)

Substituting Eq. (7.36c) into Eq. (7.36b) results in

−7pt21 − 12t21 = p2t21, (7.37a)

p2t21 + 7pt21 + 12t21 = 0, (7.37b)

p2 + 7p+ 12 = 0, (7.37c)

p = −3,−4. (7.37d)

We have found (again!) that the eigenvalues (poles) are −3 and −4;
furthermore, Eq. (7.36c) tells us that the two eigenvectors are

[ −4t21
t21

]
and

[ −3t22
t22

]
,

where t21 and t22 are arbitrary nonzero scale factors. We want to select
the two scale factors such that both elements of Bm in Eq. (7.14a) are
unity. The equation for Bm in terms of Bc is TBm = Bc, and its solution
is t21 = −1 and t22 = 1. Therefore, the transformation matrix and its
inverse3 are

T =
[

4 −3
−1 1

]
, T−1 =

[
1 3
1 4

]
. (7.38)

3To find the inverse of a 2× 2 matrix, you need only interchange the elements subscripted
“11” and “22,” change the signs of the “12” and the “21” elements, and divide by the
determinant [= 1 in Eq. (7.38)].
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Elementary matrix multiplication shows that, using T as defined by
Eq. (7.38), the matrices of Eqs. (7.12) and (7.14) are related as follows:

Am = T−1AcT, Bm = T−1Bc,

Cm = CcT, Dm = Dc. (7.39)

These computations can be carried out by using the following Matlab
statements:

T = [4−3;−1 1];
Am = inv(T)*Ac*T;
Bm = inv(T)*Bc;
Cm = Cc*T;
Dm = Dc;

The next example has four state-variables and, in state-variable
form, is too complicated for hand calculations. However, it is a good
example for illustrating the use of computer software designed for the
purpose. The model we will use is based on a physical state after
amplitude and time scaling have been done.

EXAMPLE 7.10 Using Matlab to Find Poles and Zeros of Piper Dakato
Airplane

The state space representation of the transfer function between the ele-
vator input and pitch attitude for the Piper Dakota, Eq. (5.78), is shown
below. Find the eigenvalues of the system matrix. Also, compute the
transformation of the equations of the airplane in their given form to
the modal canonical form. The system matrices are

A =

⎡
⎢⎢⎣
−5.03 −40.21 −1.5 −2.4

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦

C = [ 0 160 512 280 ], D = 0.0 (7.40)

Solution. To compute the eigenvalues by using Matlab, we write

P = e i g (A) ,

which results in

P =

⎡
⎢⎢⎣
−2.5000+ 5.8095i
−2.5000− 5.8095i
−0.0150+ 0.2445i
−0.0150− 0.2445i

⎤
⎥⎥⎦ .

Notice that the system has all poles in the left half-plane (LHP).
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To transform to modal form, we use the Matlab function canon:Matlab canon

sysG = ss(A,B,C,D);
[sysGm,TI]=canon(sysG,’modal’);
[Am,Bm,Cm,Dm]=ssdata(sysGm)

The result of this computation is

Am = Am =

⎡
⎢⎢⎣
−2.5000 5.8090 0 0
−5.8090 −2.5000 0 0

0 0 −0.0150 0.2445
0 0 −0.2445 −0.0150

⎤
⎥⎥⎦ .

Notice the two complex poles appear in the 2 × 2 blocks along the
diagonal of Am. The rest of the computations from canon are

Bm= Bm =

⎡
⎢⎢⎣

7.7760
−22.6800
−3.2010

0.3066

⎤
⎥⎥⎦

Cm= Cm = [ −1.0020 0.1809 −2.8710 8.8120 ]

Dm= Dm = 0

TI = T−1 =

⎡
⎢⎢⎣

7.7761 −112.0713 −2.9026 −6.7383
−22.6776 −102.5493 −4.4167 −6.1121
−3.2007 −15.9764 −127.8924 1.0776

0.3066 2.3199 16.1981 31.4852

⎤
⎥⎥⎦

It happens that canon was written to compute the inverse of the trans-
formation we are working with (as you can see from TI in the previous
equation), so we need to invert our Matlab results. The inverse is
computed from

T = inv(TI)

and results in

T = T =

⎡
⎢⎢⎣

0.0307 −0.0336 0.0005 0.0000
−0.0068 −0.0024 −0.0000 −0.0019

0.0001 0.0011 −0.0078 0.0005
0.0002 −0.0001 0.0040 0.0316

⎤
⎥⎥⎦

The eigenvectors computed with [V,P]=eig(A) are

V =

⎡
⎢⎢⎣

0.9874+ 0.0000i 0.9874+ 0.0000i 0.0026− 0.0140i 0.0026+ 0.0140i
−0.0617− 0.1434i −0.0617+ 0.1434i −0.0577− 0.0071i −0.0577+ 0.0071i
−0.0170+ 0.0179i −0.0170− 0.0179i −0.0145+ 0.2370i −0.0145− 0.2370i

0.0037+ 0.0013i 0.0037− 0.0013i 0.9695+ 0.0000i 0.9695+ 0.0000i

⎤
⎥⎥⎦ .
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7.4.2 Dynamic Response from the State Equations
Having considered the structure of the state-variable equations, we now
turn to finding the dynamic response from the state description and to
the relationships between the state description and our earlier discus-
sion of the frequency response and poles and zeros in Chapter 6. Let us
begin with the general state equations given by Eqs. (7.18a) and (7.18b),
and consider the problem in the frequency domain. Taking the Laplace
transform of

ẋ = Ax+ Bu, (7.41)

we obtain
sX(s)− x(0) = AX(s)+ BU(s), (7.42)

which is now an algebraic equation. If we collect the terms involv-
ing X(s) on the left side of Eq. (7.42), keeping in mind that in matrix
multiplication order is very important, we find that4

(sI− A)X(s) = BU(s)+ x(0).

If we premultiply both sides by the inverse of (sI− A), then

X(s) = (sI− A)−1BU(s)+ (sI− A)−1x(0). (7.43)

The output of the system is

Y(s) = CX(s)+DU(s), (7.44a)

= C(sI− A)−1BU(s)+ C(sI− A)−1x(0)+DU(s). (7.44b)

This equation expresses the output response to both an initial condition
and an external forcing input. Collecting the terms involving U(s) andTransfer function from

state equations assuming zero initial conditions result in the transfer function of the
system,

G(s) = Y(s)
U(s)

= C(sI− A)−1B+D. (7.45)

EXAMPLE 7.11 Thermal System Transfer Function from the State
Description

Use Eq. (7.45) to find the transfer function of the thermal system des-
cribed by Eqs. (7.12a) and (7.12b).

Solution. The state-variable description matrices of the system are

A =
[−7 −12

1 0

]
, B =

[
1
0

]
,

C = [ 1 2 ], D = 0.

To compute the transfer function according to Eq. (7.45), we form

sI− A =
[

s+ 7 12
−1 s

]
,

4The identity matrix I is a matrix of ones on the main diagonal and zeros everywhere else;
therefore, Ix = x.
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and compute

(sI− A)−1 =

[
s −12
1 s+ 7

]

s(s+ 7)+ 12
. (7.46)

We then substitute Eq. (7.46) into Eq. (7.45) to get

G(s) =
[ 1 2 ]

[
s −12
1 s+ 7

] [
1
0

]

s(s+ 7)+ 12
(7.47)

=
[ 1 2 ]

[
s
1

]

s(s+ 7)+ 12
(7.48)

= (s+ 2)
(s+ 3)(s+ 4)

. (7.49)

The results can also be found using the Matlab statements,

[num,den] = ss2tf(A,B,C,D)

and yield num = [0 1 2] and den = [1 7 12], which agrees with the hand
calculations above.

Because Eq. (7.45) expresses the transfer function in terms of the
general state-space descriptor matrices A, B, C, and D, we are able to
express poles and zeros in terms of these matrices. We saw earlier that
by transforming the state matrices to diagonal form, the poles appear
as the eigenvalues on the main diagonal of the A matrix. We now take a
systems theory point of view to look at the poles and zeros as they are
involved in the transient response of a system.

As we saw in Chapter 3, a pole of the transfer function G(s) is a
value of generalized frequency s such that, if s = pi, then the system
can respond to an initial condition as Kiepit, with no forcing function u.
In this context, pi is called a natural frequency or natural mode of the
system. If we take the state-space equations (7.18a and 7.18b) and set
the forcing function u to zero, we have

ẋ = Ax. (7.50)

If we assume some (as yet unknown) initial condition

x(0) = x0, (7.51)

and that the entire state motion behaves according to the same natural
frequency, then the state can be written as x(t) = epitx0. It follows from
Eq. (7.50) that

ẋ(t) = piepitx0 = Ax = Aepitx0, (7.52)

or
Ax0 = pix0. (7.53)
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We can rewrite Eq. (7.53) as

( piI− A)x0 = 0. (7.54)

Equations (7.53) and (7.54) constitute the eigenvector/eigenvalue prob-
lem we saw in Eq. (7.35) with eigenvalues pi and, in this case, eigenvec-
tors x0 of the matrix A. If we are just interested in the eigenvalues, weTransfer function poles

from state equations can use the fact that for a nonzero x0, Eq. (7.54) has a solution if and
only if

det( piI− A) = 0. (7.55)

These equations show again that the poles of the transfer function are
the eigenvalues of the system matrix A. The determinant equation (7.55)
is a polynomial in the eigenvalues pi known as the characteristic equa-
tion. In Example 7.9, we computed the eigenvalues and eigenvectors of
a particular matrix in control canonical form. As an alternative com-
putation for the poles of that system, we could solve the characteristic
equation (7.55). For the system described by Eqs. (7.12a) and (7.12b),
we can find the poles from Eq. (7.55) by solving

det(sI− A) = 0, (7.56a)

det
[

s+ 7 12
−1 s

]
= 0, (7.56b)

s(s+ 7)+ 12 = (s+ 3)(s+ 4) = 0. (7.56c)

This confirms again that the poles of the system are the eigenvalues of
A.

We can also determine the transmission zeros of a system from the
state-variable description matrices A, B, C, and D using a systems the-
ory point of view. From this perspective, a zero is a value of generalized
frequency s such that the system can have a nonzero input and state
and yet have an output of zero. If the input is exponential at the zero
frequency zi, given by

u(t) = u0ezit, (7.57)

then the output is identically zero:

y(t) ≡ 0. (7.58)

The state-space description of Eqs. (7.57) and (7.58) would be

u = u0ezit, x(t) = x0ezit, y(t) ≡ 0. (7.59)

Thus
ẋ = ziezitx0 = Aezitx0 + Bu0ezit, (7.60)

or

[ziI− A −B]
[

x0
u0

]
= 0, (7.61)

and
y = Cx+Du = Cezitx0 +Du0ezit ≡ 0. (7.62)
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Combining Eqs. (7.61) and (7.62), we get[
ziI− A −B

C D

] [
x0
u0

]
=
[

0
0

]
. (7.63)

From Eq. (7.63), we can conclude that a zero of the state-space system isTransfer function zeros
from state equations a value of zi where Eq. (7.63) has a nontrivial solution. With one input

and one output, the matrix is square, and a solution to Eq. (7.63) is
equivalent to a solution to

det
[

ziI− A −B
C D

]
= 0. (7.64)

EXAMPLE 7.12 Zeros for the Thermal System from a State Description

Compute the zero(s) of the thermal system described by Eq. (7.12).

Solution. We use Eq. (7.64) to compute the zeros:

det

⎡
⎣

s+ 7 12 −1
−1 s 0
1 2 0

⎤
⎦ = 0,

−2− s = 0,

s = −2.

Note this result agrees with the zero of the transfer function given by
Eq. (7.9). The result can also be found using the following Matlab
statements:

sysG = ss(Ac,Bc,Cc,Dc);
[z] = tzero(sysG)

and yields z =−2.0.

Equation (7.55) for the characteristic equation and Eq. (7.64) for
the zeros polynomial can be combined to express the transfer function
in a compact form from state-description matrices as

G(s) =
det

[
sI− A −B

C D

]

det(sI− A)
. (7.65)

(See Appendix WB available online at www.pearsonglobaleditions.com
for more details.) While Eq. (7.65) is a compact formula for theoreti-
cal studies, it is very sensitive to numerical errors. A numerically stable
algorithm for computing the transfer function is described in Emami-
Naeini and Van Dooren (1982). Given the transfer function, we can
compute the frequency response as G( jω), and as discussed earlier, we
can use Eqs. (7.54) and (7.63) to find the poles and zeros, upon which
the transient response depends, as we saw in Chapter 3.

www.pearsonglobaleditions.com
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EXAMPLE 7.13 Analysis of the State Equations of Piper Dakota

Compute the poles, zeros, and the transfer function for the state space
equations of the Piper Dakota given in Example 7.10.

Solution. There are two different ways to compute the answer to this
problem. The most direct is to use the Matlab function ss2tf (state-spaceMatlab ss2tf
to transfer function), which will give the numerator and denominator
polynomials directly. This function permits multiple inputs and out-
puts; the fifth argument of the function tells which input is to be used.
We have only one input here, but must still provide the argument. The
computation of the transfer function is

[Num, Den] = ss2tf(A, B, C, D, 1),

which results in

Num = [ 0 0 160 512 280 ]

Den = [ 1.00 5.03 40.21 1.50 2.40 ]

It is interesting to check to see whether the poles and zeros determined
this way agree with those found by other means. To find the roots of aMatlab roots
polynomial such as the one corresponding to Den, we use the Matlab
function roots:

roots (Den) =

⎡
⎢⎢⎣
−2.5000+ 5.8095i
−2.5000− 5.8095i
−0.0150+ 0.2445i
−0.0150− 0.2445i

⎤
⎥⎥⎦ .

which yields the poles of the system. Checking with Example 7.10, we
confirm that they agree.

How about the zeros? We can find these by finding the roots of the
numerator polynomial. We compute the roots of the polynomial Num:

roots (Num) =
[ −2.5000
−0.7000

]
.

The zeros can be computed by the equivalent of Eq. (7.63) with theMatlab tzero
function tzero (transmission zeros).

sysG = ss(A, B, C, D)

[ZER] = tzero(sysG)

yields

ZER =
[ −2.5000
−0.7000

]
,
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From these results we can write down, for example, the transfer
function as

G(s) = 160s2 + 512s+ 280
s4 + 5.03s3 + 40.21s2 + 1.5s+ 2.4

= 160(s+ 2.5)(s+ 0.7)
(s2 + 5s+ 40)(s2 + 0.03s+ 0.06)

. (7.66)

7.5 Control-Law Design for Full-State Feedback
One of the attractive features of the state-space design method is that it
consists of a sequence of independent steps, as mentioned in the chapter
overview. The first step, discussed in Section 7.5.1, is to determine the
control law. The purpose of the control law is to allow us to assign a
set of pole locations for the closed-loop system that will correspond to
satisfactory dynamic response in terms of rise time and other measures
of transient response. In Section 7.5.2, we will show how to introduce
the reference input with full-state feedback, and in Section 7.6, we will
describe the process of finding the poles for good design.

The second step—necessary if the full state is not available—is to
design an estimator (sometimes called an observer), which computes anEstimator/observer
estimate of the entire state vector when provided with the measurements
of the system indicated by Eq. (7.18b). We will examine estimator design
in Section 7.7.

The third step consists of combining the control law and the esti-
mator. Figure 7.11 shows how the control law and the estimator fit
together and how the combination takes the place of what we have been
previously referring to as compensation. At this stage, the control-lawThe control law and the

estimator together form
the compensation

calculations are based on the estimated state rather than the actual state.
In Section 7.8, we will show that this substitution is reasonable, and also
that using the combined control law and estimator results in closed-loop
pole locations that are the same as those determined when designing the
control and estimator separately.

Figure 7.11
Schematic diagram of
state-space
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The fourth and final step of state-space design is to introduce the
reference input in such a way that the plant output will track exter-
nal commands with acceptable rise-time, overshoot, and settling-time
values. At this point in the design, all the closed-loop poles have been
selected, and the designer is concerned with the zeros of the overall
transfer function. Figure 7.11 shows the command input r introduced
in the same relative position as was done with the transform design
methods; however, in Section 7.9, we will show how to introduce the
reference at another location, resulting in different zeros and (usually)
superior control.

7.5.1 Finding the Control Law
The first step in the state-space design method, as mentioned earlier,
is to find the control law as feedback of a linear combination of theControl law
state-variables—that is,

u = −Kx = −[ K1 K2 · · · Kn ]

⎡
⎢⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎥⎦ . (7.67)

We assume, for feedback purposes, that all the elements of the state
vector are at our disposal which is why we refer to this as “full-state,”
feedback. In practice, of course, this would usually be a ridiculous
assumption; moreover, a well-trained control designer knows that other
design methods do not require so many sensors. The assumption that
all state-variables are available merely allows us to proceed with this
first step.

Equation (7.67) tells us that the system has a constant matrix in
the state-vector feedback path, as shown in Fig. 7.12. For an nth-order
system, there will be n feedback gains, K1, . . . , Kn, and because there
are n roots of the system, it is possible that there are enough degrees
of freedom to select arbitrarily any desired root location by choosing
the proper values of Ki. This freedom contrasts sharply with root-locus
design, in which we have only one parameter and the closed-loop poles
are restricted to the locus.

Substituting the feedback law given by Eq. (7.67) into the system
described by Eq. (7.18a) yields

ẋ = Ax− BKx. (7.68)

The characteristic equation of this closed-loop system isControl characteristic
equation

Figure 7.12
Assumed system for
control-law

C Y
u x

u = -Kx

x = Ax + Bu
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det[sI− (A− BK)] = 0. (7.69)

When evaluated, this yields an nth-order polynomial in s containing
the gains K1, . . . , Kn. The control-law design then consists of picking
the gains K so the roots of Eq. (7.69) are in desirable locations. Select-
ing desirable root locations is an inexact science that may require some
iteration by the designer. Issues in their selection are considered in
Examples 7.14 to 7.16 as well as in Section 7.6. For now, we assume
the desired locations are known, say,

s = s1, s2, . . . , sn.

Then the corresponding desired (control) characteristic equation is

αc(s) = (s− s1)(s− s2) . . . (s− sn) = 0. (7.70)

Hence, the required elements of K are obtained by matching coefficients
in Eqs. (7.69) and (7.70). This forces the system’s characteristic equation
to be identical to the desired characteristic equation and the closed-loop
poles to be placed at the desired locations.

EXAMPLE 7.14 Control Law for a Pendulum

Suppose you have a pendulum with frequency ω0 and a state-space
description given by[

ẋ1
ẋ2

]
=
[

0 1
−ω2

0 0

] [
x1
x2

]
+
[

0
1

]
u. (7.71)

Find the control law that places the closed-loop poles of the system
so they are both at−2ω0. In other words, you wish to double the natural
frequency and increase the damping ratio ζ from 0 to 1.

Solution. From Eq. (7.70), we find that

αc(s) = (s+ 2ω0)
2 (7.72a)

= s2 + 4ω0s+ 4ω2
0. (7.72b)

Equation (7.69) tells us that

det[sI− (A− BK)]

= det
{[

s 0
0 s

]
−
([

0 1
−ω2

0 0

]
−
[

0
1

]
[ K1 K2 ]

)}
,

or
s2 + K2s+ ω2

0 + K1 = 0. (7.73)

Equating the coefficients with like powers of s in Eqs. (7.72b) and
(7.73) yields the system of equations

K2 = 4ω0,

ω2
0 + K1 = 4ω2

0,

and therefore,

K1 = 3ω2
0,

K2 = 4ω0.
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Figure 7.13
Impulse response of the
undamped oscillator
with full-state feedback
ω0 = 1
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Thus the control law in concise form is

K = [ K1 K2 ] = [ 3ω2
0 4ω0 ].

Figure 7.13 shows the response of the closed-loop system to the initial
conditions x1 = 1.0, x2 = 0.0, and ω0 = 1. It shows a very well damped
response, as would be expected from having two roots at s = −2. The
Matlab command impulse was used to generate the plot.

Calculating the gains using the technique illustrated in Exam-
ple 7.14 becomes rather tedious when the order of the system is
higher than 3. There are, however, special “canonical” forms of the
state-variable equations for which the algebra for finding the gains is
especially simple. One such canonical form that is useful in control
law design is the control canonical form as discussed in Section 7.4.1.
Consider the third-order system5

...
y + a1ÿ+ a2ẏ+ a3y = b1ü+ b2u̇+ b3u, (7.74)

which corresponds to the transfer function

G(s) = Y(s)
U(s)

= b1s2 + b2s+ b3

s3 + a1s2 + a2s+ a3
= b(s)

a(s)
. (7.75)

Suppose we introduce an auxiliary variable (referred to as the partial
state) ξ , which relates a(s) and b(s) as shown in Fig. 7.14(a). The
transfer function from U to ξ is

ξ(s)
U(s)

= 1
a(s)

, (7.76)

or ...
ξ + a1ξ̈ + a2ξ̇ + a3ξ = u. (7.77)

5This development is exactly the same for higher-order systems.
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It is easy to draw a block diagram corresponding to Eq. (7.77) if we
rearrange the equation as follows:

...
ξ = −a1ξ̈ − a2ξ̇ − a3ξ + u. (7.78)

The summation is indicated in Fig. 7.14(b), where each ξ on the right-
hand side is obtained by sequential integration of

...
ξ . To form the

output, we go back to Fig. 7.14(a) and note that

Y(s) = b(s)ξ(s), (7.79)

which means that
y = b1ξ̈ + b2ξ̇ + b3ξ . (7.80)

We again pick off the outputs of the integrators, multiply them by {bi}’s,
and form the right-hand side of Eq. (7.74) using a summer to yield the
output as shown in Fig. 7.14(c). In this case, all the feedback loops
return to the point of the application of the input, or “control” variable,
and hence the form is referred to as the control canonical form as dis-
cussed in Section 7.4.1. Reduction of the structure by Mason’s rule or
by elementary block diagram operations verifies that this structure has
the transfer function given by G(s).

Figure 7.14
Derivation of control
canonical form
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Taking the state as the outputs of the three integrators numbered,
by convention, from the left, namely,

x1 = ξ̈1, x2 = ξ̇ , x3 = ξ , (7.81)

we obtain

ẋ1 =
...
ξ = −a1x1 − a2x2 − a3x3 + u,

ẋ2 = x1,

ẋ3 = x2. (7.82)

We may now write the matrices describing the control canonical form
in general:

Ac =

⎡
⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · · · · −an
1 0 · · · · · · 0
0 1 0 · · · 0
...

. . . 0
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

, Bc =

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

, (7.83a)

Cc =
[

b1 b2 · · · · · · bn
]

, Dc = 0. (7.83b)

The special structure of this system matrix is referred to as the upperCompanion form matrix
companion form because the characteristic equation is a(s) = sn +
a1sn−1 + a2sn−2 + · · · + an and the coefficients of this monic “compan-
ion” polynomial are the elements in the first row of Ac. If we now form
the closed-loop system matrix Ac − BcKc, we find that

Ac − BcKc =

⎡
⎢⎢⎢⎢⎢⎣

−a1 − K1 −a2 − K2 · · · · · · −an − Kn
1 0 · · · · · · 0
0 1 0 · · · 0
...

. . .
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

. (7.84)

By visually comparing Eqs. (7.83a) and (7.84), we see the closed-
loop characteristic equation is

sn + (a1 + K1)sn−1 + (a2 + K2)sn−2 + · · · + (an + Kn) = 0. (7.85)

Therefore, if the desired pole locations result in the characteristic equ-
ation given by

αc(s) = sn + α1sn−1 + α2sn−2 + · · · + αn = 0, (7.86)

then the necessary feedback gains can be found by equating the coeffi-
cients in Eqs. (7.85) and (7.86):

K1 = −a1 + α1, K2 = −a2 + α2, . . . , Kn = −an + αn. (7.87)

We now have an algorithm for a design procedure: Given a system
of order n described by an arbitrary (A, B) and given a desired nth-
order monic characteristic polynomial αc(s), we (1) transform (A, B)
to control canonical form (Ac, Bc) by changing the state x = Tz and
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(2) solve for the control gains by inspection using Eq. (7.87) to give the
control law u = −Kcz. Because this gain is for the state in the control
form, we must (3) transform the gain back to the original state to get
K = KcT−1.

An alternative to this transformation method is given by Ack-Ackermann’s formula for
pole placement ermann’s formula (1972), which organizes the three-step process of

converting to (Ac, Bc), solving for the gains, and converting back again
into the very compact form

K = [ 0 · · · 0 1 ]C−1αc(A), (7.88)

such that
C = [ B AB A2B · · · An−1B ], (7.89)

where C is the controllability matrix we saw in Section 7.4, n gives the
order of the system and the number of state-variables, and αc(A) is a
matrix defined as

αc(A) = An + α1An−1 + α2An−2 + · · · + αnI, (7.90)

where the αi are the coefficients of the desired characteristic polynomial
Eq. (7.86). Note Eq. (7.90) is a matrix equation. Refer to Appendix WD
available online at www.pearsonglobaleditions.com for the derivation of
Ackermann’s formula.

EXAMPLE 7.15 Ackermann’s Formula for Undamped Oscillator

(a) Use Ackermann’s formula to solve for the gains for the undamped
oscillator of Example 7.14. (b) Verify the calculations with Matlab for
ω0 = 1.

Solution

(a) The desired characteristic equation is αc(s) = (s+2ω0)
2. Therefore,

the desired characteristic polynomial coefficients,

α1 = 4ω0, α2 = 4ω2
0,

are substituted into Eq. (7.90) and the result is

αc(A) =
[ −ω2

0 0
0 −ω2

0

]
+ 4ω0

[
0 1
−ω2

0 0

]

+ 4ω2
0

[
1 0
0 1

]
, (7.91a)

=
[

3ω2
0 4ω0

−4ω3
0 3ω2

0

]
. (7.91b)

The controllability matrix is

C = [ B AB ] =
[

0 1
1 0

]
,

which yields

C−1 =
[

0 1
1 0

]
. (7.92)

www.pearsonglobaleditions.com
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Finally, we substitute Eqs. (7.92) and (7.91a) into Eq. (7.88) to get

K = [ K1 K2 ]

= [ 0 1 ]
[

0 1
1 0

] [
3ω2

0 4ω0

−4ω3
0 3ω2

0

]
.

Therefore
K = [ 3ω2

0 4ω0 ],

which is the same result we obtained previously.
(b) The Matlab statements

wo = 1;
A = [0 1;−wo*wo 0];
B = [0;1];
pc = [−2*wo;−2*wo];
K = acker(A,B,pc)

yield K = [ 3 4 ], which agrees with the hand calculations above.

As was mentioned earlier, computation of the controllability matrix
has very poor numerical accuracy, and this carries over to Ackermann’s
formula. Equation (7.88), implemented in Matlab with the functionMatlab Acker, Place
acker, can be used for the design of SISO systems with a small (≤10)
number of state-variables. For more complex cases a more reliable
formula is available, implemented in Matlab with place. A modest lim-
itation on place is that, because it is based on assigning closed-loop
eigenvectors, none of the desired closed-loop poles may be repeated;
that is, the poles must be distinct,6 a requirement that does not apply to
acker.

The fact that we can shift the poles of a system by state feedback
to any desired location is a rather remarkable result. The development
in this section reveals that this shift is possible if we can transform (A,
B) to the control form (Ac, Bc), which in turn is possible if the system
is controllable. In rare instances, the system may be uncontrollable, in
which case no possible control will yield arbitrary pole locations. Uncon-
trollable systems have certain modes, or subsystems, that are unaffected
by the control. This usually means that parts of the system are phys-
ically disconnected from the input. For example, in modal canonical
form for a system with distinct poles, one of the modal state-variables
is not connected to the input if there is a zero entry in the Bm matrix. A
good physical understanding of the system being controlled would pre-
vent any attempt to design a controller for an uncontrollable system. As
we saw earlier, there are algebraic tests for controllability; however, no
mathematical test can replace the control engineer’s understanding of
the physical system. Often the physical situation is such that every mode

6One may get around this restriction by moving the repeated poles by very small amounts
to make them distinct.
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is controllable to some degree, and, while the mathematical tests indi-
cate the system is controllable, certain modes are so weakly controllable
that designs to control them are virtually useless.

Airplane control is a good example of weak controllability of cer-An example of weak
controllability tain modes. Pitch plane motion xp is primarily affected by the elevator

δe and weakly affected by rolling motion xr. Rolling motion is essen-
tially affected only by the ailerons δa. The state-space description of
these relationships is

[
ẋp
ẋr

]
=
[

Ap ε

0 Ar

] [
xp
xr

]
+
[

Bp 0
0 Br

] [
δe
δa

]
, (7.93)

where the matrix of small numbers ε represents the weak coupling from
rolling motion to pitching motion. A mathematical test of controlla-
bility for this system would conclude that pitch plane motion (and
therefore altitude) is controllable by the ailerons as well as by the ele-
vator! However, it is impractical to attempt to control an airplane’s
altitude by rolling the aircraft with the ailerons.

Another example will illustrate some of the properties of pole place-
ment by state feedback and the effects of loss of controllability on the
process.

EXAMPLE 7.16 How Zero Location Can Affect the Control Law

A specific thermal system is described by Eq. (7.32a) in observer canon-
ical form with a zero at s = z0. (a) Find the state feedback gains
necessary for placing the poles of this system at the roots of s2+2ζωns+
ω2

n (that is, at −ζωn ± jωn
√

1− ζ 2). (b) Repeat the computation with
Matlab, using the parameter values z0 = 2, ζ = 0.5, and ωn = 2 rad/sec.

Solution

(a) The state description matrices are

Ao =
[ −7 1
−12 0

]
, Bo =

[
1
−z0

]
,

Co = [ 1 0 ], Do = 0.

First, we substitute these matrices into Eq. (7.69) to get the closed-
loop characteristic equation in terms of the unknown gains and the
zero position:

s2 + (7+ K1 − z0K2)s+ 12− K2(7z0 + 12)− K1z0 = 0.

Next, we equate the coefficients of this equation to the coefficients
of the desired characteristic equation to get

K1 − z0K2 = 2ζωn − 7,

−z0K1 − (7z0 + 12)K2 = ω2
n − 12.
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The solutions to these equations are

K1 = z0(14ζωn − 37− ω2
n)+ 12(2ζωn − 7)

(z0 + 3)(z0 + 4)
,

K2 = z0(7− 2ζωn)+ 12− ω2
n

(z0 + 3)(z0 + 4)
.

(b) The following Matlab statements can be used to find the solution:

Ao = [−7 1;−12 0];
zo = 2;
Bo = [1;−zo];
pc = roots([1 2 4]);
K = place(Ao,Bo,pc)

These statements yield K= [−3.80 0.60], which agrees with the hand
calculations. If the zero were close to one of the open-loop poles,
say z0 = −2.99, then we find K= [2052.5−688.1].

Two important observations should be made from this example. The
first is that the gains grow as the zero z0 approaches either −3 or −4,
the values where this system loses controllability. In other words, as
controllability is almost lost, the control gains become very large.

The system has to work harder and harder to achieve control
as controllability slips away.

Apart from controllability, any actuator has limited dynamic range
and saturation limits. Therefore, even though for a system that is
controllable, the poles can be placed in arbitrary locations, some loca-
tions may be quite undesirable as they would drive the actuators into
saturation.

The second important observation illustrated by the example is that
both K1 and K2 grow as the desired closed-loop bandwidth given by ωn
is increased. From this, we can conclude that

To move the poles a long way requires large gains.

These observations lead us to a discussion of how we might go
about selecting desired pole locations in general. Before we begin that
topic, we will complete the design with full-state feedback by showing
how the reference input might be applied to such a system and what the
resulting response characteristics are.
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7.5.2 Introducing the Reference Input with Full-State
Feedback

Thus far, the control has been given by Eq. (7.67), or u = −Kx. In
order to study the transient response of the pole-placement designs to
input commands, it is necessary to introduce the reference input into
the system. An obvious way to do this is to change the control to u =
−Kx + r. However, the system will now almost surely have a nonzero
steady-state error to a step input. The way to correct this problem is to
compute the steady-state values of the state and the control input that
will result in zero output error and then force them to take these values.
If the desired final values of the state and the control input are xss and
uss respectively, then the new control formula should be

u = uss − K(x− xss), (7.94)

so that when x = xss (no error), u = uss. To pick the correct final values,
we must solve the equations so that the system will have zero steady-
state error to any constant input. The system differential equations are
the standard ones:

ẋ = Ax+ Bu, (7.95a)

y = Cx+Du. (7.95b)

In the constant steady-state, Eqs. (7.95a) and (7.95b) reduce to the pair

0 = Axss + Buss, (7.96a)

yss = Cxss +Duss. (7.96b)

We want to solve for the values for which yss = rss for any value of rss. ToGain calculation for
reference input do this, we make xss = Nxrss and uss = Nurss. With these substitutions,

we can write Eqs. (7.96) as a matrix equation; the common factor of rss
cancels out to give the equation for the gains:

[
A B
C D

] [
Nx
Nu

]
=
[

0
1

]
. (7.97)

This equation can be solved for Nx and Nu to get
[

Nx
Nu

]
=
[

A B
C D

]−1 [ 0
1

]
.

With these values, we finally have the basis for introducing the referenceControl equation with
reference input input so as to get zero steady-state error to a step input:

u = Nur− K(x−Nxr) (7.98a)

= −Kx+ (Nu + KNx)r. (7.98b)

The coefficient of r in parentheses is a constant that can be computed
beforehand. We give it the symbol N̄, so
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Figure 7.15
Block diagram for
introducing the
reference input with
full-state feedback:
(a) with state and
control gains; (b) with a
single composite gain
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u = −Kx+ N̄r. (7.99)

The block diagram of the system is shown in Fig. 7.15.

EXAMPLE 7.17 Introducing the Reference Input

Compute the necessary gains for zero steady-state error to a step com-
mand at x1, and plot the resulting unit step response for the oscillator
in Example 7.14 with ω0 = 1.

Solution. We substitute the matrices of Eq. (7.71) (with ω0 = 1 and
C = [ 1 0 ] because y = x1) into Eq. (7.97) to get

⎡
⎣

0 1 0
−1 0 1

1 0 0

⎤
⎦
[

Nx
Nu

]
=
⎡
⎣

0
0
1

⎤
⎦ · (7.100)

The solution is x=a\b in Matlab (where a and b are the left- and right-
hand side matrices, respectively),

Nx =
[

1
0

]
,

Nu = 1,

and, for the given control law, K = [3ω2
0 4ω0] = [ 3 4 ],

N̄ = Nu + KNx = 4. (7.101)

The corresponding step response (using the Matlab step command) is
plotted in Fig. 7.16.

Note there are two equations for the control—Eqs. (7.98b) and (7.99).
While these expressions are equivalent in theory, they differ in practical
implementation in that Eq. (7.98b) is usually more robust to parameter
errors than Eq. (7.99), particularly when the plant includes a pole at the
origin and Type 1 behavior is possible. The difference is most clearly
illustrated by the next example.
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Figure 7.16
Step response of
oscillator to a reference
input
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EXAMPLE 7.18 Reference Input to a Type 1 System: DC Motor

Compute the input gains necessary to introduce a reference input with
zero steady-state error to a step for the DC motor of Example 5.1, which
in state-variable form is described by the matrices:DC Motor

A =
[

0 1
0 −1

]
, B =

[
0
1

]
,

C = [
1 0

]
, D = 0.

Assume the state feedback gain is [ K1 K2 ].

Solution. If we substitute the system matrices of this example into the
equation for the input gains, Eq. (7.97), we find that the solution is

Nx =
[

1
0

]
,

Nu = 0,

N̄ = K1.

With these values, the expression for the control using Nx and Nu
[Eq. (7.98b)] reduces to

u = −K1(x1 − r)− K2x2,

while the one using N̄ [Eq. (7.99)] becomes

u = −K1x1 − K2x2 + K1r.

The block diagrams for the systems using each of the control equations
are given in Fig. 7.17. When using Eq. (7.99), as shown in Fig. 7.17(b),
it is necessary to multiply the input by a gain K1(= N̄) exactly equal to
that used in the feedback. If these two gains do not match exactly, there
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Figure 7.17
Alternative structures
for introducing the
reference input: (a) Eq.
(7.98b); (b) Eq. (7.99)
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will be a steady-state error. On the other hand, if we use Eq. (7.98b), as
shown in Fig. 7.17(a), there is only one gain to be used on the difference
between the reference input and the first state, and zero steady-state
error will result even if this gain is slightly in error. The system of
Fig. 7.17(a) is more robust than the system of Fig. 7.17(b).

With the reference input in place, the closed-loop system has input r
and output y. From the state description, we know the system poles are
at the eigenvalues of the closed-loop system matrix, A − BK. In order
to compute the closed-loop transient response, it is necessary to know
where the closed-loop zeros of the transfer function from r to y are. They
are to be found by applying Eq. (7.64) to the closed-loop description,
which we assume has no direct path from input u to output y, so D = 0.
The zeros are values of s such that

det
[

sI− (A− BK) −N̄B
C 0

]
= 0. (7.102)

We can use two elementary facts about determinants to simplify
Eq. (7.102). In the first place, if we divide the last column by N̄,
which is a scalar, then the point where the determinant is zero remains
unchanged. The determinant is also not changed if we multiply the last
column by K and add it to the first (block) column, with the result that
the BK term is cancelled out. Thus, the matrix equation for the zeros
reduces to

det
[

sI− A −B
C 0

]
= 0. (7.103)
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Equation (7.103) is the same as Eq. (7.64) for the zeros of the plant
before the feedback was applied. The important conclusion is that

When full-state feedback is used as in Eq. (7.98b) or (7.99), the
zeros remain unchanged by the feedback.

7.6 Selection of Pole Locations for Good Design
The first step in the pole-placement design approach is to decide on the
closed-loop pole locations. When selecting pole locations, it is always
useful to keep in mind that the required control effort is related to how
far the open-loop poles are moved by the feedback. Furthermore, when
a zero is near a pole, the system may be nearly uncontrollable and, as we
saw in Section 7.5, moving such poles requires large control gains and
thus a large control effort; however, the designer is able to temper the
choices to take control effort into account. Therefore, a pole-placement
philosophy that aims to fix only the undesirable aspects of the open-
loop response and avoids either large increases in bandwidth or efforts
to move poles that are near zeros will typically allow smaller gains, and
thus smaller control actuators, than a philosophy that arbitrarily picks
all the poles without regard to the original open-loop pole and zero
locations.

In this section, we discuss two techniques to aid in the pole-selection
process. The first approach—dominant second-order poles—deals withTwo methods of pole

selection pole selection without explicit regard for their effect on control effort;
however, the designer is able to temper the choices to take control effort
into account. The second method (called optimal control, or symmetric
root locus) does specifically address the issue of achieving a balance
between good system response and control effort.

7.6.1 Dominant Second-Order Poles
The step response corresponding to the second-order transfer function
with complex poles at radius ωn and damping ratio ζ was discussed
in Chapter 3. The rise time, overshoot, and settling time can be
deduced directly from the pole locations. We can choose the closed-
loop poles for a higher-order system as a desired pair of dominant
second-order poles, and select the rest of the poles to have real parts
corresponding to sufficiently damped modes, so the system will mimic
a second-order response with reasonable control effort. We also must
make sure that the zeros are far enough into the LHP to avoid hav-
ing any appreciable effect on the second-order behavior. A system with
several lightly damped high-frequency vibration modes plus two rigid-
body low-frequency modes lends itself to this philosophy. Here we can
pick the low-frequency modes to achieve desired values of ωn and ζ and
select the rest of the poles to increase the damping of the high-frequency
modes, while holding their frequency constant in order to minimize con-
trol effort. To illustrate this design method, we obviously need a system
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of higher than second-order; we will use the drone system described in
Example 5.12.

EXAMPLE 7.19 Pole Placement as a Dominant Second-Order System

Design the feedback control for the drone system (see Example 5.12)

G(s) = 1
s2(s+ 2)

by the dominant second-order poles method to have a rise time of 1 sec
or less and an overshoot of less than 5%.

Solution. We use the Matlab command ssdata(G) to find a state space
realization for G(s)

A =
⎡
⎣
−2 0 0
1 0 0
0 1 0

⎤
⎦ , B =

⎡
⎣

1
0
0

⎤
⎦

C = [ 0 0 1 ], D = 0.

From the plots of the second-order transients in Fig. 3.19, a damp-
ing ratio ζ = 0.7 will meet the overshoot requirement. We choose a
natural frequency of 4 rad/sec and the two dominant poles located at
−2± j2. There are three poles in all, so the other pole needs to be placed
far to the left of the dominant pair; for our purposes, “far” means the
transients due to the fast pole should be over (significantly faster) well
before the transients due to the dominant poles, and we assume a factor
of higher than 4 in the respective undamped natural frequencies to be
adequate. From these considerations, the desired poles are given by

pc = [−2+ 2 ∗ j;−2− 2 ∗ j;−12] (7.104)

With these desired poles, we can use the function acker, to find the
control gains

K = [ 14 56 96 ]. (7.105)

These are found with the following Matlab statements:Matlab acker

A = [−2 0 0;1 0 0;0 1 0];
B = [1;0;0];
pc = [−2+2*j;−2−2*j;−12];
K= acker(A,B,pc)

The step response and the corresponding plots for this and
another design (to be discussed in Section 7.6.2) are given in Fig. 7.18
and Fig. 7.19. Notice the rise time is approximately 0.8 sec, and the
overshoot is about 4%, as specified.

Because the design process is iterative, the poles we selected should
be seen as only a first step, to be followed by further modifications to
meet the specifications as accurately as necessary. For this example, we
happened to select adequate pole locations on the first try.
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Figure 7.18
Step responses of drone
designs
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Control efforts for
drone designs
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7.6.2 Symmetric Root Locus (SRL)
A most effective and widely used technique of linear control systems
design is the optimal linear quadratic regulator (LQR). The simpli-LQR design
fied version of the LQR problem is to find the control such that the
performance index

J =
∫ ∞

0
[ρz2(t)+ u2(t)] dt (7.106)

is minimized for the system

ẋ = Ax+ Bu, (7.107a)

z = C1x, (7.107b)
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where ρ in Eq. (7.106) is a weighting factor of the designer’s choice.
A remarkable fact is that the control law that minimizes J is given by
linear-state feedback

u = −Kx. (7.108)

Here the optimal value of K is that which places the closed-loop poles at
the stable roots (those in the LHP) of the symmetric root-locus (SRL)Symmetric root locus
equation (Kailath, 1980)

1+ ρG0(−s)G0(s) = 0, (7.109)

where G0 is the open-loop transfer function from u to z:

G0(s) = Z(s)
U(s)

= C1(sI− A)−1B = N(s)
D(s)

. (7.110)

Note that this is a root-locus problem as discussed in Chapter 5 with
respect to the parameter ρ, which weighs the relative cost of (tracking
error) z2 with respect to the control effort u2 in the performance index
equation (7.106). Note also that s and −s affect Eq. (7.109) in an iden-
tical manner; therefore, for any root s0 of Eq. (7.109), there will also be
a root at −s0. We call the resulting root locus a SRL, since the locus in
the LHP will have a mirror image in the right half-plane (RHP); that
is, they are symmetric with respect to the imaginary axis. We may thus
choose the optimal closed-loop poles by first selecting the matrix C1,
which defines the tracking error and which the designer wishes to keep
small, then choosing ρ, which balances the importance of this tracking
error against the control effort. Notice the output we select as tracking
error does not need to be the plant sensor output. That is why we call
the output in Eq. (7.107) z rather than y.

Selecting a set of stable poles from the solution of Eq. (7.109) results
in desired closed-loop poles, which we can then use in a pole-placement
calculation such as Ackermann’s formula [Eq. (7.88)] to obtain K. As
with all root loci for real transfer functions G0, the locus is also sym-
metric with respect to the real axis; thus there is symmetry with respectSRL equation
to both the real and imaginary axes. We can write the SRL equation in
the standard root-locus form

1+ ρN(−s)N(s)
D(−s)D(s)

= 0, (7.111)

obtain the locus poles and zeros by reflecting the open-loop poles and
zeros of the transfer function from U to Z across the imaginary axis
(which doubles the number of poles and zeros), then sketch the locus.
Note the locus could be either a 0◦ or 180◦ locus, depending on the
sign of G0(−s)G0(s) in Eq. (7.109). A quick way to determine which
type of locus to use (0◦ or 180◦) is to pick the one that has no part on
the imaginary axis. The real-axis rule of root locus plotting will reveal
this right away. For the controllability assumptions we have made here,
plus the assumption that all the system modes are present in the chosen
output z, the optimal closed-loop system is guaranteed to be stable; thus
no part of the locus can be on the imaginary axis.
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Figure 7.20
SRL for a first-order
system
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EXAMPLE 7.20 SRL for Servo Speed Control

Plot the SRL for the following servo speed control system with z = y:

ẏ = −ay+ u, (7.112a)

G0(s) = 1
s+ a

. (7.112b)

Solution. The SRL equation [see Eq. (7.109)] for this example is

1+ ρ 1
(−s+ a)(s+ a)

= 0. (7.113)

The SRL, shown in Fig. 7.20, is a 0◦ locus. The optimal (stable) pole
can be determined explicitly in this case as

s = −
√

a2 + ρ. (7.114)

Thus, the closed-loop root location that minimizes the performance
index of Eq. (7.106) lies on the real axis at the distance given by Eq.
(7.114) and is always to the left of the open-loop root.

EXAMPLE 7.21 SRL Design for Satellite Attitude Control

Draw the SRL for the satellite system with z = y.

Solution. The equations of motion are

ẋ =
[

0 1
0 0

]
x+

[
0
1

]
u, (7.115)

y = [ 1 0 ] x. (7.116)

We then calculate from Eqs. (7.115) and (7.116) so

G0(s) = 1
s2 . (7.117)

The symmetric 180◦ loci are shown in Fig. 7.21. The Matlab statements
to generate the SRL are

s=tf('s');
sysGG=1/s^4;
rlocus(sysGG);
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Figure 7.21
SRL for the satellite
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It is interesting to note the (stable) closed-loop poles have damping
of ζ = 0.707. We would choose two stable roots for a given value of ρ,
for example, s = −1 ± j1 for ρ = 4.07, on the SRL and use them for
pole-placement and control-law design.

Choosing different values of ρ can provide us with pole locations
that achieve varying balances between a fast response (small values of∫

z2 dt) and a low control effort (small values of
∫

u2 dt). Figure 7.22
shows the design trade-off curve for the satellite (double-integrator)
plant [see Eq. (7.15)] for various values of ρ ranging from 0.01 to
100. The curve has two asymptotes (dashed lines) corresponding to
low (large ρ) and high (small ρ) penalty on the control usage. In prac-
tice, usually a value of ρ corresponding to a point close to the knee

Figure 7.22
Design trade-off curve
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Figure 7.23
Nyquist plot for LQR
design
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of the trade-off curve is chosen. This is because it provides a reason-
able compromise between the use of control and the speed of response.
For the satellite plant, the value of ρ = 1 corresponds to the knee of
the curve. In this case, the closed-loop poles have a damping ratio of
ζ = 0.707! Figure 7.23 shows the associated Nyquist plot, which has a
phase margin PM = 65◦ and infinite gain margin. These excellent sta-
bility properties are a general feature of LQR designs. However, recall
that this method assumes all the state variables are available (measured)
for feedback, which is not the case in general. The state variables that
are not measured may be estimated as shown in the next section, but the
excellent LQR stability properties may not be attainable.

It is also possible to locate optimal pole locations for the design of
an open-loop unstable system using the SRL and LQR method.

EXAMPLE 7.22 SRL Design for an Inverted Pendulum

Draw the SRL for the linearized equations of the simple inverted pendu-
lum with ωo = 1. Take the output, z, to be the sum of twice the position
plus the velocity (so as to weight or penalize both position and velocity).

Solution. The equations of motion are

ẋ =
[

0 1
ω2

0 0

]
x+

[
0
−1

]
u. (7.118)

For the specified output of 2 × position + velocity, we compute the
output by

z = [ 2 1 ]x. (7.119)

We then calculate from Eqs. (7.118) and (7.119) so

G0(s) = − s+ 2

s2 − ω2
0

. (7.120)

The symmetric 0◦ loci are shown in Fig. 7.24. The Matlab statements to
generate the SRL are (for ωo = 1),
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Figure 7.24
SRL for the inverted
pendulum

Re(s)

Im(s)

2 3 4-2-3-4

-1

-2

-3

1

2

3

s=tf('s');
G=-(s+2)/(s^2-1);
G1=-(-s+2)/(s^2-1);
sysGG=G*G1;
rlocus(sysGG);

For ρ = 1, we find that the closed-loop poles are at−1.36 ± j0.606,
corresponding to K = [ −2.23 −2.73 ]. If we substitute the system
matrices of this example into the equation for the input gains, Eq. (7.97),
we find that the solution is

Nx =
[

1
0

]
,

Nu = 1,

N̄ = −1.23.

With these values, the expression for the control using Nx and Nu [Eq.
(7.98b)] the controller reduces to

u = −Kx+ N̄r.

The corresponding step response for position is shown in Fig. 7.25.

As a final example in this section, we consider again the drone sys-
tem and introduce LQR design using the computer directly to solve
for the optimal control law. From Eqs. (7.106) and (7.108), we know
that the information needed to find the optimal control is given by the
system matrices A and B and the output matrix C1. Most computer-
aided software packages, including Matlab, use a more general form of
Eq. (7.106):

J =
∫ ∞

0
(xT Qx+ uT Ru) dt. (7.121)
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Figure 7.25
Step response for the
inverted pendulum
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Equation (7.121) reduces to the simpler form of Eq. (7.106) if we take
Q = ρCT

1 C1 and R = 1. The direct solution for the optimal controlMatlab lqr
gain is the Matlab statement

K=lqr(A, B, Q, R). (7.122)

One reasonable method to start the LQR design iteration is suggested
by Bryson’s rule (Bryson and Ho, 1969). In practice, an appropriateBryson’s rule
choice to obtain acceptable values of x and u is to initially choose
diagonal matrices Q and R such that

Qii = 1/maximum acceptable value of [x2
i ],

Rii = 1/maximum acceptable value of [u2
i ].

The weighting matrices are then modified during subsequent
iterations to achieve an acceptable trade-off between performance and
control effort.

EXAMPLE 7.23 LQR Design for a Drone

(a) Find the optimal control for the drone Example 7.19, using θ as
the output for the performance index. Let ρ = 100. Compare the
results with that of dominant second-order obtained before.

(b) Compare the LQR designs for ρ = 1, 10, 100.

Solution

(a) All we need to do here is to substitute the matrices into Eq.(7.122),
form the feedback system, and plot the response. The performance
index matrix is the scalar R = 1; the most difficult part of the
problem is finding the state-cost matrix Q. With the output-cost
variable z = θ , the output matrix from Example 7.19 is

C = [ 0 0 1 ] ,
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and with ρ = 1, the required matrix is

Q = CT C

=
⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ .

The gain is given by Matlab, using the following statements:

A=[-2 0 0; 1 0 0;0 1 0];
B=[1; 0; 0];
C=[0 0 1];
R=1;
rho=100;
Q=rho*C’*C;
K=lqr(A,B,Q,R)

The Matlab computed gain is

K = [ 2.8728 9.8720 10.0000 ]. (7.123)

The results of the step responses and the corresponding control
efforts are plotted in Fig. 7.18 and Fig. 7.19 (using step) with the
earlier responses for comparison. Obviously, there is a vast range
of choice for the elements of Q and R, so substantial experience is
needed in order to use the LQR method effectively.

(b) The LQR designs may be repeated as in part (a) with the same Q
and R, but with ρ = 1,10,100. Figure 7.26 shows a comparison of
θ step and the corresponding control efforts for the three designs.
As seen from the results, the smaller values of ρ correspond to
higher cost on the control and slower response, whereas the larger
values of ρ correspond to lower cost on the control and relatively
fast response.

Limiting Behavior of LQR Regulator Poles

It is interesting to consider the limiting behavior of the optimal closed-
loop poles as a function of the root-locus parameter (that is, ρ)
although, in practice, neither case would be used.

“Expensive control” case (ρ → 0): Equation (7.106) primarily
penalizes the use of control energy. If the control is expensive, the opti-
mal control does not move any of the open-loop poles except for those
that are in the RHP. The poles in the RHP are simply moved to their
mirror images in the LHP. The optimal control does this to stabilize the
system using minimum control effort, and makes no attempt to move
any of the poles of the system that are already in the LHP. The closed-
loop pole locations are simply the starting points on the SRL in the
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Figure 7.26
(a) Step responses of
drone for LQR designs
(b) Control efforts for
drone designs
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LHP. The optimal control does not speed up the response of the system
in this case. For the satellite plant, the vertical dashed line in Fig. 7.22
corresponds to the “expensive control” case and illustrates that the very
low control usage results in a very large error in z.

“Cheap control” case (ρ → ∞): In this case, control energy is no
object and arbitrary control effort may be used by the optimal control
law. The control law then moves some of the closed-loop pole locations
right on top of the zeros in the LHP. The rest are moved to infinity
along the SRL asymptotes. If the system is nonminimum phase, some
of the closed-loop poles are moved to mirror images of these zeros in
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the LHP, as shown in Example 7.22. The rest of the poles go to infinity
and do so along a Butterworth filter pole pattern, as shown in Example
7.21. The optimal control law provides the fastest possible response time
consistent with the LQR cost function. The feedback gain matrix K
becomes unbounded in this case. For the double-integrator plant, the
horizontal dashed line in Fig. 7.22 corresponds to the “cheap control”
case.

Robustness Properties of LQR Regulators

It has been proven (Anderson and Moore, 1990) that the Nyquist plot
for LQR design avoids a circle of unity radius centered at the −1 point
as shown in Fig. 7.23. This leads to extraordinary phase and gain
margin properties. It can be shown (see Problem 7.33) that the return
difference must satisfy

|1+ K( jωI− A)−1B| ≥ 1. (7.124)

Let us rewrite the loop gain as the sum of its real and imaginary parts:

L( jω) = K( jωI− A)−1B = Re(L( jω))+ jIm(L( jω)). (7.125)

Equation (7.124) implies that

([Re(L( jω)]+1)2 + [Im(L( jω)]2 ≥ 1, (7.126)

which means the Nyquist plot must indeed avoid a circle centered at −1
with unit radius. This implies that 1

2 < GM < ∞, which means that
the “upward” gain margin is GM = ∞ and the “downward” gain mar-
gin is GM = 1

2 (see also Problem 6.24 of Chapter 6). Hence, the LQRLQR gain and phase
margins gain matrix, K, can be multiplied by a large scalar or reduced by half

with guaranteed closed-loop system stability. The phase margin, PM,
is at least ±60◦. These margins are remarkable, and it is not realistic
to assume they can be achieved in practice, because of the presence of
modeling errors and lack of sensors!

7.6.3 Comments on the Methods
The two methods of pole selection described in Sections 7.6.1 and 7.6.2
are alternatives the designer can use for an initial design by pole place-
ment. Note the first method (dominant second-order) suggests selecting
closed-loop poles without regard to the effect on the control effort
required to achieve that response. In some cases, therefore, the resulting
control effort may be unrealistically high. The second method (SRL),
on the other hand, selects poles that result in some balance between
system errors and control effort. The designer can easily examine the
relationship between shifts in that balance (by changing ρ) and system
root locations, time response, and feedback gains. Whatever initial pole-
selection method we use, some modification is almost always necessary
to achieve the desired balance of bandwidth, overshoot, sensitivity, con-
trol effort, and other practical design requirements. Further insight
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into pole selection will be gained from the examples that illustrate
compensation in Section 7.8, and from the case studies in Chapter 10.

7.7 Estimator Design
The control law designed in Section 7.5 assumed all the state-variables
are available for feedback. In most cases, not all the state-variables are
measured. The cost of the required sensors may be prohibitive, or it may
be physically impossible to measure all of the state-variables, as in, for
example, a nuclear power plant. In this section, we demonstrate how
to reconstruct all of the state-variables of a system from a few measure-
ments. If the estimate of the state is denoted by x̂, it would be convenient
whether we could replace the true state in the control law given by
Eq. (7.99) with the estimates, so the control becomes u = −Kx̂ + N̄r.
This is indeed possible, as we shall see in Section 7.8, so construction of
a state estimate is a key part of state-space control design.

7.7.1 Full-Order Estimators
One method of estimating the state is to construct a full-order model of
the plant dynamics,

˙̂x = Ax̂+ Bu, (7.127)

where x̂ is the estimate of the actual state x. We know A, B, and u(t).
Hence this estimator will be satisfactory if we can obtain the correct
initial condition x(0) and set x̂(0) equal to it. Figure 7.27 depicts this
open-loop estimator. However, it is precisely the lack of information
about x(0) that requires the construction of an estimator. Otherwise,
the estimated state would track the true state exactly. Thus, if we made
a poor estimate for the initial condition, the estimated state would have
a continually growing error or an error that goes to zero too slowly to be
of use. Furthermore, small errors in our knowledge of the system (A, B)
would also cause the estimate to diverge from the true state.

To study the dynamics of this estimator, we define the error in the
estimate to be

x̃ �= x− x̂. (7.128)

Then, the dynamics of this error system are given by

˙̃x = ẋ− ˙̂x = Ax̃, x̃(0) = x(0)− x̂(0). (7.129)

We have no ability to influence the rate at which the state estimate
converges to the true state.

Figure 7.27
Block diagram for the
open-loop estimator
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Figure 7.28
Block diagram for the
closed-loop estimator +
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We now invoke the golden rule: When in trouble, use feedback.
Consider feeding back the difference between the measured and esti-Feed back the output error

to correct the state
estimate equation.

mated outputs and correcting the model continuously with this error
signal. The equation for this scheme, as shown in Fig. 7.28, is

˙̂x = Ax̂+ Bu+ L(y− Cx̂). (7.130)

Here, L is a proportional gain defined as

L = [l1, l2, . . . , ln]T , (7.131)

and is chosen to achieve satisfactory error characteristics. The dynamics
of the error can be obtained by subtracting the estimate [see Eq. (7.130)]
from the state [see Eq. (7.41)], to get the error equation

˙̃x = (A− LC)x̃. (7.132)

The characteristic equation of the error is now given byEstimate-error
characteristic equation det[sI− (A− LC)] = 0. (7.133)

If we can choose L so A−LC has stable and reasonably fast eigenvalues,
x̃ will decay to zero and remain there—independent of the known forc-
ing function u(t) and its effect on the state x(t) and irrespective of the
initial condition x̃(0). This means x̂(t) will converge to x(t), regardless
of the value of x̂(0); furthermore, we can choose the dynamics of the
error to be stable as well as much faster than the open-loop dynamics
determined by A.

Note in obtaining Eq. (7.132), we have assumed that A, B, and
C are identical in the physical plant and in the computer implemen-
tation of the estimator. If we do not have an accurate model of the
plant (A, B, C), the dynamics of the error are no longer governed by
Eq. (7.132). However, we can typically choose L so the error system
is still at least stable and the error remains acceptably small, even with
(small) modeling errors and disturbing inputs. It is important to empha-
size that the nature of the plant and the estimator are quite different.
The plant is a physical system such as a chemical process or servomech-
anism, whereas the estimator is usually a digital processor computing
the estimated state according to Eq. (7.130).

The selection of L can be approached in exactly the same fashion as
K is selected in the control-law design. If we specify the desired location
of the estimator error poles as

si = β1,β2, . . . ,βn,
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then the desired estimator characteristic equation is

αe(s)
�= (s− β1)(s− β2) · · · (s− βn). (7.134)

We can then solve for L by comparing coefficients in Eqs. (7.133) and
(7.134).

EXAMPLE 7.24 An Estimator Design for a Simple Pendulum

Design an estimator for the simple pendulum. Compute the estimator
gain matrix that will place both the estimator error poles at −10ω0 (five
times as fast as the controller poles selected in Example 7.14). Verify
the result using Matlab for ω0 = 1. Evaluate the performance of the
estimator.

Solution. The equations of motion are

ẋ =
[

0 1
−ω2

0 0

]
x+

[
0
1

]
u, (7.135a)

y = [1 0]x. (7.135b)

We are asked to place the two estimator error poles at −10ω0. The
corresponding characteristic equation is

αe(s) = (s+ 10ω0)
2 = s2 + 20ω0s+ 100ω2

0. (7.136)

From Eq. (7.133), we get

det[sI− (A− LC)] = s2 + l1s+ l2 + ω2
0. (7.137)

Comparing the coefficients in Eqs. (7.136) and (7.137), we find that

L =
[

l1
l2

]
=
[

20ω0
99ω2

0

]
. (7.138)

The result can also be found from Matlab. For example, for ω0 = 1, the
following Matlab statements:

wo=1;
A=[0 1;−wo*wo 0];
C=[1 0];
pe=[-10*wo;−10*wo];
Lt=acker(A',C',pe);
L=Lt'

yield L = [20 99]T and agrees with the preceding hand calculations.
Performance of the estimator can be tested by adding the actual

state feedback to the plant and plotting the estimation errors. Note this
is not the way the system will ultimately be built, but this approach
provides a means of validating the estimator performance. Combin-
ing Eq. (7.68) of the plant with state feedback with Eq. (7.130) of the
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estimator with output feedback results in the following overall system
equations:

[
ẋ
˙̂x
]
=
[

A− BK 0
LC− BK A− LC

] [
x
x̂

]
, (7.139)

y = [ C 0 ]
[

x
x̂

]
, (7.140)

y− ŷ = [ C −C ]
[

x
x̂

]
. (7.141)

A block diagram of the setup is drawn in Fig. 7.29.
The response of this closed-loop system with ω0 = 1 to an initial

condition x0 = [1.0, 0.0]T and x̂0 = [0, 0]T is shown in Fig. 7.30, where
K is obtained from Example 7.14 and L comes from Eq. (7.138). The
response may be obtained using the Matlab commands impulse or ini-
tial. Note the state estimates converge to the actual state-variables afterMatlab commands

impulse, initial an initial transient even though the initial value of x̂ had a large error.
Also note the estimation error decays approximately five times faster
than the decay of the state itself, as we designed it to do.

Figure 7.29
Estimator connected to
the plant
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Figure 7.30
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Observer Canonical Form

As was the case for control-law design, there is a canonical form for
which the estimator gain design equations are particularly simple and
the existence of a solution is obvious. We introduced this form in Section
7.4.1. The equations are in the observer canonical form and have the
structure:

ẋo = Aoxo + Bou, (7.142a)

y = Coxo, (7.142b)

where

Ao =

⎡
⎢⎢⎢⎢⎣

−a1 1 0 0 . . . 0

−a2 0 1 0 . . .
...

...
...

. . . 1
−an 0 0 0

⎤
⎥⎥⎥⎥⎦

, Bo =

⎡
⎢⎢⎢⎣

b1
b2
...
bn

⎤
⎥⎥⎥⎦ ,

Co = [ 1 0 0 . . . 0 ], Do = 0.

A block diagram for the third-order case is shown in Fig. 7.31. InObserver canonical form
observer canonical form, all the feedback loops come from the out-
put, or observed signal. Like the control canonical form, the observer
canonical form is a “direct” form because the values of the significant
elements in the matrices are obtained directly from the coefficients of the
numerator and denominator polynomials of the corresponding transfer
function G(s). The matrix Ao is called a left companion matrix to the
characteristic equation because the coefficients of the equation appear
on the left side of the matrix.

One of the advantages of the observer canonical form is that the
estimator gains can be obtained from it by inspection. The estimator
error closed-loop matrix for the third-order case is

Ao − LCo =
⎡
⎣
−a1 − l1 1 0
−a2 − l2 0 1
−a3 − l3 0 0

⎤
⎦ , (7.143)

which has the characteristic equation

s3 + (a1 + l1)s2 + (a2 + l2)s+ (a3 + l3) = 0, (7.144)

Figure 7.31
Observer canonical form
of a third-order system
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and the estimator gain can be found by comparing the coefficients of
Eq. (7.144) with αe(s) from Eq. (7.134).

In a development exactly parallel with the control-law case, we can
find a transformation to take a given system to observer canonical form
if and only if the system has a structural property that in this case we
call observability. Roughly speaking, observability refers to our ability
to deduce information about all the modes of the system by monitor-
ing only the sensed outputs. Unobservability results when some mode
or subsystem is disconnected physically from the output and therefore
no longer appears in the measurements. For example, if only derivatives
of certain state-variables are measured, and these state-variables do not
affect the dynamics, a constant of integration is obscured. This situation
occurs with a plant having the transfer function 1/s2 if only velocity is
measured, for then it is impossible to deduce the initial value of the posi-
tion. On the other hand, for an oscillator, a velocity measurement is suf-
ficient to estimate position because the acceleration, and consequently
the velocity observed, are affected by position. The mathematical test
for determining observability is that the observability matrix,

O =

⎡
⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎦ , (7.145)

must have independent columns. In the one output case we will study,
O is square, so the requirement is that O be nonsingular or have
a nonzero determinant. In general, we can find a transformation to
observer canonical form if and only if the observability matrix is nonsin-
gular. Note this is analogous to our earlier conclusions for transforming
system matrices to control canonical form.

As with control-law design, we could find the transformation to
observer form, compute the gains from the equivalent of Eq. (7.144),
and transform back. An alternative method of computing L is to useAckermann’s estimator

formula Ackermann’s formula in estimator form, which is

L = αe(A)O−1

⎡
⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎦ , (7.146)

where O is the observability matrix given in Eq. (7.145).

Duality

You may already have noticed from this discussion the consider-
able resemblance between estimation and control problems. In fact,
the two problems are mathematically equivalent. This property is calledDuality of estimation and

control duality. Table 7.1 shows the duality relationships between the estimation
and control problems. For example, Ackermann’s control formula
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TABLE 7.1 Duality

Control Estimation

A AT

B CT

C BT

[Eq. (7.88)] becomes the estimator formula Eq. (7.146) if we make the
substitutions given in Table 7.1. We can demonstrate this directly using
matrix algebra. The control problem is to select the row matrix K for
satisfactory placement of the poles of the system matrix A − BK; the
estimator problem is to select the column matrix L for satisfactory
placement of the poles of A− LC. However, the poles of A− LC equal
those of (A − LC)T = AT − CT LT , and in this form, the algebra of
the design for LT is identical to that for K. Therefore, where we used
Ackermann’s formula or the place algorithm in the formsMatlab commands acker,

place K=acker(A, B, pc),
K=place(A, B, pc),

for the control problem, we use

Lt=acker(A', C', pe),
Lt=place(A', C', pe),
L=Lt',

where pe is a vector containing the desired estimator error poles for the
estimator problem.

Thus duality allows us to use the same design tools for estimator
problems as for control problems with proper substitutions. The two
canonical forms are also dual, as we can see by comparing the triples
(Ac, Bc, Cc) and (A◦, B◦, C◦).

7.7.2 Reduced-Order Estimators
The estimator design method described in Section 7.7.1 reconstructs the
entire state vector using measurements of some of the state-variables. If
the sensors have no noise, a full-order estimator contains redundan-
cies, and it seems reasonable to question the necessity for estimating
state-variables that are measured directly. Can we reduce the complex-
ity of the estimator using the state-variables that are measured directly
and exactly? Yes. However, it is better to implement a full-order esti-
mator if there is significant noise on the measurements because, in
addition to estimating unmeasured state-variables, the estimator filters
the measurements.

The reduced-order estimator reduces the order of the estimator by
the number (1 in this text) of sensed outputs. To derive this estimator,
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we start with the assumption that the output equals the first state as,
for example, y = xa. If this is not so, a preliminary step is required.
Transforming to observer form is possible but is overkill; any nonsingu-
lar transformation with C as the first row will do. We now partition the
state vector into two parts: xa, which is directly measured, and xb, which
represents the remaining state-variables that need to be estimated. If we
partition the system matrices accordingly, the complete description of
the system is given by[

ẋa
ẋb

]
=
[

Aaa Aab
Aba Abb

] [
xa
xb

]
+
[

Ba
Bb

]
u, (7.147a)

y = [ 1 0 ]
[

xa
xb

]
. (7.147b)

The dynamics of the unmeasured state-variables are given by

ẋb = Abbxb + Abaxa + Bbu︸ ︷︷ ︸
known input

, (7.148)

where the right-most two terms are known and can be considered as an
input into the xb dynamics. Because xa = y, the measured dynamics are
given by the scalar equation

ẋa = ẏ = Aaay+ Aabxb + Bau. (7.149)

If we collect the known terms of Eq. (7.149) on one side, yielding

ẏ− Aaay− Bau︸ ︷︷ ︸
known measurement

= Aabxb, (7.150)

we obtain a relationship between known quantities on the left side,
which we consider measurements, and unknown state-variables on the
right. Therefore, Eqs. (7.149) and (7.150) have the same relationship
to the state xb that the original equation [see Eq. (7.147b)] had to the
entire state x. Following this line of reasoning, we can establish the
following substitutions in the original estimator equations to obtain a
(reduced-order) estimator of xb:

x← xb, (7.151a)

A← Abb, (7.151b)

Bu← Abay+ Bbu, (7.151c)

y← ẏ− Aaay− Bau, (7.151d)

C← Aab. (7.151e)

Therefore, the reduced-order estimator equations are obtained by sub-
stituting Eqs. (7.151) into the full-order estimator [see Eq. (7.130)]:
˙̂xb = Abbx̂b + Abay+ Bbu︸ ︷︷ ︸

input

+ L (ẏ− Aaay− Bau︸ ︷︷ ︸
measurement

− Aabx̂b). (7.152)

If we define the estimator error to be

x̃b
�= xb − x̂b, (7.153)
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Figure 7.32
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then the dynamics of the error are given by subtracting Eq. (7.148) from
Eq. (7.152) to get

˙̃xb = (Abb − LAab)x̃b, (7.154)

and its characteristic equation is given by

det[sI− (Abb − LAab)] = 0. (7.155)

We design the dynamics of this estimator by selecting L so that
Eq. (7.155) matches a reduced order αe(s). Now Eq. (7.152) can be
rewritten as

˙̂xb = (Abb − LAab)x̂b + (Aba − LAaa)y+ (Bb − LBa)u+ Lẏ. (7.156)

The fact we must form the derivative of the measurements in Eq. (7.156)
appears to present a practical difficulty. It is known that differentiation
amplifies noise, so if y is noisy, the use of ẏ is unacceptable. To get
around this difficulty, we define the new controller state to be

xc
�= x̂b − Ly. (7.157)

In terms of this new state, the implementation of the reduced-order
estimator is given by

ẋc = (Abb − LAab)x̂b + (Aba − LAaa)y+ (Bb − LBa)u, (7.158)

and ẏ no longer appears directly. A block-diagram representation of the
reduced-order estimator is shown in Fig. 7.32.

EXAMPLE 7.25 A Reduced-Order Estimator Design for Pendulum

Design a reduced-order estimator for the pendulum that has the errorReduced-order estimator
pole at −10ω0.

Solution. We are given the system equations
[

ẋ1
ẋ2

]
=
[

0 1
−ω2

0 0

] [
x1
x2

]
+
[

0
1

]
u,

y = [ 1 0 ]
[

x1
x2

]
.
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Figure 7.33
Initial-condition
response of the
reduced-order
estimator
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The partitioned matrices are
[

Aaa Aab
Aba Abb

]
=
[

0 1
−ω2

0 0

]
,

[
Ba
Bb

]
=
[

0
1

]
.

From Eq. (7.155), we find the characteristic equation in terms of L:

s− (0− L) = 0.

We compare it with the desired equation,

αe(s) = s+ 10ω0 = 0,

which yields
L = 10ω0.

The estimator equation, from Eq. (7.158), is

ẋc = −10ω0x̂2 − ω2
0y+ u,

and the state estimate, from Eq. (7.157), is

x̂2 = xc + 10ω0y.

We use the control law given in the earlier examples. The response of the
estimator to a plant initial condition x0 = [1.0, 0.0]T and an estimator
initial condition xc0 = 0 is shown in Fig. 7.33 for ω0 = 1. The response
may be obtained using the Matlab commands impulse or initial. NoteMatlab impulse, initial
the similarity of the initial-condition response to that of the full-order
estimator plotted in Fig. 7.30.
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The reduced-order estimator gain can also be found from Matlab
using

Lt = acker(Abb', Aab', pe),

Lt = place(Abb', Aab', pe),

L = Lt'.
The conditions for the existence of the reduced-order estimator are

the same as for the full-order estimator—namely, observability of (Abb,
Aab) which can be shown to be the same as the observability of (A, C).

7.7.3 Estimator Pole Selection
We can base our selection of estimator pole locations on the techniquesDesign rules of thumb for

selecting estimator poles discussed in Section 7.6 for the case of controller poles. As a rule of
thumb, the estimator poles can be chosen to be faster than the controller
poles by a factor of 2 to 6. This ensures a faster decay of the estimator
errors compared with the desired dynamics, thus causing the controller
poles to dominate the total response. If sensor noise is large enough to
be a major concern, we may choose the estimator poles to be slower
than two times the controller poles, which would yield a system with
lower bandwidth and more noise smoothing. However, we would expect
the total system response in this case to be strongly influenced by the
location of the estimator poles. If the estimator poles are slower than the
controller poles, we would expect the system response to disturbances
to be dominated by the dynamic characteristics of the estimator rather
than by those selected by the control law.

In comparison with the selection of controller poles, estimator pole
selection requires us to be concerned with a much different relation-
ship than with control effort. As in the controller, there is a feedback
term in the estimator that grows in magnitude as the requested speed of
response increases. However, this feedback is in the form of an electronic
signal or a digital word in a computer, so its growth causes no special
difficulty. In the controller, increasing the speed of response increases
the control effort; this implies the use of a larger actuator, which in
turn increases its size, weight, and cost. The important consequence of
increasing the speed of response of an estimator is that the bandwidth of
the estimator becomes higher, thus causing more sensor noise to pass on
to the control actuator. Of course, if (A, C) are not observable, then no
amount of estimator gain can produce a reasonable state estimate. Thus,
as with controller design, the best estimator design is a balance between
good transient response and low-enough bandwidth that sensor noise
does not significantly impair actuator activity. Both dominant second-
order and optimal control ideas can be used to meet the requirements.

There is a result for estimator gain design based on the SRL. In
optimal estimation theory, the best choice for estimator gain is depen-
dent on the ratio of sensor noise intensity ν to process (disturbance)
noise intensity [w in Eq. (7.160)]. This is best understood by reexamining
the estimator equation
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˙̂x = Ax̂+ Bu+ L(y− Cx̂) (7.159)

to see how it interacts with the system when process noise w is present.
The plant with process noise is described byProcess noise

ẋ = Ax+ Bu+ B1w, (7.160)

and the measurement equation with sensor noise ν is described bySensor noise

y = Cx+ ν. (7.161)

The estimator error equation with these additional inputs is found
directly by subtracting Eq. (7.159) from Eq. (7.160) and substituting
Eq. (7.161) for y:

˙̃x = (A− LC)x̃+ B1w− Lν. (7.162)

In Eq. (7.162), the sensor noise is multiplied by L and the process noise
is not. If L is very small, then the effect of sensor noise is removed,
but the estimator’s dynamic response will be “slow,” so the error will
not reject effects of w very well. The state of a low-gain estimator will
not track uncertain plant inputs very well. These results can, with some
success, also be applied to model errors in, for example, A or B. Such
model errors will add terms to Eq. (7.162) and act like additional pro-
cess noise. On the other hand, if L is large, then the estimator response
will be fast and the disturbance or process noise will be rejected, but the
sensor noise, multiplied by L, results in large errors. Clearly, a balance
between these two effects is required. It turns out that the optimal solu-
tion to this balance can be found under very reasonable assumptions
by solving an SRL equation for the estimator that is very similar to the
one for the optimal control formulation [see Eq. (7.109)]. The estimator
SRL equation isEstimator SRL equation

1+ qGe(−s)Ge(s) = 0, (7.163)

where q is the ratio of input disturbance noise intensity to sensor noise
intensity and Ge is the transfer function from the process noise to the
sensor output and is given by

Ge(s) = C(sI− A)−1B1. (7.164)

Note from Eqs. (7.109) and (7.163) that Ge(s) is similar to G0(s). How-
ever, a comparison of Eqs. (7.110) and (7.164) shows Ge(s) has the input
matrix B1 instead of B, and G0 is the transfer function from the control
input u to cost output z, and has output matrix C1 instead of C.

The use of the estimator SRL [see Eq. (7.163)] is identical to the
use of the controller SRL. A root locus with respect to q is generated,
thus yielding sets of optimal estimator poles corresponding more or
less to the ratio of process noise intensity to sensor noise intensity. The
designer then picks the set of (stable) poles that seems best, consider-
ing all aspects of the problem. An important advantage of using the
SRL technique is that after the process noise input matrix B1 has been
selected, the “arbitrariness” is reduced to one degree of freedom, the
selection q, instead of the many degrees of freedom required to select
the poles directly in a higher-order system.
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A final comment concerns the reduced-order estimator. Because of
the presence of a direct transmission term from y through L to xb (see
Fig. 7.32), the reduced-order estimator has a much higher bandwidth
from sensor to control when compared with the full-order estimator.
Therefore, if sensor noise is a significant factor, the reduced-order esti-
mator is less attractive because the potential saving in complexity is
more than offset by the increased sensitivity to noise.

EXAMPLE 7.26 SRL Estimator Design for a Simple Pendulum

Draw the estimator SRL for the linearized equations of the sim-
ple inverted pendulum with ωo = 1. Take the output to be a noisy
measurement of position with noise intensity ratio q.

Solution. We are given the system equations[
ẋ1
ẋ2

]
=
[

0 1
−ω2

0 0

] [
x1
x2

]
+
[

0
1

]
w,

y = [ 1 0 ]
[

x1
x2

]
+ v.

We then calculate from Eq. (7.164) that

Ge(s) = 1

s2 + ω2
0

.

The symmetric 180◦ loci are shown in Fig. 7.34. The Matlab statements
to generate the SRL are (for ωo = 1)

s=tf('s');
G=1/(s^2+1);
sysGG=G*G;
rlocus(sysGG);

We would choose two stable roots for a given value of q, for example,
s = −3± j3.18 for q = 365, and use them for estimator pole placement.

Figure 7.34
Symmetric root locus
for the inverted
pendulum estimator
design
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7.8 Compensator Design: Combined Control
Law and Estimator

If we take the control-law design described in Section 7.5, combine it
with the estimator design described in Section 7.7, and implement the
control law by using the estimated state-variables, the design is complete
for a regulator that is able to reject disturbances but has no externalRegulator
reference input to track. However, because the control law was designed
for feedback of the actual (not the estimated) state, you may wonder
what effect using x̂ in place of x has on the system dynamics. In this
section, we compute this effect. In doing so, we will compute the closed-
loop characteristic equation and the open-loop compensator transfer
function. We will use these results to compare the state-space designs
with root-locus and frequency-response designs.

The plant equation with feedback is now

ẋ = Ax− BKx̂, (7.165)

which can be rewritten in terms of the state error x̃ as

ẋ = Ax− BK(x− x̃). (7.166)

The overall system dynamics in state form are obtained by combining
Eq. (7.166) with the estimator error [see Eq. (7.132)] to get

[
ẋ
˙̃x
]
=
[

A− BK BK
0 A− LC

] [
x
x̃

]
. (7.167)

The characteristic equation of this closed-loop system is

det
[

sI− A+ BK −BK
0 sI− A+ LC

]
= 0. (7.168)

Because the matrix is block triangular (see Appendix WD available
online at www.pearsonglobaleditions.com), we can rewrite Eq. (7.168) as

det(sI− A+ BK) · det(sI− A+ LC) = αc(s)αe(s) = 0. (7.169)

In other words, the set of poles of the combined system consists of thePoles of the combined
control law and estimator union of the control poles and the estimator poles. This means that the

designs of the control law and the estimator can be carried out inde-
pendently, yet when they are used together in this way, the poles remain
unchanged.7

To compare the state-variable method of design with the transform
methods discussed in Chapters 5 and 6, we note from Fig. 7.35 that the
blue shaded portion corresponds to a compensator. The state equation
for this compensator is obtained by including the feedback law u = −Kx̂
(because it is part of the compensator) in the estimator Eq. (7.130) to get

7This is a special case of the separation principle (Gunckel and Franklin, 1963), which
holds in much more general contexts and allows us to obtain an overall optimal design by
combining the separate designs of control law and estimator in certain stochastic cases.

www.pearsonglobaleditions.com
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Figure 7.35
Estimator and controller
mechanization

Control law

Plant

y(t)

Compensator

u(t) x(t)
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yw

Sensor

u(t)

x = Ax + Bu

-K
ˆ

Estimator

x = Ax + Bu
+ L(y -  Cx)

ˆ
ˆ

ˆ

˙̂x = (A− BK− LC)x̂+ Ly, (7.170a)

u = −Kx̂. (7.170b)

Note Eq. (7.170a) has the same structure as Eq. (7.18a), which we
repeat here:

ẋ = Ax+ Bu. (7.171)

Because the characteristic equation of Eq. (7.18a) is

det(sI− A) = 0, (7.172)

the characteristic equation of the compensator is found by comparing
Eqs. (7.170a) and (7.171), and substituting the equivalent matrices into
Eq. (7.172) to get

det(sI− A+ BK+ LC) = 0. (7.173)

Note we never specified the roots of Eq. (7.173) nor used them in our
discussion of the state-space design technique. (Note also the compen-
sator is not guaranteed to be stable; the roots of Eq. (7.173) can be in
the RHP.) The transfer function from y to u representing the dynamic
compensator is obtained by inspecting Eq. (7.45) and substituting in theCompensator transfer

function corresponding matrices from Eq. (7.173):

Dc(s) = U(s)
Y(s)

= −K(sI− A+ BK+ LC)−1L. (7.174)

The same development can be carried out for the reduced-order
estimator. Here the control law is

u = −[ Ka Kb ]
[

xa
x̂b

]
= −Kay− Kbx̂b. (7.175)

Substituting Eq. (7.175) into Eq. (7.171), and using Eq. (7.158) and
some algebra, we obtain

ẋc = Arxc + Bry, (7.176a)

u = Crxc +Dry, (7.176b)
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where

Ar = Abb − LAab − (Bb − LBa)Kb, (7.177a)

Br = ArL+ Aba − LAaa − (Bb − LBa)Ka, (7.177b)

Cr = −Kb, (7.177c)

Dr = −Ka − KbL. (7.177d)

The dynamic compensator now has the transfer functionReduced-order
compensator transfer
function Dcr(s) = U(s)

Y(s)
= Cr(sI− Ar)

−1Br +Dr. (7.178)

When we compute Dc(s) or Dcr(s) for a specific case, we will find that
they are very similar to the classical compensators given in Chapters 5
and 6, in spite of the fact that they are arrived at by entirely different
means.

EXAMPLE 7.27 Full-Order Compensator Design for Satellite Attitude
Control

Design a compensator using pole placement for the satellite plant with
transfer function 1/s2. Place the control poles at s = −0.8 ± 0.8j
(ωn = 1.13 rad/sec, ζ = 0.7) and place the estimator poles at ωn =
8 rad/sec, ζ = 0.5.

Solution. A state-variable description for the given transfer function
G(s) = 1/s2 is

ẋ =
[

0 1
0 0

]
x+

[
0
1

]
u,

y = [
1 0

]
x.

If we place the control roots at s = −0.8 ± 0.8j (ωn = 1.13 rad/sec,
ζ = 0.7), then

αc = s2 + 1.6s+ 1.28. (7.179)

From K= place(A,B,pc), the state feedback gain is found to be

K = [
1.28 1.6

]
.

If the estimator error roots are at ωn = 8 rad/sec and ζ = 0.5, the
desired estimator characteristic polynomial is

αe(s) = s2 + 8s+ 64 = (s+ 4+ 6.93j)(s+ 4− 6.93j), (7.180)

and, from Lt = place(A’,C’,pe), the estimator feedback-gain matrix is
found to be

L =
[

8
64

]
.

The compensator transfer function given by Eq. (7.174) is

Dc(s) = −112.7
(s+ 0.727)

s2 + 9.6s+ 78.1
, (7.181)
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Figure 7.36
Root locus for the
combined controller
and estimator, with
process gain as the
parameter
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which looks very much like a lead compensator in that it has a zero on
the real axis to the right of its poles; however, rather than one real pole,
Eq. (7.181) has two complex poles. The zero provides the derivative
feedback with phase lead, and the two poles provide some smoothing
of sensor noise.

The effect of the compensation on this system’s closed-loop poles
can be evaluated in exactly the same way we evaluated compensation
in Chapters 5 and 6 using root-locus or frequency-response tools. The
gain of 112.7 in Eq. (7.181) is a result of the pole selection inherent in
Eqs. (7.179) and (7.180). If we replace this specific value of compensator
gain with a variable gain K, then the characteristic equation for the
closed-loop system of plant plus compensator becomes

1+ K
(s+ 0.727)

(s+ 4.8+ 7.42j)(s+ 4.8− 7.42j)s2 = 0. (7.182)

The root-locus technique allows us to evaluate the roots of this equation
with respect to K, as drawn in Fig. 7.36. Note the locus goes through
the roots selection for Eqs. (7.179) and (7.180), and, when K = 112.7,
the four roots of the closed-loop system are equal to those specified.

The frequency-response plots given in Fig. 7.37 show that the com-
pensation designed using state-space accomplishes the same results thatIdentical results of

state-space and frequency
response design methods

one would strive for using frequency-response design. Specifically, the
uncompensated phase margin of 0◦ increases to 53◦ in the compen-
sated case, the gain K = 112.7 produces a crossover frequency ωc =
1.5 rad/sec. Both these values are roughly consistent with the controller
closed-loop roots, with ωn = 1.14 and ζ = 0.7, as we would expect,
because these slow controller poles are dominant in the system response
over the fast estimator poles.
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Figure 7.37
Frequency response for
the open-loop system
for the compensated
and uncompensated
systems
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Now we consider a reduced-order estimator for the same system.

EXAMPLE 7.28 Reduced-Order Compensator Design for a Satellite
Attitude Control

Repeat the design for the 1/s2 satellite plant, but use a reduced-order
estimator. Place the one estimator pole at −10 rad/sec.

Solution. From Eq. (7.155), we know that the estimator gain is

L = 10,

From Eqs. (7.176a, b) and with K = [1.28 1.6] from Example 7.27, the
scalar compensator equations are

ẋc = −11.6xc − 117.28y,

u = −1.6xc − 17.28y,

where from Eq. (7.157),

xc = x̂2 − 10y.

The compensator has the transfer function calculated from Eq. (7.178)
to be

Dc = −17.28(s+ 0.74)
s+ 11.6

,

and is shown in Fig. 7.38.
The reduced-order compensator here is precisely a lead network.

This is a pleasant discovery, as again it shows that transform and state-
variable techniques can result in exactly the same type of compensation.
The root locus of Fig. 7.39 shows the closed-loop poles occur at the
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Figure 7.38
Simplified block
diagram of a
reduced-order
controller that is a lead
network
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Figure 7.39
Root locus of a
reduced-order
controller and 1/s2
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assigned locations. The frequency response of the compensated system
seen in Fig. 7.40 shows a phase margin of about 60◦. As with the full-
order estimator, analysis by other methods confirms the selected root
locations.

More subtle properties of the pole-placement method can be illus-
trated by a third-order system.

EXAMPLE 7.29 Full-Order Compensator Design for DC Servo

Use the state-space pole-placement method to design a compensator for
the DC servo system with the transfer function

G(s) = 10
s(s+ 2)(s+ 8)

.

Using a state description in observer canonical form, place the con-
trol poles at pc = [−1.42;−1.04 ± 2.14j] locations and the full-order
estimator poles at pe = [−4.25;−3.13± 6.41j].
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Figure 7.40
Frequency response for G(s) = 1/s2 with a reduced-order estimator

Figure 7.41
DC servo in observer
canonical form
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Solution. A block diagram of this system in observer canonical form is
shown in Fig. 7.41. The corresponding state-space matrices are

A =
⎡
⎣
−10 1 0
−16 0 1

0 0 0

⎤
⎦ , B =

⎡
⎣

0
0
10

⎤
⎦ ,

C = [
1 0 0

]
, D = 0.

The desired poles are

pc =[−1.42;−1.04+ 2.14 ∗ j;−1.04− 2.14 ∗ j] .

We compute the state feedback gain to be K = place(A,B,pc),

K = [ −46.4 5.76 −0.65 ].

The estimator error poles are at

pe = [−4.25;−3.13+ 6.41 ∗ j;−3.13− 6.41 ∗ j];
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Figure 7.42
Root locus for DC servo
pole assignment
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We compute the estimator gain to be Lt = place(A', C', pe), L = Lt',

L =
⎡
⎣

0.5
61.4
216

⎤
⎦ .

The compensator transfer function, as given by substituting into
Eq. (7.174), is

Dc(s) = −190
(s+ 0.432)(s+ 2.10)

(s− 1.88)(s+ 2.94± 8.32j)
.

Figure 7.42 shows the root locus of the system of compensator and
plant in series, plotted with the compensator gain as the parameter. It
verifies that the roots are in the desired locations specified when the
gain K = 190 in spite of the peculiar (unstable) compensation that has
resulted. Even though this compensator has an unstable root at s =
+1.88, all system closed-loop poles (controller and estimator) are stable.

An unstable compensator is typically not acceptable because of
the difficulty in testing either the compensator by itself or the system
in open loop during a bench checkout. In some cases, however, bet-
ter control can be achieved with an unstable compensator; then its
inconvenience in checkout may be worthwhile.8

Figure 7.33 shows a direct consequence of the unstable compen-
sator is that the system becomes unstable as the gain is reduced from its
nominal value. Such a system is called conditionally stable, and shouldConditionally stable

compensator be avoided if possible. As we shall see in Chapter 9, actuator saturation
in response to large signals has the effect of lowering the effective gain,

8There are even systems that cannot be stabilized with a stable compensator.
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and in a conditionally stable system, instability can result. Also, if the
electronics are such that the control amplifier gain rises continuously
from zero to the nominal value during startup, such a system would be
initially unstable. These considerations lead us to consider alternative
designs for this system.

EXAMPLE 7.30 Redesign of the DC Servo System with
a Reduced-Order Estimator

Design a compensator for the DC servo system of Example 7.29 using
the same control poles, but with a reduced-order estimator. Place the
estimator poles at −4.24 ± 4.24j positions with ωn = 6 rad/sec and
ζ = 0.707.

Solution. The reduced-order estimator corresponds to poles at

pe = [−4.24+ 4.24 ∗ j;−4.24− 4.24 ∗ j] .

After partitioning we have,
[

Aaa Aab
Aba Abb

]
=
⎡
⎣
−10 1 0
−16 0 1

0 0 0

⎤
⎦ ,

⎡
⎣

Ba

Bb

⎤
⎦ =

⎡
⎣

0
0
10

⎤
⎦ .

Solving for the estimator error characteristic polynomial,

det(sI− Abb + LAab) = αe(s),

we find (using place) that

L =
[

8.5
36

]
.

The compensator transfer function, given by Eq. (7.178), is computed
to be

Dcr(s) = 20.93
(s− 0.735)(s+ 1.871)
(s+ 0.990± 6.120 j)

.

The associated root locus for this system is shown in Fig. 7.43. NoteA nonminimum-phase
compensator this time, we have a stable but nonminimum-phase compensator and

Figure 7.43
Root locus for DC servo
reduced-order
controller
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a zero-degree root locus. The RHP portion of the locus will not cause
difficulties because the gain has to be selected to keep all closed-loop
poles in the LHP.

As a next pass at the design for this system, we attempt a design with
the SRL.

EXAMPLE 7.31 Redesign of the DC Servo Compensator Using the SRL

Design a compensator for the DC servo system of Example 7.29 using
pole placement based on the SRL. For the control law, let the cost out-
put z be the same as the plant output; for the estimator design, assume
the process noise enters at the same place as the system control sig-
nal. Select roots for a control bandwidth of about 2.5 rad/sec, and
choose the estimator roots for a bandwidth of about 2.5 times faster
than the control bandwidth (6.3 rad/sec). Verify the design by plotting
the step response and commenting. See Appendix W7.8 available online
at www.pearsonglobaleditions.com for a discrete implementation of the
solution.

Solution. Because the problem has specified that B1 = B and C1 =
C, then the SRL is the same for the control as for the estimator,
so we need to generate only one locus based on the plant trans-
fer function. The SRL for the system is shown in Fig. 7.44. From
the locus, we select −2 ± 1.56j and −8.04 as the desired control
poles (pc=[−2+1.56*j;−2−1.56*j;−8.04]) and −4± 4.9j and −9.169
(pe=[−4+4.9*j;−4−4.9*j;−9.169]) as the desired estimator poles. The
state feedback gain is K=(A,B,pc), or

K = [ −0.285 0.219 0.204 ],

and the estimator gain is Lt=place(A', C', pe), L=Lt', or

L =
⎡
⎣

7.17
97.4
367

⎤
⎦ .

Figure 7.44
Symmetric root locus
for DC servo system
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Figure 7.45
Root locus for pole
assignment from
the SRL
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Notice the feedback gains are much smaller than before. The result-
ing compensator transfer function is computed from Eq. (7.174) to be

Dc(s) = − 94.5(s+ 7.98)(s+ 2.52)
(s+ 4.28± 6.42j)(s+ 10.6)

.

We now take this compensator, put it in series with the plant, and use the
compensator gain as the parameter. The resulting ordinary root locus
of the closed-loop system is shown in Fig. 7.45. When the root-locus
gain equals the nominal gain of 94.5, the roots are at the closed-loop
locations selected from the SRL, as they should be. The step response
and the associated control effort are shown in Fig. 7.46.

Note the compensator is now stable and minimum phase. This
improved design comes about in large part because the plant pole at
s = −8 is virtually unchanged by either controller or estimator. It does
not need to be changed for good performance; in fact, the only feature
in need of repair in the original G(s) is the pole at s = 0. Using the SRL
technique, we essentially discovered that the best use of control effort is
to shift the two low-frequency poles at s = 0 and −2 and to leave the
pole at s = −8 virtually unchanged. As a result, the control gains are
much lower, and the compensator design is less radical. This example
illustrates why LQR design is typically preferable over pole placement.

Armed with the knowledge gained from Example 7.31, let us go back,
with a better selection of poles, to investigate the use of pole place-
ment for this example. Initially we used the third-order locations, which
produced three poles with a natural frequency of about 2 rad/sec. This
design moved the pole at s = −8 to s = −1.4, thus violating the princi-
ple that open-loop poles should not be moved unless they are a problem.
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Figure 7.46
Step response and
control effort: (a) step
response, (b) control
signal
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Now let us try it again, this time using dominant second-order locations
to shift the slow poles, and leaving the fast pole alone at s = −8.

EXAMPLE 7.32 DC Servo System Redesign with Modified Dominant
Second-Order Pole Locations

Design a compensator for the DC servo system of Example 7.29 using
pole placement with control poles given by

pc = [−1.7± j;−8]

and the estimator poles given by

pe = [−7± 3j;−8].
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Solution. With these pole locations, we find that the required feedback
gain is [using K = place(A,B,pc)]

K = [ −0.218 0.109 0.14 ],

which has a smaller magnitude than the case where the pole at s = −8
was moved.
We find the estimator gain to be [using Lt = place(A,B,pe), L = Lt']

L =
⎡
⎣

12
154
464

⎤
⎦ .

The compensator transfer function is computed from Eq. (7.174)

Dc = − 79.13(s+ 8)(s+ 2.28)
(s+ 11)(s+ 6.17± 5.23j)

,

which is stable and minimum phase. This example illustrates the value
of judicious pole selection and of the SRL technique.

The poor pole selection inherent in the initial use of the poles results
in higher control effort and produces an unstable compensator. Both of
these undesirable features are eliminated using the SRL (or LQR), or
by improved pole selection. But we really need to use SRL to guide the
proper selection of poles. The bottom line is that SRL (or LQR) is the
method of choice!

As seen from some of the preceding examples, we have shown the
use of optimal design via the SRL. However, it is more common in
practice to skip that step and use LQR directly.

7.9 Introduction of the Reference Input
with the Estimator

The controller obtained by combining the control law studied in
Section 7.5 with the estimator discussed in Section 7.8 is essentially a
regulator design. This means the characteristic equations of the control
and the estimator are chosen for good disturbance rejection—that is, to
give satisfactory transients to disturbances such as w(t). However, this
design approach does not consider a reference input, nor does it provide
for command following, which is evidenced by a good transient response
of the combined system to command changes. In general, good distur-
bance rejection and good command following both need to be taken
into account in designing a control system. Good command follow-
ing is done by properly introducing the reference input into the system
equations.

Let us repeat the plant and controller equations for the full-order
estimator; the reduced-order case is the same in concept, differing only
in detail:
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Figure 7.47
Possible locations for
introducing the
command input:
(a) compensation in the
feedback path;
(b) compensation in the
feed-forward path
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Plant: ẋ = Ax+ Bu, (7.183a)

y = Cx; (7.183b)

Controller: ˙̂x = (A− BK− LC)x̂+ Ly, (7.184a)

u = −Kx̂. (7.184b)

Figure 7.47 shows two possibilities for introducing the command input
r into the system. This figure illustrates the general issue of whether the
compensation should be put in the feedback or feed-forward path. The
response of the system to command inputs is different, depending on the
configuration, because the zeros of the transfer functions are different.
The closed-loop poles are identical, however, as can be easily verified by
letting r = 0 and noting the systems are then identical.

The difference in the responses of the two configurations can be
seen quite easily. Consider the effect of a step input in r. In Fig. 7.47(a),
the step will excite the estimator in precisely the same way that it excites
the plant; thus the estimator error will remain zero during and after
the step. This means that the estimator dynamics are not excited by the
command input, so the transfer function from r to y must have zeros at
the estimator pole locations that cancel those poles. As a result, a step
command will excite system behavior that is consistent with the control
poles alone—that is, with the roots of det(sI− A+ BK) = 0.

In Fig. 7.47(b), a step command in r enters directly only into the
estimator, thus causing an estimation error that decays with the estima-
tor dynamic characteristics in addition to the response corresponding to
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the control poles. Therefore, a step command will excite system behav-
ior consistent with both control roots and estimator roots—that is, the
roots of

det(sI− A+ BK) · det(sI− A+ LC) = 0.

For this reason, the configuration shown in Fig. 7.47(a) is typically
the superior way to command the system, where N̄ is found using
Eqs. (7.97)–(7.99).

In Section 7.9.1, we will show a general structure for introducing the
reference input with three choices of parameters that implement either
the feed-forward or the feedback case. We will analyze the three choices
from the point of view of the system zeros and the implications the
zeros have for the system transient response. Finally, in Section 7.9.2, we
will show how to select the remaining parameter to eliminate constant
errors.

7.9.1 General Structure for the Reference Input
Given a reference input r(t), the most general linear way to introduce
r into the system equations is to add terms proportional to it in the
controller equations. We can do this by adding N̄r to Eq. (7.184b) and
Mr to Eq. (7.184a). Note in this case, N̄ is a scalar and M is an n × 1
vector. With these additions, the controller equations becomeController equations

˙̂x = (A− BK− LC)x̂+ Ly+Mr, (7.185a)

u = −Kx̂+ N̄r. (7.185b)

The block diagram is shown in Fig. 7.48(a). The alternatives shown in
Fig. 7.47 correspond to different choices of M and N̄. Because r(t) is
an external signal, it is clear that neither M nor N̄ affects the char-
acteristic equation of the combined controller–estimator system. In
transfer-function terms, the selection of M and N̄ will affect only the
zeros of transmission from r to y and, as a consequence, can signifi-
cantly affect the transient response but not the stability. How can we
choose M and N̄ to obtain satisfactory transient response? We should
point out that we assigned the poles of the system by feedback gains K
and L, and we are now going to assign zeros by feed-forward gains M
and N̄.

There are three strategies for choosing M and N̄:Three methods for
selectingM and N̄

1. Autonomous estimator: Select M and N̄ so the state estimator error
equation is independent of r [Fig. 7.48(b)].

2. Tracking-error estimator: Select M and N̄ so only the tracking error,
e = (r− y), is used in the control [Fig. 7.48(c)].

3. Zero-assignment estimator: Select M and N̄ so n of the zeros of
the overall transfer function are assigned at places of the designer’s
choice [Fig. 7.48(a)].

CASE 1. From the viewpoint of estimator performance, the first
method is quite attractive and the most widely used of the alternatives.
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Figure 7.48
Alternative ways to introduce the reference input: (a) general case—zero assignment; (b) standard
case—estimator not excited, zeros= αe(s); (c) error-control case—classical compensation

If x̂ is to generate a good estimate of x, then surely x̃ should be as
free of external excitation as possible; that is, x̃ should be uncontrol-
lable from r. The computation of M and N̄ to bring this about is quite
easy. The estimator error equation is found by subtracting Eq. (7.185a)
from Eq. (7.183a), with the plant output [see Eq. (7.183b)] substituted
into the estimator [see Eq. (7.184a)], and the control [see Eq. (7.184b)]
substituted into the plant [see Eq. (7.183a)]:

ẋ− ˙̂x = Ax+ B(−Kx̂+ N̄r)

− [(A− BK− LC)x̂+ Ly+Mr], (7.186a)
˙̃x = (A− LC)x̃+ BN̄r−Mr. (7.186b)

If r is not to appear in Eq. (7.186a), then we should choose

M = BN̄. (7.187)

Because N̄ is a scalar, M is fixed to within a constant factor. Note with
this choice of M, we can write the controller equations as

u = −Kx̂+ N̄r, (7.188a)
˙̂x = (A− LC)x̂+ Bu+ Ly, (7.188b)
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which matches the configuration in Fig. 7.48(b). The net effect of this
choice is that the control is computed from the feedback gain and the
reference input before it is applied, then the same control is input to
both the plant and the estimator. In this form, if the plant control is
subject to saturation (as shown by the inclusion of the saturation non-
linearity in Fig. 7.48(b) and discussed in Chapter 9), the same control
limits can be applied in Eq. (7.188) to the control entering the equation
for the estimate x̂, and the nonlinearity cancels out of the x̃ equation.
This behavior is essential for proper estimator performance. The block
diagram corresponding to this technique is shown in Fig. 7.48(b). We
will return to the selection of the gain factor on the reference input, N̄,
in Section 7.9.2 after discussing the other two methods of selecting M.

CASE 2. The second approach suggested earlier is to use the track-
ing error. This solution is sometimes forced on the control designer
when the sensor measures only the output error. For example, in many
thermostats, the output is the difference between the temperature to be
controlled and the setpoint temperature, and there is no absolute indica-
tion of the reference temperature available to the controller. Also, some
radar tracking systems have a reading that is proportional to the point-
ing error, and this error signal alone must be used for feedback control.
In these situations, we must select M and N̄ so Eqs. (7.188) are driven
by the error only. This requirement is satisfied if we select

N̄ = 0 and M = −L. (7.189)

Then the estimator equation is
˙̂x = (A− BK− LC)x̂+ L(y− r). (7.190)

The compensator in this case, for low-order designs, is a standard lead
compensator in the forward path. As we have seen in earlier chapters,
this design can have a considerable amount of overshoot because of
the zero of the compensator. This design corresponds exactly to the
compensators designed by the transform methods given in Chapters 5
and 6.

CASE 3. The third method of selecting M and N̄ is to choose the
values so as to assign the system’s zeros to arbitrary locations of the
designer’s choice. This method provides the designer with the maximum
flexibility in satisfying transient-response and steady-state gain con-
straints. The other two methods are special cases of this third method.
All three methods depend on the zeros. As we saw in Section 7.5.2, when
there is no estimator and the reference input is added to the control,
the closed-loop system zeros remain fixed as the zeros of the open-loop
plant. We now examine what happens to the zeros when an estimator is
present. To do so, we reconsider the controller of Eqs. (7.188). If there
is a zero of transmission from r to u, then there is necessarily a zero of
transmission from r to y, unless there is a pole at the same location as
the zero. It is therefore sufficient to treat the controller alone to deter-
mine what effect the choices of M and N̄ will have on the system zeros.
The equations for a zero from r to u from Eqs. (7.188) are given by
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det
[

sI− A+ BK+ LC −M
−K N̄

]
= 0. (7.191)

(We let y = 0 because we care only about the effect of r.) If we divide the
last column by the (nonzero) scalar N̄ then add to the rest the product
of K times the last column, we find that the feed-forward zeros are at
the values of s such that

det
[

sI− A+ BK+ LC− M
N̄

K −M
N̄

0 1

]
= 0,

or

det
(

sI− A+ BK+ LC− M
N̄

K
)
= γ (s) = 0. (7.192)

Now Eq. (7.192) is exactly in the form of Eq. (7.133) for selecting L to
yield desired locations for the estimator poles. Arbitrary zero assign-
ment is possible if the pair (A-BK-LC, K) is observable. Here we have
to select M/N̄ for a desired zero polynomial γ (s) in the transfer func-
tion from the reference input to the control. Thus, the selection of M
provides a substantial amount of freedom to influence the transient
response. We can add an arbitrary nth-order polynomial to the trans-
fer function from r to u and hence from r to y; that is, we can assign
n zeros in addition to all the poles that we assigned previously. If the
roots of γ (s) are not canceled by the poles of the system, then they will
be included in zeros of transmission from r to y.

Two considerations can guide us in the choice of M/N̄—that is, in
the location of the zeros. The first is dynamic response. We have seen in
Chapter 3 that the zeros influence the transient response significantly,
and the heuristic guidelines given there may suggest useful locations for
the available zeros. The second consideration, which will connect state-
space design to another result from transform techniques, is steady-state
error or velocity-constant control. In Chapter 4, we derived the rela-
tionship between the steady-state accuracy of a Type 1 system and the
closed-loop poles and zeros. If the system is Type 1, then the steady-state
error to a step input will be zero and to a unit-ramp input will be

e∞ = 1
Kv

, (7.193)

where Kv is the velocity constant. Furthermore, it can be shown that if
the closed-loop poles are at {pi} and the closed-loop zeros are at {zi}, then
(for a Type 1 system) Truxal’s formula givesTruxal’s formula

1
Kv
=
∑ 1

zi
−
∑ 1

pi
. (7.194)

Equation (7.194) forms the basis for a partial selection of γ (s), and
hence of M and N̄. The choice is based on two observations:

1. If |zi−pi| � 1, then the effect of this pole–zero pair on the dynamic
response will be small, because the pole is almost canceled by the
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zero, and in any transient the residue of the pole at pi will be very
small.

2. Even though zi − pi is small, it is possible for 1/zi − 1/pi to be
substantial and thus to have a significant influence on Kv according
to Eq. (7.194). Application of these two guidelines to the selection
of γ (s), and hence of M and N̄, results in a lag-network design. We
can illustrate this with an example.

EXAMPLE 7.33 Servomechanism: Increasing the Velocity Constant
through Zero Assignment

Consider the second-order servomechanism system described byLag compensation by a
state-space method

G(s) = 1
s(s+ 1)

,

and with state description

ẋ1 = x2,

ẋ2 = −x2 + u.

Design a controller using pole placement so both poles are at s = −2±j2
and the system has a velocity constant Kv = 10 sec−1. Verify the design
by plotting the step response and the control effort. See Appendix
W7.9 available online at www.pearsonglobaleditions.com for a discrete
implementation of the solution.

Solution. For this problem, the state feedback gain

K = [ 8 3 ],

results in the desired control poles. However, with this gain, Kv = 2
sec−1, and we need Kv = 10 sec−1. What effect will using estimators
designed according to the three methods for M and N̄ selection have
on our design? Using the first strategy (the autonomous estimator), we
find that the value of Kv does not change. If we use the second method
(error control), we introduce a zero at a location unknown beforehand,
and the effect on Kv will not be under direct design control. However,
if we use the third option (zero placement) along with Truxal’s formula
[Eq. (7.194)], we can satisfy both the dynamic response and the steady-
state requirements.

First, we must select the estimator pole p3 and the zero z3 to satisfy
Eq. (7.194) for Kv = 10 sec−1. We want to keep z3−p3 small, so there is
little effect on the dynamic response, and yet have 1/z3 − 1/p3 be large
enough to increase the value of Kv. To do this, we arbitrarily set p3 small
compared with the control dynamics. For example, we let

p3 = −0.1.

Notice this approach is opposite to the usual philosophy of estimation
design, where fast response is the requirement. Now, using Eq. (7.194)
to get

www.pearsonglobaleditions.com
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1
Kv
= 1

z3
− 1

p1
− 1

p2
− 1

p3
,

where p1 = −2+ 2j, p2 = −2− 2j, and p3 = −0.1, we solve for z3 such
that Kv = 10 we obtain

1
Kv
= 4

8
+ 1

0.1
+ 1

z3
= 1

10
,

or

z3 = − 1
10.4
= −0.096.

We thus design a reduced-order estimator to have a pole at −0.1 and
choose M/N̄ such that γ (s) has a zero at −0.096. A block diagram of
the resulting system is shown in Fig. 7.49(a). You can readily verify that
this system has the overall transfer function

Y(s)
R(s)

= 8.32(s+ 0.096)
(s2 + 4s+ 8)(s+ 0.1)

, (7.195)

for which Kv = 10 sec−1, as specified.
The compensation shown in Fig. 7.49(a) is nonclassical in the sense

that it has two inputs (e and y) and one output. If we resolve the
equations to provide pure error compensation by finding the transfer
function from e and u, which would give Eq. (7.195), we obtain the sys-
tem shown in Fig. 7.49(b). This can be seen as follows: The relevant
controller equations are

ẋc = 0.8 e− 3.1 u,

u = 8.32 e+ 3.02 y+ xc,

Figure 7.49
Servomechanism with
assigned zeros (a lag
network): (a) the
two-input compensator;
(b) equivalent
unity-feedback system
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Figure 7.50
Root locus of lag–lead
compensation
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where xc is the controller state. Taking the Laplace transform of these
equations, eliminating Xc(s), and substituting for the output [Y(s) =
G(s)U(s)], we find the compensator is described by

U(s)
E(s)

= Dc(s) = (s+ 1)(8.32s+ 0.8)
(s+ 4.08)(s+ 0.0196)

.

This compensation is a classical lag–lead network. The root locus of the
system in Fig. 7.49(b) is shown in Fig. 7.50. Note the pole–zero pattern
near the origin that is characteristic of a lag network. The Bode plot in
Fig. 7.51 shows the phase lag at low frequencies and the phase lead at
high frequencies. The step response of the system is shown in Fig. 7.52
(a) and shows the presence of a “tail” on the response due to the slow
pole at −0.1. The associated control effort is shown in Fig. 7.52 (b). Of
course, the system is Type 1 and the system will have zero tracking error
eventually.

We now reconsider the first two methods for choosing M and N̄,
this time to examine their implications in terms of zeros. Under the first
rule (for the autonomous estimator), we let M = BN̄. Substituting this
into Eq. (7.192) yields, for the controller feed-forward zeros,

det(sI− A+ LC) = 0. (7.196)

This is exactly the equation from which L was selected to make the char-
acteristic polynomial of the estimator equation equal to αe(s). Thus we
have created n zeros in exactly the same locations as the n poles of the
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Figure 7.51
Frequency response of
lag–lead compensation
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estimator. Because of this pole–zero cancellation (which causes “uncon-
trollability” of the estimator modes), the overall transfer function poles
consist only of the state feedback controller poles.

The second rule (for a tracking-error estimator) selects M = −L
and N̄ = 0. If these are substituted into Eq. (7.191), then the feed-
forward zeros are given by

det
[

sI− A+ BK+ LC L
−K 0

]
= 0. (7.197)

If we postmultiply the last column by C and subtract the result from the
first n columns, then premultiply the last row by B and add it to the first
n rows, Eq. (7.197) reduces to

det
[

sI− A L
−K 0

]
= 0. (7.198)

If we compare Eq. (7.198) with the equations for the zeros of a system in
a state description, Eq. (7.63), we see the added zeros are those obtained
by replacing the input matrix with L and the output with K. Thus, if
we wish to use error control, we have to accept the presence of these
compensator zeros that depend on the choice of K and L and over which
we have no direct control. For low-order cases this results, as we said
before, in a lead compensator as part of a unity feedback topology.
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Figure 7.52
Response of the system
with lag compensation:
(a) step response;
(b) control effort
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Let us now summarize our findings on the effect of introducingTransfer function for the
closed-loop system when
reference input is
included in controller

the reference input. When the reference input signal is included in the
controller, the overall transfer function of the closed-loop system is

T (s) = Y(s)
R(s)

= Ksγ (s)b(s)
αe(s)αc(s)

, (7.199)

where Ks is the total system gain and γ (s) and b(s) are monic poly-
nomials. The polynomial αc(s) results in a control gain K such that
det[sI − A + BK] = αc(s). The polynomial αe(s) results in estimator
gains L such that det[sI − A + LC] = αe(s). Because, as designers, we
get to choose αc(s) and αe(s), we have complete freedom in assigning
the poles of the closed-loop system. There are three ways to handle the
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polynomial γ (s): We can select it so γ (s) = αe(s) by using the implemen-
tation of Fig. 7.48(b), in which case M/N̄ is given by Eq. (7.187); we may
accept γ (s) as given by Eq. (7.198), so error control is used; or we may
give γ (s) arbitrary coefficients by selecting M/N̄ from Eq. (7.192). It is
important to point out that the plant zeros represented by b(s) are not
moved by this technique, and remain as part of the closed-loop transfer
function unless αc or αe are selected to cancel some of these zeros.

7.9.2 Selecting the Gain
We now turn to the process of determining the gain N̄ for the three
methods of selecting M. If we choose method 1, the control is given by
Eq. (7.188a) and x̂ss = xss. Therefore, we can use either N̄ = Nu+KNx,
as in Eq. (7.99), or u = Nur−K(x̂−Nxr). This is the most common choice.
If we use the second method, the result is trivial; recall that N̄ = 0 for
error control. If we use the third method, we pick N̄ such that the overall
closed-loop DC gain is unity.9

The overall system equations then are
[

ẋ
˙̃x
]
=
[

A− BK BK
0 A− LC

] [
x
x̃

]
+
[

B
B− M̄

]
N̄r, (7.200a)

y = [ C 0 ]
[

x
x̃

]
, (7.200b)

where M̄ is the outcome of selecting zero locations with either Eq.
(7.192) or Eq. (7.187). The closed-loop system has unity DC gain if

−[ C 0 ]
[

A− BK BK
0 A− LC

]−1 [ B
B− M̄

]
N̄ = 1. (7.201)

If we solve Eq. (7.201) for N̄, we get10

N̄ = − 1

C(A− BK)−1B[1− K(A− LC)−1(B− M̄)]
. (7.202)

The techniques in this section can be readily extended to reduced-order
estimators.

9A reasonable alternative is to select N̄ such that, when r and y are both unchanging,
the DC gain from r to u is the negative of the DC gain from y to u. The consequences
of this choice are that our controller can be structured as a combination of error control
and generalized derivative control, and if the system is capable of Type 1 behavior, that
capability will be realized.
10We have used the fact that

[
A C
0 B

]−1
=
[

A−1 −A−1CB−1

0 B−1

]
.
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7.10 Integral Control and Robust Tracking
The choices of N̄ gain in Section 7.9 will result in zero steady-state error
to a step command, but the result is not robust because any change in
the plant parameters will cause the error to be nonzero. We need to use
integral control to obtain robust tracking.

In the state-space design methods discussed so far, no mention
has been made of integral control, and no design examples have pro-
duced a compensation containing an integral term. In Section 7.10.1,
we will show how integral control can be introduced by a direct method
of adding the integral of the system error to the dynamic equations.
Integral control is a special case of tracking a signal that does not
go to zero in the steady-state. We will introduce (in Section 7.10.2)
a general method for robust tracking that will present the internal
model principle, which solves an entire class of tracking problems and
disturbance-rejection controls. Finally, in Section 7.10.4, we will show
that if the system has an estimator and also needs to reject a disturbance
of known structure, we can include a model of the disturbance in the
estimator equations and use the computer estimate of the disturbance
to cancel the effects of the real plant disturbance on the output.

7.10.1 Integral Control
We start with an ad hoc solution to integral control by augmenting the
state vector with the integrator dynamics. For the system

ẋ = Ax+ Bu+ B1w, (7.203a)

y = Cx, (7.203b)

we can feed back the integral of the error,11 e = y−r, as well as the state
of the plant, x, by augmenting the plant state with the extra (integral)
state xI , which obeys the differential equation

ẋI = Cx− r(= e).

Thus

xI =
∫ t

e(τ )dτ .

The augmented state equations becomeAugmented state
equations with integral
control

[
ẋI
ẋ

]
=
[

0 C
0 A

] [
xI
x

]
+
[

0
B

]
u−

[
1
0

]
r+

[
0

B1

]
w, (7.204)

and the feedback law isFeedback law with integral
control

u = −[ K1 K0 ]
[

xI
x

]
,

or simply

u = −K
[

xI
x

]
.

11Watch out for the sign here; we are using the negative of the usual convention.
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Figure 7.53
Integral control
structure

©
+

-
r -K1 ©

+

+

-K0

e
s
1 xI u

Plant

x

y

With this revised definition of the system, we can apply the design tech-
niques from Section 7.5 in a similar fashion; they will result in the
control structure shown in Fig. 7.53.

EXAMPLE 7.34 Integral Control of a Motor Speed System

Consider the motor speed system described by

Y(s)
U(s)

= 1
s+ 3

,

that is, A = −3, B = 1, and C = 1. Design the system to have integral
control and two poles at s = −5. Design an estimator with pole at s =
−10. The disturbance enters at the same place as the control. Evaluate
the tracking and disturbance rejection responses.

Solution. The pole-placement requirement is equivalent to

pc = [−5;−5].

The augmented system description, including the disturbance w, is[
ẋI
ẋ

]
=
[

0 1
0 −3

] [
xI
x

]
+
[

0
1

]
(u+ w)−

[
1
0

]
r.

Therefore, we can find K from

det
(

sI−
[

0 1
0 −3

]
+
[

0
1

]
K
)
= s2 + 10s+ 25,

or
s2 + (3+ K0)s+ K1 = s2 + 10s+ 25.

Consequently,
K = [ K1 K0 ] = [ 25 7 ].

We may verify this result using acker. The system is shown with feed-
backs in Fig. 7.54, along with a disturbance input w.

The estimator gain L = 7 is obtained from

αe(s) = s+ 10 = s+ 3+ L.

The estimator equation is of the form
˙̂x = (A− LC)x̂+ Bu+ Ly

= −10x̂+ u+ 7y,

and
u = −K0x̂ = −7x̂.
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Figure 7.54
Integral control
example
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The step response y1 due to a step reference input r and the output
disturbance response y2 due to a step disturbance input w are shown
in Fig. 7.55(a), and the associated control efforts (u1 and u2) are shown
in Fig. 7.55(b). As expected, the system is Type 1 and tracks the step
reference input and rejects the step disturbance asymptotically.

7.10.2 Robust Tracking Control: The Error-Space Approach
In Section 7.10.1, we introduced integral control in a direct way and

�
selected the structure of the implementation so as to achieve integral
action with respect to reference and disturbance inputs. We now present
a more analytical approach to giving a control system the ability to track
(with zero steady-state error) a nondecaying input and to reject (with
zero steady-state error) a nondecaying disturbance such as a step, ramp,
or sinusoidal input. The method is based on including the equations
satisfied by these external signals as part of the problem formulation and
solving the problem of control in an error space, so we are assured that
the error approaches zero even if the output is following a nondecaying,
or even a growing, command (such as a ramp signal) and even if some
parameters change (the robustness property). The method is illustrated
in detail for signals that satisfy differential equations of order 2, but the
extension to more complex signals is not difficult.

Suppose we have the system state equations

ẋ = Ax+ Bu+ B1w, (7.205a)

y = Cx, (7.205b)

and a reference signal that is known to satisfy a specific differential
equation. The initial conditions on the equation generating the input
are unknown. For example, the input could be a ramp whose slope and
initial value are unknown. Plant disturbances of the same class may also
be present. We wish to design a controller for this system so the closed-
loop system will have specified poles, and can also track input command
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Figure 7.55
Transient response for
motor speed system:
(a) step responses;
(b) control efforts
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signals, and reject disturbances of the type described without steady-
state error. We will develop the results only for second-order differential
equations. We define the reference input to satisfy the relation

r̈+ α1ṙ+ α2r = 0, (7.206)

and the disturbance to satisfy exactly the same equation:

ẅ+ α1ẇ+ α2w = 0. (7.207)

The (tracking) error is defined as

e = y− r. (7.208)

The problem of tracking r and rejecting w can be seen as an exercise inThe meaning of robust
control designing a control law to provide regulation of the error, which is to say

that the error e tends to zero as time gets large. The control must also
be structurally stable or robust, in the sense that regulation of e to zero
in the steady-state occurs even in the presence of “small” perturbations
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of the original system parameters. Note that, in practice, we never have
a perfect model of the plant, and the values of parameters are virtually
always subject to some change, so robustness is always very important.

We know that the command input satisfies Eq. (7.206), and we
would like to eliminate the reference from the equations in favor of
the error. We begin by replacing r in Eq. (7.206) with the error of Eq.
(7.208). When we do this, the reference cancels because of Eq. (7.206),
and we have the formula for the error in terms of the state:

ë+ α1ė+ α2e = ÿ+ α1ẏ+ α2y (7.209a)

= Cẍ+ α1Cẋ+ α2Cx. (7.209b)
We now replace the plant state vector with the error-space state, defined
by

ξ
�= ẍ+ α1ẋ+ α2x. (7.210)

Similarly, we replace the control with the control in error space, defined
as

μ
�= ü+ α1u̇+ α2u. (7.211)

With these definitions, we can replace Eq. (7.209b) with

ë+ α1ė+ α2e = Cξ . (7.212)

The state equation for ξ is given by12Robust control equations
in the error space ξ̇ = ...

x + α1ẍ+ α2ẋ = Aξ + Bμ. (7.213)
Notice the disturbance, as well as the reference, cancels from
Eq. (7.213). Equations (7.212) and (7.213) now describe the overall sys-
tem in an error space. In standard state-variable form, the equations are

ż = Asz+ Bsμ, (7.214)
where z = [ e ė ξT ]T and

As =
⎡
⎣

0 1 0
−α2 −α1 C
0 0 A

⎤
⎦ , Bs =

⎡
⎣

0
0
B

⎤
⎦ . (7.215)

The error system (As, Bs) can be given arbitrary dynamics by state feed-
back if it is controllable. If the plant (A, B) is controllable and does
not have a zero at any of the roots of the reference-signal characteristic
equation

αr(s) = s2 + α1s+ α2,

then the error system (As, Bs) is controllable.13 We assume these
conditions hold; therefore, there exists a control law of the form

μ = −[ K2 K1 K0 ]

⎡
⎣

e
ė
ξ

⎤
⎦ = −Kz, (7.216)

12Notice this concept can be extended to more complex equations in r and to multivari-
able systems.
13For example, it is not possible to add integral control to a plant that has a zero at the
origin.
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such that the error system has arbitrary dynamics by pole placement.
We now need to express this control law in terms of the actual process
state x and the actual control. We combine Eqs. (7.216), (7.210), and
(7.211) to get the control law in terms of u and x (we write u(2) to mean
d2u
dt2 ):

(u+ K0x)(2) +
2∑

i=1

αi(u+ K0x)(2−i) = −
2∑

i=1

Kie(2−i). (7.217)

The structure for implementing Eq. (7.217) is very simple for track-
ing constant inputs. In that case, the equation for the reference input
is ṙ = 0. In terms of u and x, the control law [Eq. (7.217)] reduces to

u̇+ K0ẋ = −K1e. (7.218)

Here we need only to integrate to reveal the control law and the action
of integral control:

u = −K1

∫ t
e(τ ) dτ − K0x. (7.219)

A block diagram of the system, shown in Fig. 7.56, clearly shows the
presence of a pure integrator in the controller. In this case, the only
difference between the internal model method of Fig. 7.56 and the ad
hoc method of Fig. 7.54 is the relative location of the integrator and the
gain.

A more complex problem that clearly shows the power of the error-
space approach to robust tracking is posed by requiring that a sinusoid
be tracked with zero steady-state error. The problem arises, for instance,
in the control of a mass-storage disk-head assembly.

EXAMPLE 7.35 Disk-Drive Servomechanism: Robust Control
to Follow a Sinusoid

A simple normalized model of a computer disk-drive servomechanism
is given by the equations

A =
[

0 1
0 −1

]
, B =

[
0
1

]
,

B1 =
[

0
1

]
, C = [

1 0
]

, D = 0.

Figure 7.56
Integral control using
the internal model
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Figure 7.57
Structure of the
compensator for the
servomechanism to
track exactly the
sinusoid of frequency
ω0
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Because the data on the disk are not exactly on a centered circle, the
servo must follow a sinusoid of radian frequency ω0 determined by the
spindle speed.

(a) Give the structure of a controller for this system that will follow
the given reference input with zero steady-state error.

(b) Assume ω0 = 1 and the desired closed-loop poles are at −1± j
√

3
and −√3± j1.

(c) Demonstrate the tracking and disturbance rejection properties of
the system using Matlab or Simulink.

Solution

(a) The reference input satisfies the differential equation r̈ = −ω2
0r so

α1 = 0 and α2 = ω2
0. With these values, the error-state matrices,

according to Eq. (7.215), are

As =

⎡
⎢⎢⎣

0 1 0 0
−ω2

0 0 1 0
0 0 0 1
0 0 0 −1

⎤
⎥⎥⎦ , Bs =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ .

The characteristic equation of As − BsK is

s4 + (1+ K02)s3 + (ω2
0 + K01)s2 + [K1 + ω2

0(1+ K02)]s+ K01ω
2
0K2 = 0,

from which the gain may be selected by pole assignment. The com-
pensator implementation from Eq. (7.217) has the structure shown
in Fig. 7.57, which clearly shows the presence of the oscillator with
frequency ω0 (known as the internal model of the input generator)
in the controller.14Internal model principle

14This is a particular case of the internal model principle, which requires that a model of
the external or exogenous signal be in the controller for robust tracking and disturbance
rejection. (see Francis and Wonham (1975) for a systematic treatment of this topic.)
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(b) Now, assume ω0 = 1 rad/sec and the desired closed-loop poles are
as given:

pc = [−1+ j ∗ √3;−1− j ∗ √3;−√3+ j;−√3− j].

Then the feedback gain is

K = [K2 K1 : K0 ] = [2.0718 16.3923 : 13.9282 4.4641],

which results in the controller

ẋc = Acxc + Bce,

u = Ccxc − K0 x,

with

Ac =
[

0 1
−1 0

]
, Bc =

[ −16.3923
−2.0718

]
,

Cc =
[

1 0
]

.

The relevant Matlab statements are

% plant matrices
A=[0 1; 0−1];
B=[0;1];
C=[1 0];
D=[0];
% form error space matrices
omega=1;
As=[0 1 0 0;−omega*omega 0 1 0;0 0 0 1;0 0 0−1];
Bs=[0;0;B];

% desired closed-loop poles
j=sqrt(-1);
pc=[−1+sqrt(3)*j ;−1−sqrt(3)*j;−sqrt(3)+j;−sqrt(3)−j];
K=place(As,Bs,pc);
% form controller matrices
K1=K(:,1:2);
Ko=K(:,3:4);
Ac=[0 1;−omega*omega 0];
Bc=−[K(2);K(1)];
Cc=[1 0];
Dc=[0];

The controller frequency response is shown in Fig. 7.58 and
shows a gain of infinity at the rotation frequency of ω0 = 1 rad/sec.
The frequency response from r to e [that is, the sensitivity function
S(s)], is shown in Fig. 7.59 and reveals a sharp notch at the rotation
frequency ω0 = 1 rad/sec. The same notch is also present in the
frequency response of the transfer function from w to y.
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Figure 7.58
Controller frequency
response for robust
servomechanism
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Figure 7.59
Sensitivity function
frequency response for
robust servomechanism
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(c) Figure 7.60 shows the Simulink simulation diagram for the sys-Simulink simulation
tem. Although the simulations can also be done in Matlab, it is
more instructive to use the interactive graphical environment of
Simulink. Simulink also provides the capability to add nonlinear-
ities (see Chapter 9) and carry out robustness studies efficiently.15

The tracking properties of the system are shown in Fig. 7.61(a),

15In general, the design can be done in Matlab and (nonlinear) simulations can be carried
out in Simulink.



main_1 — 2019/2/5 — 15:24 — page 580 — #102

580 Chapter 7 State-Space Design

Scope2

r

+-

++

++

++

Scope1

-16.392

-2.0718

-4.4641

-13.928

To

workspace

e

r e u x2 x1

To

workspace2

Gain

Gain1

Gain3

Gain2

Gain5

s
1

s
1

s
1

s
1

++ ++

-1

-1

Integrator2

To

workspace1

Out 1
Integrator1

Integrator

Integrator3

Scope

1

y

Gain4

Figure 7.60
Simulink block diagram for robust servomechanism
Source: Reprinted with permission of The MathWorks, Inc.

showing the asymptotic tracking property of the system. The asso-
ciated control effort and the tracking error signal are shown in
Fig. 7.61(b) and (c), respectively. The disturbance rejection proper-
ties of the system are illustrated in Fig. 7.62(a), displaying asymp-
totic disturbance rejection of sinusoidal disturbance input. The
associated control effort is shown in Fig. 7.62(b). The closed-loop
frequency response [that is, the complementary transfer function
T (s)] for the robust servomechanism is shown in Fig. 7.63. As
seen from the figure, the frequency response from r to y is unity
at ω0 = 1 rad/sec as expected.

The zeros of the system from r to e are located at ± j,−2.7321
± j2.5425. The robust tracking properties are due to the presence
of the blocking zeros at ±j. The zeros from w to y, both blocking
zeros, are located at±j. The robust disturbance rejection properties
are due to the presence of these blocking zeros.Blocking zeros

From the nature of the pole-placement problem, the state z in
Eq. (7.214) will tend toward zero for all perturbations in the system
parameters as long as As − BsK remains stable. Notice the signals that
are rejected are those that satisfy the equations with the values of αi
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Figure 7.61
(a) Tracking properties
for robust
servomechanism;
(b) control effort;
(c) tracking error signal
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actually implemented in the model of the external signals. The method
assumes these are known and implemented exactly. If the implemented
values are in error, then a steady-state error will result.

Now let us repeat the example of Section 7.10.1 for integral control.
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Figure 7.62
(a) Disturbance
rejection properties for
robust
servomechanism;
(b) control effort
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Figure 7.63
Closed-loop frequency
response for robust
servomechanism
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EXAMPLE 7.36 Integral Control Using the Error-Space Design

For the system

H(s) = 1
s+ 3

,

with the state-variable description

A = −3, B = 1, C = 1,

construct a controller with poles at s = −5 to track an input that
satisfies ṙ = 0.

Solution. The error-space system is[
ė
ξ̇

]
=
[

0 1
0 −3

] [
e
ξ

]
+
[

0
1

]
μ,

with e = y − r, ξ = ẋ, and μ = u̇. If we take the desired characteristic
equation to be

αc(s) = s2 + 10s+ 25,

then the pole-placement equation for K is

det[sI− As + BsK] = αc(s). (7.220)

In detail, Eq. (7.220) is

s2 + (3+ K0)s+ K1 = s2 + 10s+ 25,

which gives
K = [ 25 7 ] = [ K1 K0 ],

and the system is implemented as shown in Fig. 7.64. The transfer
function from r to e for this system, the sensitivity function

E(s)
R(s)

= S(s) = − s(s+ 10)
s2 + 10s+ 25

,

shows a blocking zero at s = 0, which prevents the constant input
from affecting the error. The closed-loop transfer function—that is, the
complementary sensitivity function—is

Y(s)
R(s)

= T (s) = 1− S(s) = 25
s2 + 10s+ 25

.

Figure 7.64
Example of internal
model with feedforward
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Figure 7.65
Internal model as
integral control with
feedforward Y©

+

-
R

Plant

e

x

-K1 s
1

-N

©
+

+ ©+

+
©+

+

N -K0

u

The structure of Fig. 7.65 permits us to add a feedforward of the
reference input, which provides one extra degree of freedom in zero
assignment. If we add a term proportional to r in Eq. (7.219), then

u = −K1

∫ t
e(τ ) dτ − K0x+Nr. (7.221)

This relationship has the effect of creating a zero at −K1/N. The loca-
tion of this zero can be chosen to improve the transient response of the
system. For actual implementation, we can rewrite Eq. (7.221) in terms
of e to get

u = −K1

∫ t
e(τ ) dτ − K0x+N(y− e). (7.222)

The block diagram for the system is shown in Fig. 7.65. For our
example, the overall transfer function now becomes

Y(s)
R(s)

= Ns+ 25
s2 + 10s+ 25

.

Notice the DC gain is unity for any value of N and that, through our
choice of N, we can place the zero at any real value to improve the
dynamic response. A natural strategy for locating the zero is to have it
cancel one of the system poles, in this case at s = −5. The step response
of the system is shown in Fig. 7.66 for N = 5, as well as for N = 0 and

Figure 7.66
Step responses with
integral control and
feedforward
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8. With the understanding that one pole can be cancelled in integral
control designs, we make sure to choose one of the desired control poles
such that it is both real and able to be cancelled through the proper
choice of N.

7.10.3 Model-Following Design
A related method to track a persistent reference input is called model-

�
following design (see Fig. 7.67). This is an open-loop method that uses
the feedforward of the state of the model to construct a specific control
input. This control will force the plant output to asymptotically track
the output of the desired model which may or may not be persistent. As
an example, the desired model can be the specified path that an aircraft
is required to track accurately. LTI models with nonzero initial condi-
tions can be used to generate such paths. Alternatively, an impulsive
input can be used to establish the initial condition on the desired model
(as done here). The technique can produce superior tracking proper-
ties to follow such desired paths. The method is described more fully in
Bryson (1994), including the case of disturbance rejection, and used to
synthesize the landing flare logic for the Boeing 747 aircraft. Assume
we have a plant described by the triple (A, B, C), having state x and
output y. Furthermore, assume a given model that produces the desired
response of the plant which is described by the triple (Am, Bm, Cm),
with state z and output ym. The idea is to use the states x and z to con-
struct a control signal so the error y−ym “quickly” approaches zero. In
other words, we want the plant to follow the model with an error that
goes to zero. As you will see in the ensuing development, we will tailor
the control input such that the output of the plant is forced to follow
the desired reference input. The control law uses the feedforward of the
model state, z, and the feedback of the plant state x. The constant feed-
forward gain matrices M and N are obtained from the solution of a set
of linear equations. The feedback gain, K, is designed as usual to stabi-
lize or speed up the plant dynamics. We now derive the model-following
design from first principles, and illustrate the results with an example.

Figure 7.67
Block diagram for the
model-following design Model
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Consider the plant described by

ẋ = Ax+ Bu, (7.223)

y = Cx, (7.224)

and the desired model given by

ż = Amz+ Bmδ(t), (7.225)

ym = Cmz, (7.226)

where Am is nm × nm. In our case, the model is driven by the impulse,
δ(t), or essentially initial conditions only. Assume the dimensions of u,
y, and ym are the same. Let

x =Mz+ δx, (7.227)

u = Nz+ δu, (7.228)

y = ym + δy, (7.229)

where M and N are constant matrices. We wish that δy→ 0 rapidly so
y → ym. If we substitute Eqs. (7.227) and (7.228) in Eqs. (7.223) and
(7.224), we obtain

Mż+ δẋ = A(Mz+δx)+ B(Nz+ δu), (7.230)

y = ym + δy = C(Mz+ δx), (7.231)

which we can rewrite as

δẋ= Aδx+ Bδu+ (AM−MAm+BN)z−MBmδ(t), (7.232)

δy = Cδx+ (CM− Cm)z. (7.233)

If we select the matrices M and N so the matrices multiplying the model
state z in Eqs. (7.232) and (7.233) vanish, we have the two ensuing
matrix equations16

AM−MAm + BN = 0, (7.234)

CM = Cm. (7.235)

Eq. (7.234) is called a Sylvester equation. In Eqs. (7.234) and (7.235),
there are nm(n+ 1) linear equations in the nm(n+ 1) unknown elements
of the matrices M and N. A necessary and sufficient condition for the
existence of the solution to Eqs. (7.234) and (7.235) is that the transmis-
sion zeros of the plant do not coincide with the eigenvalues of the model
Am. Let the control law be

u = Nz− K(x−Mz), (7.236)

where K is designed in the usual way so A−BK has a satisfactory stable
control. We observe that

δu = u−Nz = Nz− K(x−Mz)−Nz = −Kδx. (7.237)

16Bryson (1994) presents an algorithm to solve Eqs. (7.234) and (7.235), using the Matlab
Kronecker product (kron) command.
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With the given control law, Eq. (7.236), the plant equations become

ẋ = Ax+ B(Nz− K(x−Mz)), (7.238)

= (A− BK)x+ B(N+ KM)z.

In the frequency domain, noting that Z(s) = (sI − Am)
−1Bm, this can

be written as

X(s) = (sI− A+ BK)−1B(N+ KM)(sI− Am)
−1Bm. (7.239)

Now substituting for BN from Eq. (7.234) and adding and subtracting
sM, this can be written as

X(s) = (sI− A+ BK)−1[MAm − AM+ BKM](sI− Am)
−1Bm, (7.240)

X(s) = (sI− A+ BK)−1[(sI− A+ BK)M−M(sI− Am)](sI− Am)
−1Bm. (7.241)

If we now multiply this out, the result is

X(s) =M(sI− Am)
−1Bm − (sI− A+ BK)−1MBm. (7.242)

The output, Y(s) = CX(s) is thus

Y(s) = CM(sI− Am)
−1Bm − C(sI− A+ BK)−1MBm. (7.243)

Finally, as CM = Cm, we have

Y(s) = Cm(sI− Am)
−1Bm − C(sI− A+ BK)−1MBm, (7.244)

and therefore, in the time domain,

y(t) = ym(t)− [decaying transient term controlled by K], (7.245)

which is what we set out to show.

EXAMPLE 7.37 Model-following for Disk Drive

Assume the model to be followed is given by an oscillator, that is,

Am =
[

0 1
−1 0

]
, Bm =

[
0
1

]
,

Cm =
[

1 0
]

.

The plant is the same as given in Example 7.35 and we wish to track
the same sine wave signal. Assume the desired closed-loop poles are
given by

pc = [−1+ j ∗ √3;−1− j ∗ √3].

Solution. The feedback gain is

K = [
4 1

]
.

We solve Eqs. (7.234) and (7.235) for this case to obtain

M =
[

1 0
0 1

]
,

N = [ −1 1
]

.
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The internal model design is the same as in Example 7.35. A comparison
of the tracking error for the internal model and model-following designs
are shown in Figs. 7.68 and 7.69. Both techniques track the sinusoid
exactly in an asymptotic fashion, and the model-following technique
has a snappier response and the smaller maximum error as seen from
Fig. 7.69.

Figure 7.68
Comparison of the
tracking properties for
the two designs: desired
model (r), model-
following design ( yMF ),
and internal model
design ( yIM , see
Example 7.35) with the
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Figure 7.70
Comparison of the
tracking errors of the
two designs with the
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Now let us investigate the robustness of the two techniques with
respect to plant perturbations. For comparison of robustness properties,
both the model-following system and the internal model closed-loop
systems were run but with the plant system matrix perturbed to be

Ã =
[

0 1
0 −1.1

]
.

The tracking errors for the two cases are plotted in Fig. 7.70. Notice in
Fig. 7.70, the model-following design has the smaller maximum error
but, being non-robust, has a persistent error while the internal model
design continues to track the sine wave exactly.

7.10.4 The Extended Estimator
Our discussion of robust control so far has used a control based on full-

�
state feedback. If the state is not available, then as in the regular case,
the full-state feedback, Kx, can be replaced by the estimates, Kx̂, where
the estimator is built as before. As a final look at ways to design control
with external inputs, in this section, we develop a method for tracking
a reference input and rejecting disturbances. The method is based on
augmenting the estimator to include estimates from external signals in
a way that permits us to cancel out their effects on the system error.

Suppose the plant is described by the equations

ẋ = Ax+ Bu+ Bw, (7.246a)

y = Cx, (7.246b)

e = Cx− r. (7.246c)
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Figure 7.71
Block diagram of a system for tracking and disturbance rejection with extended estimator: (a) equivalent
disturbance; (b) block diagram for design; (c) block diagram for implementation

Furthermore, assume both the reference r and the disturbance w are
known to satisfy the equations17

αw(s)w = αρ(s)w = 0, (7.247)

αr(s)r = αρ(s)r = 0, (7.248)

where

αρ(s) = s2 + α1s+ α2,

corresponding to polynomials αw(s) and αr(s) in Fig. 7.71(a). In gen-
eral, we would select the equivalent disturbance polynomial αρ(s) in
Fig. 7.71(b) to be the least common multiple of αw(s) and αr(s). The first
step is to recognize that, as far as the steady-state response of the out-
put is concerned, there is an input-equivalent signal ρ that satisfies the
same equation as r and w and enters the system at the same place as the
control signal, as shown in Fig. 7.71(b). As before, we must assume the
plant does not have a zero at any of the roots of Eq. (7.247). For our
purposes here, we can replace Eqs. (7.223) with

ẋ = Ax+ B(u+ ρ), (7.249a)

e = Cx. (7.249b)

If we can estimate this equivalent input, we can add to the control a
term −ρ̂ that will cancel out the effects of the real disturbance and
reference and cause the output to track r in the steady-state. To do this,
we combine Eqs. (7.223) and (7.247) into a state description to get

ż = Asz+ Bsu, (7.250a)

e = Csz, (7.250b)

17Again, we develop the results for a second-order equation in the external signals; the
discussion can be extended to higher-order equations.
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where z = [ρ ρ̇ xT ]T . The matrices are

As =
⎡
⎣

0 1 0
−α2 −α1 0

B 0 A

⎤
⎦ , Bs =

⎡
⎣

0
0
B

⎤
⎦ , (7.251a)

Cs = [0 0 C]. (7.251b)

The system given by Eqs. (7.251) is not controllable since we cannot
influence ρ from u. However, if A and C are observable and if the system
(A, B, C) does not have a zero that is also a root of Eq. (7.247), then
the system of Eq. (7.251) will be observable, and we can construct an
observer that will compute estimates of both the state of the plant and
of ρ. The estimator equations are standard, but the control is not:

˙̂z = Asẑ+ Bsu+ L(e− Csẑ), (7.252a)

u = − Kx̂− ρ̂. (7.252b)

In terms of the original variables, the estimator equations are

˙̂z =
⎡
⎣
˙̂ρ
¨̂ρ
˙̂x

⎤
⎦=

⎡
⎣

0 1 0
−α2 −α1 0
B 0 A

⎤
⎦
⎡
⎣
ρ̂
˙̂ρ
x̂

⎤
⎦+

⎡
⎣

0
0
B

⎤
⎦ u+

⎡
⎣

l1
l2
L3

⎤
⎦ [e−Cx̂].

(7.253)
The overall block diagram of the system for design is shown in
Fig. 7.71(b). If we write out the last equation for x̂ in Eq. (7.253) and
substitute Eq. (7.252b), a simplification of sorts results because a term
in ρ̂ cancels out:

˙̂x = Bρ̂ + Ax̂+ B(−Kx̂− ρ̂)+ L3(e− Cx̂)

= Ax̂+ B(−Kx̂)+ L3(e− Cx̂)

= Ax̂+ Bū+ L3(e− Cx̂).

With the estimator of Eq. (7.253) and the control of Eq. (7.252b), the
state equation is

ẋ = Ax+ B(−Kx̂− ρ̂)+ Bρ. (7.254)

In terms of the estimation errors, Eq. (7.254) can be rewritten as

ẋ = (A− BK)x+ BKx̃+ Bρ̃. (7.255)

Because we designed the estimator to be stable, the values of ρ̃ and x̃ go
to zero in the steady-state, and the final value of the state is not affected
by the external input. The block diagram of the system for implementa-
tion is drawn in Fig. 7.71(c). A simple example will illustrate the steps
in this process.

EXAMPLE 7.38 Steady-State Tracking and Disturbance Rejection of Motor
Speed by Extended Estimator

Construct an estimator to control the state and cancel a constant bias
at the output and track a constant reference in the motor speed system
described by
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ẋ = −3x+ u, (7.256a)

y = x+ w, (7.256b)

ẇ = 0, (7.256c)

ṙ = 0. (7.256d)

Place the control pole at s = −5, and the two extended estimator poles
at s = −15.

Solution. To begin, we design the control law by ignoring the equiva-
lent disturbance. Rather, we notice by inspection that a gain of −2 will
move the single pole from −3 to the desired −5, Therefore, K = 2. The
system augmented with equivalent external input ρ, which replaces the
actual disturbance w and the reference r, is given by

ρ̇ = 0,

ẋ = −3x+ u+ ρ,

e = x.

The extended estimator equations are

˙̂ρ = l1(e− x̂),
˙̂x = −3x̂+ u+ ρ̂ + l2(e− x̂).

The estimator error gain is found to be L = [ 225 27 ]T from the
characteristic equation

det
[

s l1
1 s+ 3+ l2

]
= s2 + 30s+ 225.

A block diagram of the system is given in Fig. 7.72(a), and the step
responses to input at the command r (applied at t = 0 sec) and at the
disturbance w (applied at t = 0.5 sec) are shown in Fig. 7.72(b).

7.11 Loop Transfer Recovery
The introduction of an estimator in a state feedback controller loop may

�
adversely affect the stability robustness properties of the system [that is,
the phase margin (PM) and gain margin (GM) properties may become
arbitrarily poor, as shown by Doyle’s famous example (Doyle, 1978)].
However, it is possible to modify the estimator design so as to try to
“recover” the LQR stability robustness properties to some extent. This
process, called LTR, is especially effective for minimum-phase systems.LTR
To achieve the recovery, some of the estimator Loop Transfer Recovery
poles are placed at (or near) the zeros of the plant and the remaining
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Figure 7.72
Motor speed system with extended estimator: (a) block diagram; (b) command step response and
disturbance step response

poles are moved (sufficiently far) into the LHP. The idea behind LTR
is to redesign the estimator in such a way as to shape the loop gain
properties to approximate those of LQR.

The use of LTR means that feedback controllers can be designed to
achieve desired sensitivity [S(s)] and complementary sensitivity func-
tions [T (s)] at critical (loop-breaking) points in the feedback system
(for example, at either the input or output of the plant). Of course,
there is a price to be paid for this improvement in stability robustness!
The newly designed control system may have worse sensor noise sen-
sitivity properties. Intuitively, one can think of making (some of) the
estimator poles arbitrarily fast so the loop gain is approximately that of
LQR. Alternatively, one can think of essentially “inverting” the plant
transfer function so that all the LHP poles of the plant are cancelled
by the dynamic compensator to achieve the desired loop shape. There
are obvious trade-offs, and the designer needs to be careful to make the
correct choice for the given problem, depending on the control system
specifications.

LTR is a well-known technique now, and specific practical design
procedures have been identified (Athans, 1986; Stein and Athans, 1987;
Saberi et al., 1993). The same procedures may also be applied to non-
minimum phase systems, but there is no guarantee on the extent of
possible recovery. The LTR technique may be viewed as a system-
atic procedure to study design trade-offs for linear quadratic-based
compensator design (Doyle and Stein, 1981). We will now formulate
the LTR problem.

Consider the linear system

ẋ = Ax+ Bu+ w, (7.257a)

y = Cx+ v, (7.257b)



main_1 — 2019/2/5 — 15:24 — page 594 — #116

594 Chapter 7 State-Space Design

where w and v are uncorrelated zero-mean white Gaussian process and
sensor noise with covariance matrices Rw ≥ 0 and Rv ≥ 0. The
estimator design yields

˙̂x = Ax̂+ Bu+ L(y− ŷ), (7.258a)

ŷ = Cx̂, (7.258b)

resulting in the usual dynamic compensator

Dc(s) = −K(sI− A+ BK+ LC)−1L. (7.259)

We will now treat the noise parameters, Rw and Rv, as design “knobs”
in the dynamic compensator design. Without loss of generality, let us
choose Rw = �T� and Rv = 1. For LTR, assume � = qB, where
q is a scalar design parameter. The estimator design is then based on
the specific design parameters Rw and Rv. It can be shown that, for a
minimum-phase system, as q becomes large (Doyle and Stein, 1979),

lim
q→∞Dc(s)G(s) = K(sI− A)−1B, (7.260)

the convergence is pointwise in s and the degree of recovery can be arbi-
trarily good. This design procedure in effect “inverts” the plant transferPlant inversion
function in the limit as q→∞:

lim
q→∞Dc(s) = K(sI− A)−1BG−1(s). (7.261)

This is precisely the reason that full-loop transfer recovery is not pos-
sible for a nonminimum-phase system. This limiting behavior may be
explained using the symmetric root loci. As q → ∞, some of the
estimator poles approach the zeros of

Ge(s) = C(sI− A)−1�, (7.262)

and the rest tend to infinity18 [see Eqs. (7.163) and (7.164)]. In practice,
the LTR design procedure can still be applied to a nonminimum-phaseLTR for

nonminimum-phase
systems

plant. The degree of recovery will depend on the specific locations
of the nonminimum-phase zeros. Sufficient recovery should be pos-
sible at many frequencies if the RHP zeros are located outside the
specified closed-loop bandwidth. Limits on achievable performance of
feedback systems due to RHP zeros are discussed in Freudenberg and
Looze (1985). We will next illustrate the LTR procedure by a simple
example.

18In a Butterworth configuration.
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EXAMPLE 7.39 LTR Design for Satellite Attitude Control

Consider the satellite system with state-space description

A =
[

0 1
0 0

]
, B =

[
0
1

]
,

C = [
1 0

]
, D = 0.

(a) Design an LQR controller with Q = ρCT C and R = 1, ρ = 1, and
determine the loop gain.

(b) Then design a compensator that recovers the LQR loop gain of
part (a) using the LTR technique for q = 1, 10, 100.

(c) Compare the different candidate designs in part (b) with respect to
the actuator activity due to additive white Gaussian sensor noise.

Solution. Using lqr, the selected LQR weights result in the feedback
gain K = [1 1.414]. The loop transfer function is

K(sI− A)−1B = 1.414(s+ 0.707)
s2 .

A magnitude frequency response plot of this LQR loop gain is shown
in Fig. 7.73. For the estimator design using lqe, let � = qB, Rw = �T�,
Rv = 1, and choose q = 10, resulting in the estimator gain

L =
[

14.142
100

]
.

The compensator transfer function is

Dc(s) = K(sI− A+ BK+ LC)−1L

= 155.56(s+ 0.6428)
(s2 + 15.556s+ 121)

= 155.56(s+ 0.6428)
(s+ 7.77+ j7.77)(s+ 7.77− j7.77)

,

and the loop transfer function is

Dc(s)G(s) = 155.56(s+ 0.6428)
s2(s+ 7.77+ j7.77)(s+ 7.77− j7.77)

.

Figure 7.73 shows the frequency response of the loop transfer function
for several values of q (q = 1, 10,100), along with the ideal LQR loop
transfer function frequency response. As seen from this figure, the loop
gain tends to approach that of LQR as the value of q increases. As seen
in Fig. 7.73, for q = 10, the “recovered” gain margin is GM = 11.1 =
20.9 db and the PM= 55.06◦. Sample Matlab statements to carry out
the preceding LTR design procedure are as follows:

A=[0 1; 0 0];
B=[0;1];
C=[1 0];
D=[0];
sys0=ss(A,B,C,D);
C1=[1 0];
sys=ss(A,B,C1,D);
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Figure 7.73
Frequency response
plots for LTR design
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q = 100

q = 10

q = 1

q = 1

q = 10

q = 100

w=logspace(−1,3,1000);
rho=1.0;
Q=rho*C1'*C1;
r=1;
[K]=lqr(A,B,Q,r)Matlab lqr
sys1=ss(A,B,K,0);
[maggk1,phasgk1]=bode(sys1,w);
q=10;
gam=q*B;
Q1=gam'*gam;
rv=1;
[L]=lqe(A,gam,C,Q1,rv)

aa=A−B*K−L*C;Matlab lqe
bb=L;Matlab bode
cc=K;Matlab margin
dd=0;
sysk=ss(aa,bb,cc,dd);
sysgk=series(sys0,sysk);
[maggk,phsgk,w]=bode(sysgk,w);
[gm,phm,wcg,wcp]=margin(maggk,phsgk,w)
loglog(w,[maggk1(:) maggk(:)]);
semilogx(w,[phasgk1(:) phsgk(:)]);

To determine the effect of sensor noise, ν, on the actuator activity,
we determine the transfer function from ν to u as shown in Fig. 7.74.
For the selected value of LTR design parameter, q = 10, we have
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Figure 7.74
Closed-loop system for
LTR design
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= −155.56s2(s+ 0.6428)
s4 + 15.556s3 + 121s2 + 155.56s+ 99.994

.

One reasonable measure of the effect of the sensor noise on the
actuator activity is the root-mean-square (RMS) value of the control,RMS value
u, due to the additive noise, ν. The RMS value of the control may be
computed as

‖u‖rms =
(

1
T0

∫ T0

0
u(t)2dt

)1/2

, (7.263)

where T0 is the signal duration. Assuming white Gaussian noise ν, the
RMS value of the control can also be determined analytically (Boyd and
Barratt, 1991). The closed-loop Simulink diagram with band-limited
white sensor noise excitation is shown in Fig. 7.75. The values of the
RMS control were computed for different values of the LTR design
parameter q, using the Simulink simulations, and are tabulated in
Table 7.2. The results suggest increased vulnerability due to actuator
wear as q is increased. Refer to Matlab commands ltry and ltru for the
LTR computations.

Figure 7.75
Simulink block diagram
for LTR design
Source: Franklin, Gene F.
Feedback Control of Dynamic
Systems, 8E, 2019, Pearson
Education, Inc., New York, NY. y = Cx + Du

x¿ = Ax + Bu
State-space controller

Scope1

-
+

+
+

Integrator1 s
1 Integrator s

1

Band-limited

white noise

To workspace3

y

Scope2

To workspace4

u



main_1 — 2019/2/5 — 15:24 — page 598 — #120

598 Chapter 7 State-Space Design

TABLE 7.2 Computed RMS Control for Various
Values of LTR Tuning Parameter q
q ‖u‖rms

1 0.1454
10 2.8054
100 70.5216

7.12 Direct Design with Rational Transfer
Functions

An alternative to the state-space methods discussed so far is to postulate

�

a general-structure dynamic controller with two inputs (r and y) and
one output (u) and to solve for the transfer function of the controller
to give a specified overall r-to-y transfer function. A block diagram of
the situation is shown in Fig. 7.76. We model the plant as the transfer
function

Y(s)
U(s)

= b(s)
a(s)

, (7.264)

rather than by state equations. The controller is also modeled by itsGeneral controller in
polynomial form transfer function, in this case, a transfer function with two inputs and

one output:

U(s) = −cy(s)
d(s)

Y(s)+ cr(s)
d(s)

R(s). (7.265)

Here d(s), cy(s), and cr(s) are polynomials. In order for the controller of
Fig. 7.76 and Eq. (7.265) to be implemented, the orders of the numera-
tor polynomials cy(s) and cr(s)must not be higher than the order of the
denominator polynomial d(s).

To carry out the design, we require that the closed-loop transfer
function defined by Eqs. (7.264) and (7.265) be matched to the desired
transfer function

Y(s)
R(s)

= cr(s)b(s)
αc(s)αe(s)

. (7.266)

Equation (7.266) tells us that the zeros of the plant must be zeros of the
overall system. The only way to change this is to have factors of b(s)
appear in either αc or αe. We combine Eqs. (7.264) and (7.265) to get

Figure 7.76
Direct transfer-function
formulation
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a(s)Y(s) = b(s)
[
−cy(s)

d(s)
Y(s)+ cr(s)

d(s)
R(s)

]
, (7.267)

which can be rewritten as

[a(s)d(s)+ b(s)cy(s)]Y(s) = b(s)cr(s)R(s). (7.268)

Comparing Eq. (7.266), with Eq. (7.267) we immediately see that
the design can be accomplished if we can solve the Diophantine equationDiophantine equation

a(s)d(s)+ b(s)cy(s) = αc(s)αe(s), (7.269)

for given arbitrary a, b, αc, and αe. Because each transfer function is a
ratio of polynomials, we can assume a(s) and d(s) are monic polynomi-
als; that is, the coefficient of the highest power of s in each polynomial
is unity. The question is, how many equations and how many unknowns
are there, if we match coefficients of equal powers of s in Eq. (7.269)?
If a(s) is of degree n (given) and d(s) is of degree m (to be selected),
then a direct count yields 2m+ 1 unknowns in d(s) and cy(s) and n+m
equations from the coefficients of powers of s. Thus the requirement isDimension of the

controller that
2m+ 1 ≥ n+m,

or
m ≥ n− 1.

One possibility for a solution is to choose d(s) of degree n and cy(s) of
degree n − 1. In that case, which corresponds to the state-space design
for a full-order estimator, there are 2n equations and 2n unknowns with
αcαe of degree 2n. The resulting equations will then have a solution for
arbitrary αi if and only if a(s) and b(s) have no common factors.19

EXAMPLE 7.40 Pole Placement for Polynomial Transfer Functions

Using the polynomial method, design a controller of order n for the
third-order plant in Example 7.29. Note if the polynomials αc(s) and
αe(s) from Example 7.29 are multiplied, the result is the desired closed-
loop characteristic equation:

αc(s)αe(s) = s6+14s5+122.75s4+585.2s3+1505.64s2+2476.8s+1728.
(7.270)

Solution. Using Eq. (7.269) with b(s) = 10, we find that

(d0s3+d1s2+d2s+d3)(s3+10s2+16s)+10(c0s2+c1s+c2) ≡ αc(s)αe(s).
(7.271)

We have expanded the polynomial d(s) with coefficients di and the
polynomial cy(s) with coefficients ci.

19If they do have a common factor, it will show up on the left side of Eq. (7.269); for there
to be a solution, the same factor must be on the right side of Eq. (7.269), and thus a factor
of either αc or αe.
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Now we equate the coefficients of the like powers of s in Eq. (7.271)
to find that the parameters must satisfy20

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
10 1 0 0 0 0 0
16 10 1 0 0 0 0
0 16 10 1 0 0 0
0 0 16 10 10 0 0
0 0 0 16 0 10 0
0 0 0 0 0 0 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0
d1
d2
d3
c0
c1
c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
14

122.75
585.2

1505.64
2476.8
1728

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7.272)
The solution to Eq. (7.272) is

d0 = 1, c0 = 190.1,

d1 = 4, c1 = 481.8,

d2 = 66.75, c2 = 172.8.

d3 = −146.3,

[The solution can be found using x = a\b command in Matlab, where a isMatlab a\b
the Sylvester matrix, and b is the right-hand side in Eq. (7.272).] Hence
the controller transfer function is

cy(s)
d(s)

= 190.1s2 + 481.8s+ 172.8
s3 + 4s2 + 66.75s− 146.3

. (7.273)

Note the coefficients of Eq. (7.273) are the same as those of the con-
troller Dc(s) (which we obtained using the state-variable techniques),
once the factors in Dc(s) are multiplied out.

The reduced-order compensator can also be derived using a polynomial
solution.

EXAMPLE 7.41 Reduced-Order Design for a Polynomial Transfer Function
Model

Design a reduced-order controller for the third-order system in Exam-
ple 7.29. The desired characteristic equation is

αc(s)αe(s) = s5 + 12s4 + 74s3 + 207s2 + 378s+ 288.

Solution. The equations needed to solve this problem are the same as
those used to obtain Eq. (7.271), except that we take both d(s) and cy(s)
to be of degree n− 1. We need to solve

(d0s2 + d1s+ d2)(s3 + 10s2 + 16s)+ 10(c0s2 + c1s+ c2) ≡ αc(s)αe(s).
(7.274)

20The matrix on the left side of Eq. (7.272) is called a Sylvester matrix, and is nonsingular
if and only if a(s) and b(s) have no common factor.
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Equating coefficients of like powers of s in Eq. (7.274), we obtain⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
10 1 0 0 0 0
16 10 1 0 0 0
0 16 10 10 0 0
0 0 16 0 10 0
0 0 0 0 0 10

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

d0
d1
d2
c0
c1
c2

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
12
74
207
378
288

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7.275)

The solution is (again using the x = a\b command in Matlab)

d0 = 1, c0 = −20.8,

d1 = 2.0, c1 = −23.6,

d2 = 38, c2 = 28.8,

and the resulting controller is

cy(s)
d(s)

= −20.8s2 − 23.6s+ 28.8
s2 + 2.0s+ 38

. (7.276)

Again, Eq. (7.276) is exactly the same as Dcr(s) derived using the state-
variable techniques in Example 7.30, once the polynomials of Dcr(s) are
multiplied out and minor numerical differences are considered.

Notice the reference input polynomial cr(s) does not enter into the
analysis of Examples 7.40 and 7.41. We can select cr(s) so it will assign
zeros in the transfer function from R(s) to Y(s). This is the same role
played by γ (s) in Section 7.9. One choice is to select cr(s) to cancel αe(s)
so the overall transfer function is

Y(s)
R(s)

= Ksb(s)
αc(s)

.

This corresponds to the first and most common choice of M and N̄ for
introducing the reference input described in Section 7.9.

It is also possible to introduce integral control and, indeed,Adding integral control to
the polynomial solution internal-model-based robust tracking control into the polynomial

design method. What is required is that we have error control, and that
the controller has poles at the internal model locations. To get error
control with the structure of Fig. 7.76, we need only let cr = cy. To
get desired poles into the controller, we need to require that a specific
factor be part of d(s). For integral control—the most common case—
this is almost trivial. The polynomial d(s) will have a root at zero if we
set the last term, dm, to zero. The resulting equations can be solved
if m = n. For a more general internal model, we define d(s) to be
the product of a reduced-degree polynomial and a specified polyno-
mial such as Eq. (7.247), and match coefficients in the Diophantine
equation as before. The process is straightforward but tedious. Again
we caution that, while the polynomial design method can be effec-
tive, the numerical problems of this method are often much worse than
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those associated with methods based on state equations. For higher-
order systems, as well as systems with multiple inputs and outputs, the
state-space methods are preferable.

7.13 Design for Systems with Pure Time Delay
In any linear system consisting of lumped elements, the response of the

�
system appears immediately after an excitation of the system. In some
feedback systems—for example, process control systems, whether con-
trolled by a human operator in the loop or by computer—there is a pure
time delay (also called transportation lag) in the system. As a result ofOverall transfer function

for a time-delayed system the distributed nature of these systems, the response remains identically
zero until after a delay of λ seconds. A typical step response is shown in
Fig. 7.77(a). The transfer function of a pure transportation lag is e−λs.
We can represent an overall transfer function of a SISO system with
time delay as

GI (s) = G(s)e−λs, (7.277)

where G(s) has no pure time delay. Because GI (s) does not have a finite
state description, standard use of state-variable methods is impossible.
However, Smith (1958) showed how to construct a feedback structure
that effectively takes the delay outside the loop and allows a feedback
design based on G(s) alone, which can be done with standard meth-
ods. The result of this method is a design having closed-loop transfer
function with delay λ but otherwise showing the same response as the
closed-loop design based on no delay. To see how the method works, let
us consider the feedback structure shown in Fig. 7.77(b). The overall
transfer function is

Y(s)
R(s)

= T (s) = D′c(s)G(s)e−λs

1+D′c(s)G(s)e−λs . (7.278)

Smith suggested that we solve for D′c(s) by setting up a dummy overall
transfer function in which the controller transfer function Dc(s) is in a
loop with G(s) with no loop delay but with an overall delay of λ:

Y(s)
R(s)

= T (s) = Dc(s)G(s)
1+Dc(s)G(s)

e−λs. (7.279)

We then equate Eqs. (7.278) and (7.279) to solve for D′c(s):The Smith compensator

D′c(s) =
Dc(s)

1+Dc(s)[G(s)− G(s)e−λs]
. (7.280)

If the plant transfer function and the delay are known, D′c(s) can
be realized with real components by means of the block diagram shown
in Fig. 7.77(c). With this knowledge, we can design the compensator
Dc(s) in the usual way, based on Eq. (7.279), as if there were no delay,
then implement it as shown in Fig. 7.77(c). The resulting closed-loop
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Figure 7.77
A Smith regulator for systems with pure time delay

system would exhibit the behavior of a finite closed-loop system except
for the time delay λ. This design approach is particularly suitable when
the pure delay, λ, is significant as compared to the process time constant,
for example, in pulp and paper process applications.

Notice that, conceptually, the Smith compensator is feeding back a
simulated plant output to cancel the true plant output and then adding
in a simulated plant output without the delay. It can be demonstrated
that D′c(s) in Fig. 7.77(c) is equivalent to an ordinary regulator in line
with a compensator that provides significant phase lead. To implement
such compensators in analog systems, it is usually necessary to approx-
imate the delay required in D′c(s) by a Padé approximant; with digital
compensators the delay can be implemented exactly (see Chapter 8).
It is also a fact that the compensator D′c(s) is a strong function of
G(s), and a small error in the model of the plant used in the controller
could lead to large errors in the closed loop, perhaps even to instability.
This design is very sensitive both to uncertainties in plant parame-
ters as well as uncertainty in the time delay. If Dc(s) is implemented
as a PI controller, then one could detune (that is, reduce the gain)
to try to ensure stability and reasonable performance. For automatic
tuning of the Smith regulator and an application to Stanford’s quiet
hydraulic precision lathe fluid temperature control, refer to Huang and
DeBra (2000).
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EXAMPLE 7.42 Heat Exchanger: Design with Pure Time Delay

Figure 7.78 shows the heat exchanger from Example 2.18. The temper-
ature of the product is controlled by controlling the flow rate of steam
in the exchanger jacket. The temperature sensor is several meters down-
stream from the steam control valve, which introduces a transportation
lag into the model. A suitable model is given by

G(s) = e−5s

(10s+ 1)(60s+ 1)
.

Design a controller for the heat exchanger using the Smith compensator
and pole placement. The control poles are to be at

pc = −0.05± 0.087j,

and the estimator poles are to be at three times the control poles’ natural
frequency:

pe = −0.15± 0.26j.

Simulate the response of the system with Simulink.

Solution. A suitable set of state-space equations is

ẋ(t) =
[ −0.017 0.017

0 −0.1

]
x(t)+

[
0

0.1

]
u(t− 5),

y = [ 1 0 ]x,

λ = 5.

For the specified control pole locations, and for the moment ignoring
the time delay, we find that the state feedback gain is

K = [5.2 − 0.17].

Figure 7.78
A heat exchanger

Steam

Flow

Steam 

Product

Temperature

sensor

Control

valve



main_1 — 2019/2/5 — 15:24 — page 605 — #127

7.14 Solution of State Equations 605

Scope1

-+ -+
s2 + .28s + .0925

.25s + .45
1.20

Transfer Fcn1

600s2 + 70s + 1

1

Transfer Fcn2

-+

600s2 + 70s + 1

1

Transfer Fcn
Transport

delay

Transport

delay

u

y

To

workspace1

Scope

Step To workspace

Figure 7.79
Closed-loop Simulink diagram for a heat exchanger
Source: Reprinted with permission of The MathWorks, Inc.

For the given estimator poles, the estimator gain matrix for a full-order
estimator is

L =
[

0.18
4.2

]
.

The resulting controller transfer function is

Dc(s) = U(s)
Y(s)

= −0.25(s+ 1.8)
s+ 0.14± 0.27j

.

If we choose to adjust for unity closed-loop DC gain, then

N̄ = 1.2055.

The Simulink diagram for the system is shown in Fig. 7.79. The
open-loop and closed-loop step responses of the system and the control
effort are shown in Figs. 7.80 and 7.81, and the root locus of the system
(without the delay) is shown in Fig. 7.82. Note the time delay of 5 sec
in Figs. 7.80 and 7.81 is quite small compared with the response of the
system, and is barely noticeable in this case.

7.14 Solution of State Equations
It is possible to write down the solution to the state equations using
the matrix exponential. See Appendix W7.13.1 available online at
www.pearsonglobaleditions.com.

www.pearsonglobaleditions.com
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Figure 7.80
Step response for a heat
exchanger
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Figure 7.81
Control effort for a heat
exchanger
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Root locus for a heat
exchanger

Re(s)

Im(s)

0.3

0.2

-0.2

-0.3

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4

Closed-loop poles

Closed-loop poles



main_1 — 2019/2/5 — 15:24 — page 607 — #129

7.15 Historical Perspective 607

7.15 Historical Perspective
The state-variable approach to solving differential equations in engi-
neering problems was advocated by R. E. Kalman while attending MIT.
This was revolutionary and ruffled some feathers as it was going against
the grain. The well-established academics, Kalman’s teachers, were
well-versed in the frequency domain techniques and staunch support-
ers of it. Beginning in the late 1950s and early 1960s, Kalman wrote
a series of seminal papers introducing the ideas of state-variables, con-
trollability, observability, the Linear Quadratic (LQ), and the Kalman
Filter (LQF). Gunkel and Franklin (1963) and Joseph and Tou (1961)
independently showed the separation theorem, which made possible
the Linear Quadratic Gaussian (LQG) problem nowdays referred to
as the H2 formulation. The separation theorem is a special case of
the certainty-equivalence theorem of Simon (1956). The solutions to
both LQ and LQG problems can be expressed in an elegant fash-
ion in terms of the solutions to Riccati equations. D. G. Luenberger,
who was taking a course with Kalman at Stanford University, derived
the observer and reduced-order observer over a weekend after hearing
Kalman suggesting the problem in a lecture. Kalman, Bryson, Athans,
and others contributed to the field of optimal control theory that was
widely employed in aerospace problems including the Apollo program.
The book by Zadeh and Desoer published in 1962 was also influen-
tial in promoting the state-space method. In the 1970s, the robustness
of LQ and LQG methods were studied resulting in the celebrated and
influential paper of Doyle and Stein in 1981. One of the most sig-
nificant contributions of Doyle and Safonov was to extend the idea
of frequency domain gain to multi-input multi-output systems using
the singular value decomposition. Others contributing to this research
included G. Zames who introduced the H∞ methods that were found
to be extensions of the H2 methods. The resulting design techniques
are known as H∞ and μ-synthesis procedures. During the 1980s, reli-
able numerical methods were developed for dealing with state-variable
designs and computer-aided software for control design was developed.
The invention of Matlab by Cleve Moler and its wide distribution by
The MathWorks has had a huge impact not only in the control design
field but on all interactive scientific computations.

In the mid-1970s, polynomial and matrix fraction descriptions
(MFDs) of systems attracted much attention culminating in the cele-
brated Q-parametrization which characterizes the set of all stabilizing
controllers for a feedback system.

While the state-variable methods were gaining momentum partic-
ularly in the United States, research groups in Europe especially in
England led by Rosenbrock, MacFarlane, Munro, and others extended
the classical techniques to multi-input multi-output systems. Hence root
locus and frequency domain methods such as the (inverse) Nyquist tech-
niques could be used for multi-input multi-output systems. Eventually
in the 1980s, there was a realization that the power of both frequency
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domain and state-variable methods should be combined for an eclectic
control design method employing the best of both approaches.

In the 1970s and 1980s, there was a lot of research on discrete
event systems, adaptive control and system identification techniques.
In the 1990s, research on control of intelligent autonomous systems
and hybrid systems began. Since the turn of the century, research has
focused on networked control, cyber-physical systems, control of driver-
less cars, use of machine learning and convex optimization techniques
for control, as well as continued research efforts in control of nonlinear,
time-delay, and stochastic systems.

We saw in Chapter 7 that, in contrast to frequency response meth-
ods of Bode and Nyquist, the state-variable method not only deals with
the input and output variables of the system but also with the internal
physical variables. The state-variable methods can be used to study lin-
ear and nonlinear, as well as time varying systems. Furthermore, the
state-variable method handles the multi-input multi-output problems
and high-order systems with equal ease. From a computational perspec-
tive, the state-variable methods are far superior to the frequency domain
techniques that require polynomial manipulations.

SUMMARY

• To every transfer function that has no more zeros than poles, there
corresponds a differential equation in state-space form.

• State-space descriptions can be in several canonical forms. Among
these are control, observer, and modal canonical forms.

• Open-loop poles and zeros can be computed from the state descrip-
tion matrices (A, B, C, D):

Poles: p = eig(A), det(pI− A) = 0,

Zeros: det
[

zI− A −B
C D

]
= 0.

• For any controllable system of order n, there exists a state feedback
control law that will place the closed-loop poles at the roots of an
arbitrary control characteristic equation of order n.

• The reference input can be introduced so as to result in zero steady-
state error to a step command. This property is not expected to be
robust to parameter changes.

• Good closed-loop pole locations depend on the desired transient
response, the robustness to parameter changes, and a balance
between dynamic performance and control effort.

• Closed-loop pole locations can be selected to result in a dominant
second-order response, or to minimize a quadratic performance
measure.

• For any observable system of order n, an estimator (or observer)
can be constructed with only sensor inputs and a state that
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estimates the plant state. The n poles of the estimator error system
can be placed arbitrarily.

• Every transfer function can be represented by a minimal realiza-
tion, that is, a state-space model that is both controllable and
observable.

• A single-input single-output system is completely controllable if
and only if the input excites all the natural frequencies of the sys-
tem, that is, there is no cancellation of the poles in the transfer
function.

• The control law and the estimator can be combined into a controller
such that the poles of the closed-loop system are the union of the
control-law-only poles and the estimator-only poles.

• With the estimator-based controller, the reference input can be
introduced in such a way as to permit n arbitrary zeros to be
assigned. The most common choice is to assign the zeros to cancel
the estimator poles, thus not exciting an estimator error.

• Integral control can be introduced to obtain robust steady-state
tracking of a step by augmenting the plant state. The design is also
robust with respect to rejecting constant disturbances.

• General robust control can be realized by combining the equations
of the plant and the reference model into an error space and design-
ing a control law for the extended system. Implementation of the
robust design demonstrates the internal model principle. An estima-
tor of the plant state can be added while retaining the robustness
properties.

• The model-following technique can produce superior tracking prop-
erties but suffers from robustness problems.

• The estimator can be extended to include estimates of the equiv-
alent control disturbance, and so result in robust tracking and
disturbance rejection.

• Pole-placement designs, including integral control, can be com-
puted using the polynomials of the plant transfer function in place
of the state descriptions. Designs using polynomials frequently have
problems with numerical accuracy.

• Controllers for plants that include a pure time delay can be designed
as if there were no delay, then a controller can be implemented for
the plant with the delay. The design can be expected to be sensitive
to parameter changes, especially to uncertainty in the delay time.

• Table 7.3 gives the important equations discussed in this chapter.
The triangles indicate equations taken from optional sections in
the text.

• Determining a model from experimental data, or verifying an ana-
lytically based model by experiment, is an important step in system
design by state-space analysis, a step that is not necessarily needed
for compensator design via frequency-response methods.
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TABLE 7.3 Important Equations in Chapter 7

Name Equation Page

Control canonical form Ac =

⎡
⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · · · · −an
1 0 · · · · · · 0
0 1 0 · · · 0
...

. . . 0
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

, Bc =

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

, 492

Cc = [ b1 b2 · · · · · · bn ], Dc = 0.

State description ẋ = Ax+ Bu 495

Output equation y = Cx+Du 495

Transformation of state Ā = T−1AT 495

B̄ = T−1B

y = CTz+Du = C̄z+ D̄u,

where C̄ = CT, D̄ = D

Controllability matrix C = [B AB · · · An−1B] 496

Transfer function from
state equations

G(s) = Y(s)
U(s)

= C(sI− A)−1B+D 503

Transfer-function poles det( piI− A) = 0 505

Transfer-function zeros αz(s) = det
[

ziI− A −B
C D

]
= 0 506

Control characteristic
equation

det[sI− (A− BK)] = 0 510

Ackermann’s control formula
for pole placement

K = [0 · · · 0 1]C−1αc(A) 514

Reference input gains
[

A B
C D

] [
Nx
Nu

]
=
[

0
1

]
518

Control equation with
reference input

u = Nur− K(x−Nxr) 518

= −Kx+ (Nu + KNx)r
= −Kx+ N̄r

Symmetric root locus 1+ ρG0(−s)G0(s) = 0 525

Estimator error
characteristic equation

αe(s) = det[sI− (A− LC)] = 0 535

Observer canonical form ẋ◦ = A◦x◦ + B◦u, 538

y = C◦x◦ +D◦u,
where

Ao =

⎡
⎢⎢⎢⎢⎢⎣

−a1 1 0 0 . . . 0

−a2 0 1 0 . . .
...

...
...

. . . 1
−an 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, Bo =

⎡
⎢⎢⎢⎣

b1
b2
...

bn

⎤
⎥⎥⎥⎦ ,

Co = [ 1 0 0 · · · 0], Do = 0.
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TABLE 7.3 Continued

Name Equation Page

Observability matrix O =

⎡
⎢⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎥⎦

, 539

Ackermann’s estimator
formula

L = αe(A)O−1

⎡
⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎦ 539

Compensator transfer
function

Dc(s) = U(s)
Y(s)

= −K(sI− A+ BK+ LC)−1L 548

Reduced-order compensator
transfer function

Dcr(s) = U(s)
Y(s)

= Cr(sI− Ar)
−1Br +Dr 549

Controller equations ˙̂x = (A− BK− LC)x̂+ Ly+Mr 561

u = −Kx̂+ N̄r

Augmented state equations
with integral control

[
ẋI
ẋ

]
=
[

0 C
0 A

] [
xI
x

]
+
[

0
B

]
u−

[
1
0

]
r+

[
0

B1

]
w 571

� General controller in
polynomial form

U(s) = − cy(s)

d(s)
Y(s)+ cr(s)

d(s)
R(s) 598

� Diophantine equation for
closed-loop characteristic
equation

a(s)d(s)+ b(s)cy(s) = αc(s)αe(s) 599

REVIEW QUESTIONS

The following questions are based on a system in state-variable form with
matrices A, B, C, D, input u, output y, and state x.

7.1 Why is it convenient to write dynamic equations in state-variable form?

7.2 Give an expression for the transfer function of this system.

7.3 Give two expressions for the poles of the transfer function of the system.

7.4 Give an expression for the zeros of the system transfer function.

7.5 Under what condition will the state of the system be controllable?

7.6 Under what conditions will the system be observable from the output y?

7.7 Give an expression for the closed-loop poles if state feedback of the form
u = −Kx is used.

7.8 Under what conditions can the feedback matrix K be selected so the roots
of αc(s) are arbitrary?
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7.9 What is the advantage of using the LQR or SRL in designing the
feedback matrix K?

7.10 What is the main reason for using an estimator in feedback control?

7.11 If the estimator gain L is used, give an expression for the closed-loop
poles due to the estimator.

7.12 Under what conditions can the estimator gain L be selected so the roots
of αe(s) = 0 are arbitrary?

7.13 If the reference input is arranged so the input to the estimator is identi-
cal to the input to the process, what will the overall closed-loop transfer
function be?

7.14 If the reference input is introduced in such a way as to permit the zeros to
be assigned as the roots of γ (s), what will the overall closed-loop transfer
function be?

7.15 What are the three standard techniques for introducing integral control
in the state feedback design method?

PROBLEMS

Problems for Section 7.3: Block Diagrams and State-Space

7.1 Write the dynamic equations describing in Fig. 7.83. Write the equations
as a second-order differential equation in y(t). Assuming zero input,
solve the differential equation for y(t) using Laplace transform meth-
ods for the parameters values and initial conditions shown in the figure.
Verify your answer using the initial command in Matlab.

Figure 7.83
Circuit for Problem 7.1

L = 100 mH

R = 50 ÆC = 10 mF y(t)u(t)

y(to) = 1.5 V,  y(to) = 0

7.2 A schematic for the satellite and scientific probe for the Gravity Probe-B
(GP-B) experiment that was launched April 30, 2004 is sketched in
Fig. 7.84. Assume that the mass of the spacecraft plus helium tank, m1,
is 1500 kg and the mass of the probe, m2, is 800 kg. A rotor will float
inside the probe and will be forced to follow the probe with a capacitive
forcing mechanism. The spring constant of the coupling, k, is 2.8× 106.
The viscous damping b is 5.0× 103.

(a) Write the equations of motion for the system consisting of masses m1
and m2 using the inertia position variables, y1 and y2.

(b) The actual disturbance u is a micrometeorite, and the resulting
motion is very small. Therefore, re-write your equations with the
scaled variables z1 = 106y1, z2 = 106y2, and v = 1000u.
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(c) Put the equations in state-variable form using the state x = [z1 ż1
z2 ż2]T , the output y = z2, and the input an impulse, u = 10−3δ(t)
N·sec on mass m1.

(d) Using the numerical values, enter the equations of motion into
Matlab in the form

ẋ = Ax+ Bv (7.281)

y = Cx+Dv. (7.282)

and define the Matlab system: sysGPB = ss(A,B,C,D). Plot the
response of y caused by the impulse with the Matlab command
impulse(sysGPB). This is the signal the rotor must follow.

(e) Use the Matlab commands p = eig(F) to find the poles (or roots) of
the system, and z =tzero(A,B,C, D) to find the zeros of the system.

Figure 7.84
Schematic diagram of
the GP-B satellite and
probe

m1 m2

y1

y2

Rotork

u

b

Problems for Section 7.4: Analysis of the State Equations

7.3 Give the state description matrices in control-canonical form for the
following transfer functions:

(a) G(s) = 1
7s+ 1 .

(b) G(s) = 6(s/3+ 1)
(s/10+ 1) .

(c) G(s) = 7s+ 1
s2+ 3+ 2

.

(d) G(s) = s+ 7
s(s2+ 2s+ 2)

.

(e) G(s) = (s+ 7)(s2+ s+ 25)
s2 (s+ 2)(s2 + s+ 36) .

7.4 Use the Matlab function tf2ss to obtain the state matrices called for in
Problem 7.3.

7.5 Give the state description matrices in modal canonical form for the
transfer functions of Problem 7.3. Make sure that all entries in the
state matrices are real valued by keeping any pairs of complex conju-
gate poles together, and realize them as a separate subblock in control
canonical form.

7.6 A certain system with state x is described by the state matrices,

A =
[ −1.5 1
−1.5 0

]
, B =

[
1
5

]
,

C = [
1 0

]
, D = 0.
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Find the transformation T so that if x = Tz, the state matrices describing
the dynamics of z are in control canonical form. Compute the matrices
Ā, B̄, C̄, and D̄.

7.7 Show that the transfer function is not changed by a linear transformation
of state.

7.8 Use block-diagram reduction or Mason’s rule to find the transfer func-
tion for the system in observer canonical form depicted by Fig. 7.31.

7.9 Suppose we are given a system with state matrices A, B, C (D = 0 in this
case). Find the transformation T so, under Eqs. (7.21) and (7.22), the new
state description matrices will be in observer canonical form.

7.10 Use the transformation matrix in Eq. (7.38) to explicitly multiply out the
equations at the end of Example 7.9.

7.11 Find the state transformation that takes the observer canonical form of
Eq. (7.32) to the modal canonical form.

7.12 (a) Find the transformation T that will keep the description of the air-
plane system of Example 7.10 in modal canonical form but will
convert each element of the input matrix Bm to unity.

(b) Use Matlab to verify that your transformation does the job.

7.13 (a) Find the state transformation that will keep the description of the air-
plane system of Example 7.10 in modal canonical form but will cause
the poles to be displayed in Am in order of increasing magnitude.

(b) Use Matlab to verify your result in part (a), and give the complete
new set of state matrices as Ā, B̄, C̄, and D̄.

7.14 Find the characteristic equation for the modal-form matrix Am of
Eq. (7.14a) using Eq. (7.55).

7.15 Given the system

ẋ =
[ −3 2
−5 −1

]
x+

[
0
1

]
u,

with zero initial conditions, find the steady-state value of x for a step
input u.

7.16 Consider the system shown in Fig. 7.85:

(a) Find the transfer function from U to Y .
(b) Write state equations for the system using the state-variables indi-

cated.

Figure 7.85
Block diagram for
Problem 7.16

U ©
-

+
s + 5

1

3s
1

s
1x3 x2

x4

©  + 

 + 

©
 + 

 + 
Y

x1

s + 1

s
13s

2
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7.17 Using the indicated state-variables, write the state equations for each of
the system show in Fig. 7.86. Find the transfer function for each sys-
tem using both block-diagram manipulation and matrix algebra [as in
Eq. (7.45)].

Figure 7.86
Block diagram for
Problem 7.17

U © + 

 + 

s + 7
1

s + 8 s
s + 5 s + 4

3s + 2
6

s + 4
1

s
5

Y©
x1

x2

x3

U © + 

 + 
Y©x3

x4

s + 3
1

 + 

 + 
x1x2

(a)

(b)

 + 

 + 
-

-

7.18 For each of the listed transfer functions, write the state equations in both
control and observer canonical form. In each case, draw a block diagram
and given the appropriate expressions for A, B, and C.

(a) G(s) = (s2−2s+7)(s+1)
s5+2s4+7s3+5s2+10s+1

(voltage equalisation circuit for a solar
photovoltaic array using a high-order low-ripple power converter)

(b) G(s) = s2−6
s2(s2−2)

(control of an inverted pendulum by a force on the

cart)

7.19 Consider the transfer function

G(s) = s+ 4

s2 + 3s+ 2
(7.283)

(a) By re-writing Eq. (7.283) in the form,

G(s) = 1
s+ 2

(
s+ 4
s+ 1

)
,

find a series realization of G(s) as a cascade of two first-order systems.
(b) Using a partial-fraction expansion of G(s), find a parallel realization

of G(s).
(c) Realise in control canonical form.

7.20 Show that the impulse response of the system (A, B, C, D) is given by

h(t) = CeAtB+Dδ(t),

where eAt is the matrix exponential defined by

eAt =
(

I+ At+ A2t2

2!
+ · · ·

)
=
∞∑

k=0

Aktk

k!
.
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Problems for Section 7.5: Control Law Design for Full-State
Feedback

7.21 Consider the plant described by,

ẋ =
[

0 1
2 −9

]
x+

[
1
8

]
u,

y = [ 2 4 ]x.

(a) Draw a block diagram for the plant with one integrator for each
state variable.

(b) Find the transfer function using matrix algebra.
(c) Find the closed-loop characteristic equation if the feedback is

(i) u = − [ K1 K2
]

x;
(ii) u = −Ky.

7.22 For the system

ẋ =
[

0 1
−7.2 −9.3

]
x+

[
0
1

]
u,

y = [
1 0

]
x,

design a state feedback controller that satisfies the following specifica-
tions:

(a) Closed-loop poles having a damping coefficient ζ = 0.707.
(b) Step-response peak time is under 0.5 sec.

Verify your design with Matlab.

7.23 (a) Design a state feedback controller for the following system so that
the closed-loop step response has an overshoot of less than 18% and
1% settling under 0.3 sec:

ẋ =
[

0 1
0 −7.5

]
x+

[
0
1

]
u,

y = [
1 0

]
x.

(b) Use the step command in Matlab to verify that your design meets the
specifications. If it does not, modify your feedback gains accordingly.

7.24 Consider the system

ẋ =
⎡
⎣
−1 −2 −2

0 −1 1
1 0 −1

⎤
⎦ x+

⎡
⎣

2
0
1

⎤
⎦ u.

(a) Design a state feedback controller for the system so the closed-loop
step response has an overshoot of less than 5% and a 1% settling time
under 4.6 sec.

(b) Use the step command in Matlab to verify that your design meets the
specifications. If it does not, modify your feedback gains accordingly.

7.25 Consider the system in Fig. 7.87.

Figure 7.87
System for Problem 7.25 s2 + 7

s
U Y
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(a) Write a set of equations that describes this system in the control
canonical form as ẋ = Ax+ Bu and y = Cx.

(b) Design a control law of the form,

u = − [ K1 K2
] [ x1

x2

]
,

which will place the closed-loop poles at s = −2.5± j2.5.

7.26 Output Controllability. In many situations, a control engineer may be
interested in controlling the output y rather than the state x. A system
is said to be output controllable if at any time you are able to transfer the
output from zero to any desired output y∗ in a finite time using an appro-
priate control signal u∗. Derive necessary and sufficient conditions for a
continuous system (A, B, C) to be output controllable. Are output and
state controllability related? If so, how?

7.27 Consider the system

ẋ =

⎡
⎢⎢⎣

0 4 0 0
−1 −4 0 0

5 7 1 15
0 0 3 −3

⎤
⎥⎥⎦ x+

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ u.

(a) Find the eigenvalues of this system. (Hint: Note the block-triangular
structure of A.)

(b) Find the controllable and uncontrollable modes of this system.
(c) For each of the uncontrollable modes, find a vector v such that

vT B = 0, vT A = λvT .

(d) Show there are an infinite number of feedback gains K that will
relocate the modes of the system to −5, −3, −2, and −2.

(e) Find the unique matrix K that achieves these pole locations and pre-
vents initial conditions on the uncontrollable part of the system from
ever affecting the controllable part.

7.28 Two pendulums, coupled by a spring, are to be controlled by two equal
and opposite forces u, which are applied to the pendulum bobs as shown
in Fig. 7.88. The equations of motion are

Figure 7.88
Coupled pendulums for
Problem 7.28

k

uu
m m

u1
u2

a

l
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ml2θ̈1 = −ka2(θ1 − θ2)−mglθ1 − lu,

ml2θ̈2 = −ka2(θ2 − θ1)−mglθ2 + lu.

(a) Show the system is uncontrollable. Can you associate a physical
meaning with the controllable and uncontrollable modes?

(b) Is there any way that the system can be made controllable?

7.29 The state-space model for a certain application has been given to us with
the following state description matrices:

A =

⎡
⎢⎢⎢⎢⎣

0.174 0 0 0 0
0.157 0.645 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎣

−0.207
−0.005

0
0
0

⎤
⎥⎥⎥⎥⎦

,

C = [ 1 0 0 0 0 ].

(a) Draw a block diagram of the realization with an integrator for each
state-variable.

(b) A student has computed det C = 2.3 × 10−7 and claims that the
system is uncontrollable. Is the student right or wrong? Why?

(c) Is the realization observable?

7.30 Staircase Algorithm (Van Dooren et al., 1978): Any realization (A, B,
C) can be transformed by an orthogonal similarity transformation to
(Ā, B̄, C̄), where Ā is an upper Hessenberg matrix (having one nonzero
diagonal above the main diagonal) given by

Ā = TT AT =

⎡
⎢⎢⎢⎢⎣

∗ α1 0 0

∗ ∗ . . . 0

∗ ∗ . . . αn−1
∗ ∗ · · · ∗

⎤
⎥⎥⎥⎥⎦

, B̄ = TT B =

⎡
⎢⎢⎢⎣

0
...
0

g1

⎤
⎥⎥⎥⎦ ,

where g1 �= 0, and

C̄ = CT = [ c̄1 c̄2 · · · c̄n ], T−1 = TT .

Orthogonal transformations correspond to a rotation of the vectors (rep-
resented by the matrix columns) being transformed with no change in
length.

(a) Prove that if αi = 0 and αi+1,· · · , αn−1 �= 0 for some i, then the
controllable and uncontrollable modes of the system can be identified
after this transformation has been done.

(b) How would you use this technique to identify the observable and
unobservable modes of (A, B, C)?

(c) What advantage does this approach for determining the controllable
and uncontrollable modes have over transforming the system to any
other form?

(d) How can we use this approach to determine a basis for the control-
lable and uncontrollable subspaces, as in Problem 7.44?
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This algorithm can also be used to design a numerically stable algorithm
for pole placement [see Minimis and Paige (1982)]. The name of the
algorithm comes from the multi-input version in which the αi are the
blocks that make Ā resemble a staircase. Refer to ctrbf, obsvf commands
in Matlab.

Problems for Section 7.6: Selection of Pole Locations for Good
Design

7.31 The normalized equations of motion for an inverted pendulum at angle
θ on a cart are

θ̈ = θ + u, ẍ = −βθ − u,

where x is the cart position, and the control input u is a force acting on
the cart.

(a) With the state defined as x = [ θ
·
θ x

·
x ]T find the feedback

gain K that places the closed-loop poles at s = −1,−1,−1 ± 1j. For
parts (b) through (d), assume that β = 0.5.

(b) Use the SRL to select poles with a bandwidth as close as possible to
those of part (a), and find the control law that will place the closed-
loop poles at the points you selected.

(c) Compare the responses of the closed-loop systems in parts (a) and
(b) to an initial condition of θ = 10◦. You may wish to use the initial
command in Matlab.

(d) Compute Nx and Nu for zero steady-state error to a constant com-
mand input on the cart position, and compare the step responses of
each of the two closed-loop systems.

7.32 An asymptotically stable Type I system with input r and output y is
described by the closed-loop system matrices (A, B, C, D = 0). Sup-
pose the input is given by the ramp r = at, for t > 0. Show the velocity
error coefficient is given by

Kv =
[
CA−2B

]−1
.

7.33 Prove the Nyquist plot for LQR design avoids a circle of radius one cen-
tered at the −1 point, as shown in Fig. 7.89. Show this implies that

Figure 7.89
Nyquist plot for an
optimal regulator

Im(L(jv))

Re(L(jv))-2 -1 605

a1
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1
2 < GM < ∞, the “upward” gain margin is GM = ∞, and there is

a “downward” GM = 1
2 , and the phase margin is at least PM = ±60◦.

Hence the LQR gain matrix, K, can be multiplied by a large scalar or
reduced by half with guaranteed closed-loop system stability.

Problems for Section 7.7: Estimator Design

7.34 Consider the system

A =
[ −5 3

1 0

]
, B =

[
1
0

]
, C = [ 3 4 ],

and assume that you are using feedback of the form u = −Kx+ r, where
r is a reference input signal.

(a) Show that (A, C) is observable.
(b) Show that there exists a K such that (A− BK, C) is unobservable.
(c) Compute a K of the form K = [1, K2] that will make the system

unobservable as in part (b); that is, find K2 so that closed-loop system
is not observable.

(d) Compare the open-loop transfer function with the transfer function
of the closed-loop system of part (c). What is the unobservability
due to?

7.35 Consider a system with the transfer function,

G(s) = s+ 15

s2 − 15
.

(a) Find (Ao, Bo, Co) for this system in observer canonical form.
(b) Check if this system observable.
(c) Is (Ao, Bo) controllable?
(d) Compute K so that the closed-loop poles are assigned to s = −10 ±

j10.
(e) Design a full-order estimator with estimator-error poles at s = −15±

j15.
(f) Prove that if u = −Kx + r there is a feedback gain K that makes the

closed-loop system unobservable. Design K so that the closed-loop
system has no zero and there is only one pole at s = −5.

7.36 Explain how the controllability, observability, and stability properties of
a linear system are related.

7.37 Consider the electric circuit shown in Fig. 7.90.

(a) Write the internal (state) equations for the circuit. The input u is a
voltage source, and the output y is a voltage. Let x1 = iL and x2 = vc.

(b) What condition(s) on R, L, and C will guarantee that the system is
controllable?

(c) What condition(s) on R, L, and C will guarantee that the system is
observable?

7.38 The block diagram of a feedback system is shown in Fig. 7.91. The system
state is

x =
[

xp
xf

]
,
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Figure 7.90
Electric circuit for
Problem 7.37

-

-

-
u

R

RR

Lyc

iL

C

y

+

+
+

and the dimensions of the matrices are as follows:

A = n× n, L = n× 1,

B = n× 1, x = 2n× 1,

C = 1× n, r = 1× 1,

K = 1× n, y = 1× 1.

(a) Write state equations for the system.
(b) Let x = Tz, where

T =
[

I 0
I I

]
.

Show the system is not controllable.
(c) Find the transfer function of the system from r to y.

Figure 7.91
Block diagram for
Problem 7.38
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7.39 This problem is intended to give you more insight into controllability
and observability. Consider the circuit in Fig. 7.92, with an input current
source u(t) and an output voltage y(t). Note that usually R1 and R2 rep-
resent the respective internal resistances of L and C while R can be the
load.

(a) Using the capacitor voltage and inductor current as state variables,
write state and output equations for the system.

(b) Find the conditions relating R1, R2, R, C, and L that render the
system uncontrollable. Find a similar set of conditions that result in
an unobservable system.
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Figure 7.92
Electric circuit for
Problem 7.39

x1

yx2

-

-u(t)

R

R1R2

LC
+

+

(c) Interpret the conditions found in part (b) in terms of the time
constants of the system.

(d) If R1 = 2 �, R2 = 3 �, and C = 0.01F , find the value of L for the
conditions derived in part (b) (that is, when the system is uncontrol-
lable or unobservable). Find the transfer function of the system and
show that there is a pole-zero cancellation for this system.

7.40 The linearized dynamic equations of motion for a satellite are

ẋ = Ax+ Bu,

y = Cx,

where

A =

⎡
⎢⎢⎣

0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ , C =

[
1 0 0 0
0 0 1 0

]
,

u =
[

u1
u2

]
, y =

[
y1
y2

]
.

The inputs u1 and u2 are the radial and tangential thrusts, the state-
variables x1 and x3 are the radial and angular deviations from the
reference (circular) orbit, and the outputs y1 and y2 are the radial and
angular measurements, respectively.

(a) Show the system is controllable using both control inputs.
(b) Show the system is controllable using only a single input. Which one

is it?
(c) Show the system is observable using both measurements.
(d) Show the system is observable using only one measurement. Which

one is it?

7.41 Consider the system in Fig. 7.93.

(a) Write the state-variable equations for the system, using
[
θ1 θ2 θ̇1 θ̇2

]T
as the state vector and F as the single input.

(b) Show all the state-variables are observable using measurements of θ1
alone.
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Figure 7.93
Coupled pendulums for
Problem 7.41 k d

FF

g

M

Gas jet

K = kd
u1 = -v2u1 - K(u1 - u2) + F/ml

u2 = -v2u2 + K(u1 - u2) - F/ml

u1 u2

M

(c) Show the characteristic polynomial for the system is the product of
the polynomials for two oscillators. Do so by first writing a new set
of system equations involving the state-variables

⎡
⎢⎢⎣

y1
y2
ẏ1
ẏ2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
θ1 + θ2
θ1 − θ2
θ̇1 + θ̇2
θ̇1 − θ̇2

⎤
⎥⎥⎦ .

Hint: If A and D are invertible matrices, then

[
A 0
0 D

]−1
=
[

A−1 0
0 D−1

]
.

(d) Deduce the fact that the spring mode is controllable with F , but the
pendulum mode is not.

7.42 A certain fifth-order system is found to have a characteristic equation
with roots at 0, −1, −2, and −1 ± 1j. A decomposition into control-
lable and uncontrollable parts discloses that the controllable part has a
characteristic equation with roots 0 and −1 ± 1j. A decomposition into
observable and nonobservable parts discloses that the observable modes
are at 0, −1, and −2.

(a) Where are the zeros of b(s) = Cadj(sI− A)B for this system?
(b) What are the poles of the reduced-order transfer function that

includes only controllable and observable modes?

7.43 Consider the systems shown in Fig. 7.94, employing series, parallel, and
feedback configurations.

(a) Suppose we have controllable–observable realizations for each
subsystem:

ẋi = Axi + Biui,

yi = Cixi, where i = 1, 2.

Give a set of state equations for the combined systems in Fig. 7.94.
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©
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(c)

(a) (b)

Figure 7.94
Block diagrams for Problem 7.43: (a) series; (b) parallel; (c) feedback

(b) For each case, determine what condition(s) on the roots of the poly-
nomials Ni and Di is necessary for each system to be controllable and
observable. Give a brief reason for your answer in terms of pole–zero
cancellations.

7.44 Consider the system ÿ+ 3ẏ+ 2y = u̇+ u.

(a) Find the state matrices Ac, Bc, and Cc in control canonical form that
correspond to the given differential equation.

(b) Sketch the eigenvectors of Ac in the (x1, x2) plane, and draw vectors
that correspond to the completely observable (x0) and the completely
unobservable (x0̄) state-variables.

(c) Express x0 and x0̄ in terms of the observability matrix O.
(d) Give the state matrices in observer canonical form and repeat parts

(b) and (c) in terms of controllability instead of observability.

7.45 The dynamic equations of motion for a station-keeping satellite (such as
a weather satellite) are

ẍ− 2ωẏ− 3ω2x = 0, ÿ+ 2ωẋ = u,

where

x = radial perturbation,

y = longitudinal position perturbation,

u = engine thrust in the y-direction,

as depicted in Fig. 7.95. If the orbit is synchronous with the earth’s
rotation, then ω = 2π/(3600× 24) rad/sec.
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Figure 7.95
Diagram of a
station-keeping
satellite in orbit for
Problem 7.45

Reference

longitude

Desired

location

on orbit

u

y

x

(a) Is the state x = [ x
·
x y

·
y ]T observable?

(b) Choose x = [ x
·
x y

·
y ]T as the state vector and y as the

measurement, and design a full-order observer with poles placed at
s = −2ω,−3ω, and −3ω ± 3ωj.

7.46 The linearized equations of motion of the simple pendulum in Fig. 7.96
are

θ̈ + ω2θ = u.

Figure 7.96
Pendulum diagram for
Problem 7.46

u

(a) Write the equations of motion in state-space form.
(b) Design an estimator (observer) that reconstructs the state of the pen-

dulum given measurements of θ̇ . Assume ω = 5 rad/sec, and pick the
estimator roots to be at s = −10± 10j.

(c) Write the transfer function of the estimator between the measured
value of θ̇ and the estimated value of θ .

(d) Design a controller (that is, determine the state feedback gain K) so
the roots of the closed-loop characteristic equation are at s = −4±4j.
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7.47 An LCL Butterworth low pass filter is described by the following state
equations:

⎡
⎣

ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣

0 −1/L 0
1/C 0 −1/C
0 1/L −R/L

⎤
⎦
⎡
⎣

x1
x2
x3

⎤
⎦+

⎡
⎣

1/L
0
0

⎤
⎦ u

where x1 and x2 are the inductor currents, x3 is the capacitor voltage, and
u is the input voltage. Consider L = 0.1 H, C = 0.01 F and R = 10 �.

Design a reduced-order estimator with y = x1 as the known measure-
ment, and place the observer error poles at −200 and −200. Be sure to
provide all the relevant estimator equations.

Problems for Section 7.8: Compensator Design: Combined
Control Law and Estimator

7.48 A certain process has a the transfer function G(s) = 4.5
s(s−4.5) .

(a) Find A, B, and C for this system in observer canonical form.
(b) If u = −Kx, compute K so that the closed-loop control poles are

located at s = −1.8± 2j.
(c) Compute L so that the estimator-error poles are located at s = −15±

15j.
(d) Give the transfer function of the resulting controller (for example,

using Eq. (7.174)).
(e) What are the gain and phase margins of the controller and the given

open-loop system?

7.49 The linearized longitudinal motion of a helicopter near hover (see Fig.
7.97) can be modeled by the normalized third-order system

⎡
⎢⎢⎣

·
q
·
θ
·
u

⎤
⎥⎥⎦ =

⎡
⎣
−0.4 0 −0.01
1 0 0
−1.4 9.8 −0.02

⎤
⎦
⎡
⎣

q
θ

u

⎤
⎦+

⎡
⎣

6.3
0

9.8

⎤
⎦ δ,

Figure 7.97
Helicopter for
Problem 7.49

Vertical

Fuselage

reference

axis

Rotor

thrust

Rotor

u

d

u

Suppose our sensor measures the horizontal velocity u as the output; that
is, y = u.
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(a) Find the open-loop pole locations.
(b) Is the system controllable?
(c) Find the feedback gain that places the poles of the system at s =
−1± 1j and s = −2.

(d) Design a full-order estimator for the system, and place the estimator
poles at −8 and −4± 4

√
3j.

(e) Design a reduced-order estimator with both poles at −4. What are
the advantages and disadvantages of the reduced-order estimator
compared with the full-order case?

(f) Compute the compensator transfer function using the control gain
and the full-order estimator designed in part (d), and plot its fre-
quency response using Matlab. Draw a Bode plot for the closed-loop
design, and indicate the corresponding gain and phase margins.

(g) Repeat part (f) with the reduced-order estimator.
(h) Draw the SRL and select roots for a control law that will give a con-

trol bandwidth matching the design of part (c), and select roots for a
full-order estimator that will result in an estimator error bandwidth
comparable to the design of part (d). Draw the corresponding Bode
plot and compare the pole placement and SRL designs with respect
to bandwidth, stability margins, step response, and control effort for
a unit-step rotor-angle input. Use Matlab for the computations.

7.50 Suppose a DC drive motor with motor current is connected to the wheels
of a cart in order to control the movement of an inverted pendulum
mounted on the cart. The linearized and normalized equations of motion
corresponding to this system can be put in the form

θ̈ = θ + v+ u,

v̇ = θ − v− u,

where

θ = angle of the pendulum,

v = velocity of the cart.

(a) We wish to control θ by feedback to u of the form,

u = −K1θ − K2θ̇ − K3v.

Find the feedback gains so that the resulting closed-loop poles are
located at −1.2, −1.2± j

√
2.

(b) Assume θ and v are measured. Construct an estimator for θ and θ̇ of
the form,

˙̂x = Ax̂+ L(y− ŷ),

where x = [ θ
·
θ ]T and y = θ . Treat both v and u are known. Select

L so that the estimator poles are at −3.5, and −3.5.
(c) Based on the above designs, find the transfer function of the con-

troller, and draw the Bode plot of the closed-loop system, indicating
the corresponding gain and phase margins.
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7.51 Consider the control of

G(s) = Y(s)
U(s)

= 7.5
s(s+ 3.5)

.

(a) Let y = x1 and ẋ1 = x2, and write state equations for the system.
(b) Find K1 and K2 so that u = −K1x1 − K2x2 yields closed-loop poles

with a natural frequency ωn = 5 and a damping ratio ζ = 0.7.
(c) Design a state estimator for the system that yields estimator error

poles with ωn1 = 20 and ζ1 = 0.7.
(d) What is the transfer function of the controller obtained by combining

parts (a) through (c)?
(e) Sketch the root locus of the resulting closed-loop system as plant gain

(nominally 7.5) is varied.

7.52 Unstable equations of motion of the form,

ẍ = x+ u,

arise in situations where the motion of an upside-down pendulum (such
as a rocket) must be controlled.

(a) Let u = −Kx (position feedback alone), and sketch the root locus
with respect to the scalar gain K.

(b) Consider a compensator of the form,

U(s) = K
(s+ a)
s+ b

X(s).

Select and so that the system will display a rise time of about 1.8 sec
and no more than 15% overshoot. Sketch the root locus with respect
to K.

(c) Sketch the Bode plot (both magnitude and phase) of the uncompen-
sated plant.

(d) Sketch the Bode plot of the compensated design, and estimate the
phase margin and the bandwidth.

(e) Design state feedback so that the closed-loop poles are the same
locations as those of the design in part (b).

(f) Design an estimator for x and ẋ using the measurement x = y, and
select the observer gain L so that the equation for x̃ has characteristic
roots with a damping ratio the same as chosen for the design in part
(e) but the natural frequency is set to be twice larger than that in part
(e).

(g) Draw a Bode plot for the closed-loop system, and compare the result-
ing bandwidth and stability margins with those obtained using the
design of part (b). If the ones with the estimator are worse, re-design
by selecting another value of ωn for the estimator. Comment on your
designs based on the step responses of each design.

7.53 A simplified model for the control of a flexible robotic arm is shown in
Fig. 7.98, where

k/M = 900 rad/sec2,

y = output, the mass position,

u = input, the position of the end of the spring.
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Figure 7.98
Simple robotic arm for
Problem 7.53 k

y

M

u

(a) Write the equations of motion in state-space form.
(b) Design an estimator with roots at s = −100± 100j.
(c) Could both state-variables of the system be estimated if only a

measurement of ẏ was available?
(d) Design a full-state feedback controller with roots at s = −20± 20j.
(e) Would it be reasonable to design a control law for the system with

roots at s = −200± 200j. State your reasons.
(f) Write equations for the compensator, including a command input for

y. Draw a Bode plot for the closed-loop system and give the gain and
phase margins for the design.

7.54 The linearized differential equations governing the fluid-flow dynamics
for the two cascaded tanks in Fig. 7.99 are

δḣ1 + σδh1 = δu,

δḣ2 + σδh2 = σδh1,

where

δh1 = deviation of depth in tank 1 from the nominal level,

δh2 = deviation of depth in tank 2 from the nominal level, and

δu = deviation in fluid in flow rate to tank 1 (control).

(a) Level Controller for Two Cascaded Tanks: Using state feedback of the
form

δu = −K1δh1 − K2δh2,

choose values of K1 and K2 that will place the closed-loop eigenval-
ues at

s = −2σ(1± j).

Figure 7.99
Coupled tanks for
Problem 7.54

h1

h2

u
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(b) Level Estimator for Two Cascaded Tanks: Suppose only the devia-
tion in the level of tank 2 is measured (that is, y = δh2). Using
this measurement, design an estimator that will give continuous,
smooth estimates of the deviation in levels of tank 1 and tank 2, with
estimator error poles at −8σ(1± j).

(c) Estimator/Controller for Two Cascaded Tanks: Sketch a block dia-
gram (showing individual integrators) of the closed-loop system
obtained by combining the estimator of part (b) with the controller
of part (a).

(d) Using Matlab, compute and plot the response at y to an initial offset
in δh1. Assume σ = 1 for the plot.

7.55 The lateral motions of a ship that is 100 m long, moving at a constant
velocity of 10 m/sec, are described by

⎡
⎣
β̇

ṙ
ψ̇

⎤
⎦ =

⎡
⎣
−0.0895 −0.286 0
−0.0439 −0.272 0

0 1 0

⎤
⎦
⎡
⎣

β

r
ψ

⎤
⎦+

⎡
⎣

0.0145
−0.0122

0

⎤
⎦ δ,

where

β = side slip angle(deg),

ψ = heading angle(deg),

δ = rudder angle(deg), and

r = yaw rate (see Fig. 7.100).

(a) Determine the transfer function from δ to ψ and the characteristic
roots of the uncontrolled ship.

Figure 7.100
View of ship from above
for Problem 7.55

Ship

motion
b

c

d
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(b) Using complete state feedback of the form

δ = −K1β − K2r− K3(ψ − ψd),

where ψd is the desired heading, determine values of K1, K2, and K3
that will place the closed-loop roots at s = −0.2,−0.2± 0.2j.

(c) Design a state estimator based on the measurement of ψ (obtained
from a gyrocompass, for example). Place the roots of the estimator
error equation at s = −0.8 and −0.8± 0.8j.

(d) Give the state equations and transfer function for the compensator
Dc(s) in Fig. 7.101, and plot its frequency response.

(e) Draw the Bode plot for the closed-loop system, and compute the
corresponding gain and phase margins.

(f) Compute the feed-forward gains for a reference input, and plot the
step response of the system to a change in heading of 5◦.

Figure 7.101
Ship control block
diagram for
Problem 7.55

G

Dc

d c

cd

Problem for Section 7.9: Introduction of the Reference Input with
the Estimator

7.56 As mentioned in footnote 9 in Section 7.9.2, a reasonable approach for�
selecting the feed-forward gain in Eq. (7.202) is to choose N̄ such that
when r and y are both unchanging, the DC gain from r to u is the negative
of the DC gain from y to u. Derive a formula for N̄ based on this selection
rule. Show if the plant is Type 1, this choice is the same as that given by
Eq. (7.202).

Problems for Section 7.10: Integral Control and Robust Tracking

7.57 Assume the linearized and time-scaled equation of motion for the ball-
bearing levitation device is ẍ − x = u + w. Here w is a constant bias
due to the power amplifier. Introduce integral error control, and select
three control gains K = [ K1 K2 K3 ] so the closed-loop poles are
at −1 and −1± j and the steady-state error to w and to a (step) position

command will be zero. Let y = x and the reference input r �= yref be
a constant. Draw a block diagram of your design showing the locations
of the feedback gains Ki. Assume both ẋ and x can be measured. Plot
the response of the closed-loop system to a step command input and
the response to a step change in the bias input. Verify that the system is
Type 1. Use Matlab (Simulink) software to simulate the system responses.
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7.58 Consider a system with state matrices

A =
[ −2 1

0 −3

]
, B =

[
1
1

]
, C = [ 1 3 ].

(a) Use feedback of the form u(t) = −Kx(t) + N̄r(t), where N̄ is a
nonzero scalar, to move the poles to −3± 3j.

(b) Choose N̄ so if r is a constant, the system has zero steady-state error;
that is, y(∞) = r.

(c) Show if A changes to A+ δA, where δA is an arbitrary 2× 2 matrix,
then your choice of N̄ in part(b) will no longer make y(∞) = r.
Therefore, the system is not robust under changes to the system
parameters in A.

(d) The system steady-state error performance can be made robust
by augmenting the system with an integrator and using unity

feedback—that is, by setting
·
xI = r − y, where xI is the state

of the integrator. To see this, first use state feedback of the form
u = −Kx − K1xI so the poles of the augmented system are at −3,
−2± j

√
3.

(e) Show the resulting system will yield y(∞) = r no matter how the
matrices A and B are changed, as long as the closed-loop system
remains stable.

(f) For part (d), use Matlab (Simulink) software to plot the time
response of the system to a constant input. Draw Bode plots of the
controller, as well as the sensitivity function (S) and the complemen-
tary sensitivity function (T ).

7.59 Consider a servomechanism for following the data track on a computer-�
disk memory system. Because of various unavoidable mechanical imper-
fections, the data track is not exactly a centered circle, and thus the radial
servo must follow a sinusoidal input of radian frequency ω0 (the spin rate
of the disk). The state matrices for a linearized model of such a system
are

A =
[

0 1
0 −1

]
, B =

[
0
1

]
, C = [ 1 3 ].

The sinusoidal reference input satisfies r̈ = −ω2
0r.

(a) Let ω0 = 1, and place the poles of the error system for an internal
model design at

αc(s) = (s+ 2± j2)(s+ 1± j1)

and the pole of the reduced-order estimator at

αe(s) = (s+ 6).

(b) Draw a block diagram of the system, and clearly show the presence of
the oscillator with frequency ω0 (the internal model) in the controller.
Also verify the presence of the blocking zeros at ±jω0.

(c) Use Matlab (Simulink) software to plot the time response of the
system to a sinusoidal input at frequency ω0 = 1.

(d) Draw a Bode plot to show how this system will respond to sinusoidal
inputs at frequencies different from but near ω0.
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7.60 Compute the controller transfer function [from Y(s) to U(s)] in Exam-�
ple 7.38. What is the prominent feature of the controller that allows
tracking and disturbance rejection?

7.61 Consider the pendulum problem with control torque Tc and disturbance�
torque Td :

θ̈ + 4θ = Tc + Td .

(Here g/l = 4.) Assume there is a potentiometer at the pin that mea-
sures the output angle θ , but with a constant unknown bias b. Thus the
measurement equation is y = θ + b.

(a) Take the “augmented” state vector to be

⎡
⎢⎣
θ
·
θ

w

⎤
⎥⎦ ,

where w is the input-equivalent bias. Write the system equations in
state-space form. Give values for the matrices A, B, and C.

(b) Using state-variable methods, show the characteristic equation of the
model is s(s2 + 4) = 0.

(c) Show w is observable if we assume y = θ , and write the estimator
equations for

⎡
⎢⎢⎢⎣

∧
θ
∧·
θ
∧
w

⎤
⎥⎥⎥⎦ .

Pick estimator gains
[
�1 �2 �3

]T to place all the roots of the
estimator error characteristic equation at −10.

(d) Using full-state feedback of the estimated (controllable) state-
variables, derive a control law to place the closed-loop poles at
−2± j2.

(e) Draw a block diagram of the complete closed-loop system (estimator,
plant, and controller) using integrator blocks.

(f) Introduce the estimated bias into the control so as to yield zero
steady-state error to the output bias b. Demonstrate the performance
of your design by plotting the response of the system to a step change
in b; that is, b changes from 0 to some constant value.

Problems for Section 7.10.3: Model-following Design

7.62 Consider the servomechanism problem where we wish to track a ramp�
reference signal. The plant and the desired model equations are

ẋ =
[

0 1
0 −1

]
x+

[
0
1

]
u,

y = [
1 0

]
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ẋm =
[

0 1
0 0

]
xm,

ym =
[

1 0
]

xm.

Design a model-following control law and demonstrate its tracking
performance. Place the closed-loop poles at s = −2± j2.

7.63 Implicit Model-following: Suppose we wish the closed-loop system to�
behave like a desired model, called the implicit model

ż = Amz.

We may minimize a modified LQR performance index

J=
∫ ∞

0

{
(ẏ− Amy)T Q1(ẏ− Amy)+ uT Ru

}
dt.

Show this performance index is equivalent to the standard one with the
addition of a cross-weighting term between the control and the state of
the form

J=
∞∫

0

{
xT Q̂x+ 2uT Ŝx+ uT R̂u

}
dt,

where

Q̂ = (CA− AmC)T Q1(CA− AmC),

Ŝ = BT CT Q1(CA− AmC),

R̂ = R+ BT CT Q1 CB.

7.64 Explicit Model-Following: Suppose in the LQR problem, we wish the�
closed-loop system to behave as close as possible to a system of the form

ż = Amz,

which represents the model of desirable dynamics. We may choose a
performance index of the form

J=
∞∫

0

{
(y− z)T Q1(y− z)+ uT Ru

}
dt.

(a) Show this performance index can be converted to the standard one by
augmenting the states of the plant and the model and again choose

the augmented state vector, ξ = [
xT zT ]T and write down the

system equations to show that

J=
∞∫

0

{
ξT Q1ξ + uT Ru

}
dt,

where

Q =
[

CT Q1C −CT Q1
−Q1C Q1

]
.
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(b) Which state variables of the system are uncontrollable? Is this result
surprising?

(c) The optimal control is of the form

u = −K1x− K2z,

which means that the model’s equations must be implemented as part
of the control law. Suppose we now drive the model as follows

ż = Amz+ Bpup,

where up may be the pilot input in an aircraft system. Show that

Y(s)
Up(s)

= −C(sI− A+ BK1)
−1B︸ ︷︷ ︸

Closed−loop dynamics

K2(sI− Am)
−1Bp︸ ︷︷ ︸

Feedforward dynamics

.

This indicates that the feedforward dynamics may be used to improve
the transient response of the system.

(d) What are the transmission zeros of the overall system?
(e) What is a possible disadvantage of this scheme compared to the

standard LQR, that is, with no explicit model?

Problem for Section 7.13: Design for Systems with Pure Time
Delay

7.65 Consider the system with the transfer function e−TsG(s), where�

G(s) = 1
s(s+ 1)(s+ 2)

.

The Smith compensator for this system is given by

D′c(s) =
Dc(s)

1+ (1− e−sT )G(s)Dc(s)
.

Plot the frequency response of the compensator for T = 5 and Dc(s) =
1, and draw a Bode plot that shows the gain and phase margins of the
system.21

21This problem was given by Åström (1977).
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A Perspective on Digital Control
Most of the controllers we have studied so far were described by the
Laplace transform or differential equations, which, strictly speak-
ing, are assumed to be built using analog electronics, such as that in
Fig. 5.31. However, most control systems today use digital comput-
ers (usually microprocessors or microcontrollers) to implement the
controllers. The intent of this chapter is to show how to implement
a control system in a digital computer. The implementation leads to
an average delay of half the sample period, and to a phenomenon
called aliasing, both of which need to be addressed in the controller
design.

Analog electronics can integrate and differentiate signals. In
order for a digital computer to accomplish these tasks, the differ-
ential equations describing compensation must be approximated by
reducing them to algebraic equations involving addition, division,
and multiplication. This chapter expands on various ways to make
these approximations. The resulting design can then be tuned up,
if needed, using direct digital analysis. In some cases, it will pay to
perform the design directly in the discrete-time domain.

You should be able to design, analyze, and implement a digital
control system from the material in this chapter. However, our treat-
ment here is a limited version of a complex subject covered in more
detail in Digital Control of Dynamic Systems by Franklin et al. (1998).

Chapter Overview
In Section 8.1, we will describe the basic structure of digital con-
trol systems and introduce the issues that arise due to the sampling.

636
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A digital implementation based on a discrete approximation of a
continuous control law can be evaluated via Simulink to determine
the degradation with respect to the continuous-time case. However,
to fully understand the effect of sampling, it is useful to learn about
discrete linear analysis tools. This requires an understanding of the
z-transform, which we will discuss in Section 8.2. In Section 8.3 we
will build on this understanding to provide a foundation for design
using various discrete equivalents. Generally speaking, the discrete
equivalents work well if the sampling rate is sufficiently fast. In
Sections 8.4 and 8.5, we will discuss hardware characteristics and
sample rate issues, both of which need to be addressed in order to
implement a digital controller.

Discrete analysis also allows us to analytically determine the
performance of the approximate discrete equivalent design without
resorting to a numerical simulation, such as Simulink, as we do in the
early examples. This analysis can then serve as a guide to tune up the
designs, which will be described in Section 8.6. It is also possible to
perform a direct digital design (also called discrete design), which
provides an exact design method that is independent of whether the
sample rate is fast or not. Direct digital design will be described in
Section 8.7.

8.1 Digitization
Figure 8.1(a) shows the topology of the typical continuous system that
we have been considering in previous chapters. The computation of the
error signal e and the dynamic compensation Dc(s) can all be accom-
plished in a digital computer as shown in Fig. 8.1(b). The fundamental
differences between the two implementations are that the digital sys-
tem operates on samples of the sensed plant output rather than on
the continuous signal, and that the continuous control provided by
Dc(s), including any differentiation and integration, must be generated
at discrete instances in time and approximated using numerical meth-
ods called difference equations. These equations are recursive, algebraic
calculations because computers are not capable of performing dynamic
functions directly.

Walking through the process in more detail, the analog output of
the plant sensor is sampled and converted to a digital number in the
analog-to-digital (A/D) converter. This device samples a physical vari-
able, most commonly an electrical voltage, and converts the samples of
the analog signal into a digital binary number that usually consists of
10 to 16 bits. Conversion from the continuous analog signal y(t) to the
discrete digital samples, y(kT), occurs repeatedly at instants of time, T ,
apart where T is the sample period and 1/T is the sample rate. If T isSample period
in seconds, 1/T is the sample rate in Hertz, denoted by fs. The sam-
pled signal is y(kT), where k can take on any integer value. It is often
written simply as y(k). We call this type of variable a discrete signal to
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Plant

©
 + 

 - 
Dc(s) G(s)r(t)

u(t)

y(t)

y(t)

1

Continuous controller

e(t)

e(kT)
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©
 + 

 - 
r(t) Difference

equations

u(kT)

Plant

G(s) y(t)

1

Sensor

u(t)

Clock
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Digital controller

T

T

y(kT)

r(kT)

y(t)

(b)

(a)

D/A and

ZOH hold
A/D

A/D Converter

Figure 8.1
Block diagrams for a basic control system: (a) continuous system; (b) with a digital computer

distinguish it from a continuous signal such as y(t), which changes con-
tinuously in time. A system having both discrete and continuous signals
is called a sampled-data system.

We make the assumption in this book that the sample period is
fixed. In practice, digital control systems sometimes have varying sam-
ple periods and/or different periods in different feedback paths. Usually,
the computer logic includes a clock that supplies a pulse, or interrupt,
every T seconds, and the A/D converter sends a number to the computer
each time the interrupt arrives. An alternative implementation, often
referred to as free-running, is to access the A/D converter after each
cycle of code execution has been completed. In the former case, the sam-
ple period is precisely fixed; in the latter case, the sample period is fixed
essentially by the length of the code, provided that no logic branches are
present, which could vary the amount of code executed. There also may
be a sampler and an A/D converter for the input command r(t), which
produces the discrete r(kT), from which the sensed output y(kT) will
be subtracted to arrive at the discrete error signal e(kT).

The continuous compensation Dc(s) is approximated by difference
equations, which are the discrete version of differential equations and
can be made to duplicate the dynamic behavior of Dc(s) accurately if
the sample rate is fast enough. The result of the difference equations
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is a discrete control signal u(kT) at each sample instant. This signal
is converted to a continuous signal u(t) by the digital-to-analog (D/A)
converter and the hold: the D/A converter changes the digital binary
number to an analog voltage, and a zero-order hold maintains that sameZero-order hold (ZOH)
voltage throughout the sample period. The resulting control signal u(t)
is then applied to the actuator in precisely the same manner as the
continuous implementation. There are two basic techniques for find-
ing the difference equations for the digital controller. One technique,
called the discrete equivalent,consists of designing a continuous com-
pensation Dc(s) using methods described in the previous chapters, then
approximating that Dc(s) using one of the methods to be described in
Section 8.3. The other technique is discrete design, to be described in
Section 8.7. Here, the difference equations are found directly without
designing Dc(s) first.

The sample rate required depends on the closed-loop bandwidth of
the system. Generally, sample rates should be at least 20 times the band-
width ωBW in order to assure that the digital controller will match theSample rate selection
performance of the continuous controller. Slower sample rates can be
used if some adjustments are made in the digital controller or some per-
formance degradation is acceptable. Use of the discrete design method
allows for a much slower sample rate if that is desirable to minimize
hardware costs; however, best performance of a digital controller is
obtained when the sample rate is greater than 25 times the bandwidth.

It is worth noting the single most important impact of implement-
ing a control system digitally is the delay associated with the hold.
Because each value of u(kT) in Fig. 8.1(b) is held constant until the
next value is available from the computer, the continuous value of u(t)
consists of steps (see Fig. 8.2) that, on average, are delayed from a fit
to u(kT) by T/2, as shown in the figure. If we simply incorporate this
T/2 delay into a continuous analysis of the system, an excellent predic-
tion of the effects of sampling results for sample rates much slower than
20 times bandwidth. We will discuss this further in Section 8.3.5.

Figure 8.2
The delay due to the
hold operation

u

kT1 2 3 4 5 6 7 8

u(kT)

Average u(t)
from digital

controller

Fit to control samples

u(t) Control from D/A
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8.2 Dynamic Analysis of Discrete Systems
The z-transform is the mathematical tool for the analysis of linear dis-
crete systems. It plays the same role for discrete-time systems that the
Laplace transform does for continuous-time systems. This section will
give a short description of the z-transform, describe its use in analyzing
discrete systems, and show how it relates to the Laplace transform.

8.2.1 z-Transform
In the analysis of continuous-time systems, we use the Laplace trans-
form, which is defined by

L{ f (t)} = F(s) =
∫ ∞

0
f (t)e−st dt,

which leads directly to the important property that (with zero initial
conditions)

L{ḟ (t)} = sF(s). (8.1)

Equation (8.1) enables us easily to find the transfer function of a linear
continuous-time system, given the differential equation description of
that system.

For discrete systems a similar procedure is available. The z-
transform is defined byz-transform

Z{ f (k)} = F(z) =
∞∑

k=0

f (k)z−k, (8.2)

where f (k) is the sampled version of f (t), as shown in Fig. 8.3, and
k = 0, 1, 2, 3, . . . refers to discrete sample times t0, t1, t2, t3, . . . . This
leads directly to a property analogous to Eq. (8.1), specifically, that

Z{ f (k− 1)} = z−1F(z), (8.3)

where z−1 represents one sample delay. This relation allows us to easily
find the transfer function of a discrete system, given the difference equa-
tions of that system. For example, the general second-order difference
equation

y(k) = −a1y(k − 1)− a2y(k− 2)+ b0u(k)+ b1u(k− 1)+ b2u(k− 2)

Figure 8.3
A continuous, sampled
version of signal f

f(t)

t

f(t)

f(k)

0 T 2T 3T

T
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can be converted from this form to the z-transform of the variables y(k),
u(k), . . . by invoking Eq. (8.3) once or twice to arrive at

Y(z) = (−a1z−1 − a2z−2)Y(z)+ (b0 + b1z−1 + b2z−2)U(z). (8.4)

Equation (8.4) then results in the discrete transfer functionDiscrete transfer function

Y(z)
U(z)

= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2 .

8.2.2 z-Transform Inversion
Table 8.1 relates simple discrete-time functions to their z-transforms and
gives the Laplace transforms for the same time functions.

Given a general z-transform, we could expand it into a sum of ele-
mentary terms using partial-fraction expansion (see Appendix A.1.2)
and find the resulting time series from the table. These procedures are
exactly the same as those used for continuous-time systems. However,
as with the continuous case, most designers would use a numerical eval-
uation of the discrete equations to obtain a time history rather than
inverting the z-transform.

A z-transform inversion technique that has no continuous counter-
part is called long division. Given the z-transform

Y(z) = N(z)
Dd(z)

, (8.5)

we simply divide the denominator into the numerator using long
division. The result is a series (perhaps with an infinite number of terms)
in z−1, from which the time series can be found using Eq. (8.2).z-transform inversion:

long division For example, a first-order discrete system described by the differ-
ence equation

y(k) = αy(k − 1)+ u(k), (8.6)

yields the discrete transfer function

Y(z)
U(z)

= 1
1− αz−1 .

For a unit-pulse input defined by

u(0) = 1,

u(k) = 0, k �= 0,

the z-transform is then

U(z) = 1, (8.7)

so

Y(z) = 1
1− αz−1 . (8.8)
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TABLE 8.1 Laplace Transforms and z-Transforms of Simple Discrete-Time Functions

No. F(s) f(kT) F(z)

1 1, k = 0; 0, k �= 0 1
2 1, k = ko; 0, k �= ko z−ko

3 1
s 1(kT) z

z−1

4 1
s2 kT Tz

(z−1)2

5 1
s3

1
2! (kT)2 T2

2

[
z(z+1)
(z−1)3

]

6 1
s4

1
3! (kT)3 T3

6

[
z(z2+4z+1)
(z−1)4

]

7 1
sm lima→0

(−1)m−1

(m−1)!

(
∂m−1

∂am−1 e−akT
)

lima→0
(−1)m−1

(m−1)!

(
∂m−1

∂am−1
z

z−e−aT

)

8 1
s+a e−akT z

z−e−aT

9 1
(s+a)2

kTe−akT Tze−aT

(z−e−aT )2

10 1
(s+a)3

1
2 (kT)2e−akT T2

2 e−aT z (z+e−aT )
(z−e−aT )3

11 1
(s+a)m

(−1)m−1

(m−1)!

(
∂m−1

∂am−1 e−akT
)

(−1)m−1

(m−1)!

(
∂m−1

∂am−1
z

z−e−aT

)

12 a
s(s+a) 1− e−akT z(1−e−aT )

(z−1)(z−e−aT )

13 a
s2(s+a)

1
a (akT − 1+ e−akT )

z[(aT−1+e−aT )z+(1−e−aT−aTe−aT )]
a(z−1)2(z−e−aT )

14 b−a
(s+a)(s+b) e−akT − e−bkT (e−aT−e−bT )z

(z−e−aT )(z−e−bT )

15 s
(s+a)2

(1− akT)e−akT z[z−e−aT (1+aT)]
(z−e−aT )2

16 a2

s(s+a)2
1− e−akT (1+ akT) z[z(1−e−aT−aTe−aT )+e−2aT−e−aT+aTe−aT ]

(z−1)(z−e−aT )2

17 (b−a)s
(s+a)(s+b) be−bkT − ae−akT z[z(b−a)−(be−aT−ae−bT )]

(z−e−aT )(z−e−bT )

18 a
s2+a2 sin akT z sin aT

z2−(2 cos aT)z+1

19 s
s2+a2 cos akT z(z−cos aT)

z2−(2 cos aT)z+1

20 s+a
(s+a)2+b2 e−akT cos bkT z(z−e−aT cos bT)

z2−2e−aT (cos bT)z+e−2aT

21 b
(s+a)2+b2 e−akT sin bkT ze−aT sin bT

z2−2e−aT (cos bT)z+e−2aT

22 a2+b2

s[(s+a)2+b2]
1− e−akT (cos bkT + a

b sin bkT) z(Az+B)
(z−1)[z2−2e−aT (cos bT)z+e−2aT ]

A = 1− e−aT cos bT − a
b e−aT sin bT

B = e−2aT + a
b e−aT sin bT − e−aT cos bT

F(s) is the Laplace transform of f (t), and F(z) is the z-transform of f (kT).
Note: f (t) = 0 for t = 0.
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Therefore, to find the time series, we divide the numerator of Eq. (8.8)
by its denominator using long division:

1+ αz−1 + α2z−2 + α3z−3 + · · ·

1− αz−1
)
1
1− αz−1

αz−1 + 0
αz−1 − α2z−2

α2z−2 + 0
α2z−2 − α3z−3

α3z−3

. . .

This yields the infinite series

Y(z) = 1+ αz−1 + α2z−2 + α3z−3 + · · · . (8.9)

From Eqs. (8.9) and (8.2), we see the sampled time history of y is

y(0) = 1,

y(1) = α,

y(2) = α2,

...
...

y(k) = αk,

which also could have been easily calculated for this simple example by
directly evaluating Eq. (8.6).

8.2.3 Relationship Between s and z
For continuous-time systems, we saw in Chapter 3 that certain behaviors
result from different pole locations in the s-plane: oscillatory behavior
for poles near the imaginary axis, exponential decay for poles on the
negative real axis, and unstable behavior for poles with a positive real
part. A similar kind of association would also be useful to know when
designing discrete systems. Consider the continuous signal

f (t) = e−at, t > 0,

which has the Laplace transform

F(s) = 1
s+ a

,

and corresponds to a pole at s = −a. The z-transform of f (kT) is

F(z) = Z{e−akT }. (8.10)
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From Table 8.1, we can see that Eq. (8.10) is equivalent to

F(z) = z
z− e−aT ,

which corresponds to a pole at z = e−aT . This means that a pole at
s = −a in the s-plane corresponds to a pole at z = e−aT in the dis-
crete domain. This is true in general, which is shown in more detail in
Franklin et al. (1998). The important result is:

Relationship between
z-plane and s -plane
characteristics

The equivalent characteristics in the z-plane are related to those
in the s-plane by the expression

z = esT , (8.11)

where T is the sample period.

Table 8.1 also includes the Laplace transforms, which demonstrates the
z = esT relationship for the roots of the denominators of the table
entries for F(s) and F(z).

Figure 8.4 shows the mapping of lines of constant damping ζ and
natural frequency ωn from the s-plane to the upper half of the z-plane,
using Eq. (8.11). The mapping also has several other important features
(see Problem 8.4):

Re(z)
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1.2

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0

10T
9p

5T
4p

10T
7p

5T
2p

5T
3p

10T
3p

10T
p

20T
p

vn =
2T
p

vn = 
T
p z = 

1.0

z = 0

s = - zvn ; jvnV1 - z2

T = Sampling period

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
0.1

z = eTs

5T
1p

Figure 8.4
Natural frequency (solid color) and damping loci (light color) in the z-plane; the portion below the
Re(z)-axis (not shown) is the mirror image of the upper half shown
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1. The stability boundary (s = 0± jω in the s-plane) becomes the unit
circle |z| = 1 in the z-plane; inside the unit circle is stable, outside is
unstable.

2. The small vicinity around z = +1 in the z-plane is essentially
identical to the vicinity around the origin, s = 0, in the s-plane.

3. The z-plane locations give response information normalized to the
sample rate rather than to time as in the s-plane.

4. The negative real z-axis always represents a frequency of ωs/2,
where ωs = 2π/T = sample rate in radians per second when T is
in seconds.

5. Vertical lines in the left half of the s-plane (the constant real part
of s or time constant) map into circles within the unit circle of the
z-plane.

6. Horizontal lines in the s-plane (the constant imaginary part of s or
frequency) map into radial lines in the z-plane.

7. Frequencies greater than ωs/2, called the Nyquist frequency1, appear
in the z-plane on top of corresponding lower frequencies because
of the circular character of the trigonometric functions imbedded
in Eq. (8.11). This overlap is called aliasing or folding. As a result
it is necessary to sample at least twice as fast as a signal’s high-
est frequency component in order to represent that signal with the
samples. (We will discuss aliasing in greater detail in Section 8.4.3.)

To provide insight into the correspondence between z-plane loca-
tions and the resulting time sequence, Fig. 8.5 sketches time responses
that would result from poles at the indicated locations. This figure is the
discrete counterpart of Fig. 3.16.

8.2.4 Final Value Theorem
The Final Value Theorem for continuous-time systems, discussed in
Section 3.1.6, states that

lim
t→∞ x(t) = xss = lim

s→0
sX(s), (8.12)

as long as all the poles of sX(s) are in the left half-plane (LHP). It is
often used to find steady-state system errors and/or steady-state gains
of portions of a control system. We can obtain a similar relationship for
discrete systems by noting a constant continuous steady-state response
is denoted by X(s) = A/s and leads to the multiplication by s in
Eq. (8.12). Therefore, because the constant steady-state response for
discrete systems is

X(z) = A
1− z−1 ,

1Nyquist frequency = ωs/2
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Re(z)

Im(z)

-1 -0.5 10.5

Figure 8.5
Time sequences associated with points in the z-plane

Final Value Theorem for
discrete systems

the discrete Final Value Theorem is

lim
k→∞

x(k) = xss = lim
z→1

(1− z−1)X(z), (8.13)

if all the poles of (1− z−1)X(z) are inside the unit circle.

For example, to find the DC gain of the transfer function

G(z) = X(z)
U(z)

= 0.58(1+ z)
z+ 0.16

,

we let u(k) = 1 for k ≥ 0, so

U(z) = 1
1− z−1

and

X(z) = 0.58(1+ z)
(1− z−1)(z+ 0.16)

.
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Applying the Final Value Theorem yields

xss = lim
z→1

[
0.58(1+ z)

z+ 0.16

]
= 1,

so the DC gain of G(z) is unity. To find the DC gain of any stable trans-DC gain
fer function, we simply substitute z = 1 and compute the resulting gain.
Because the DC gain of a system should not change whether represented
continuously or discretely, this calculation is an excellent aid to check
that an equivalent discrete controller matches a continuous controller.
It is also a good check on the calculations associated with determining
the discrete model of a system.

8.3 Design Using Discrete Equivalents
Design by discrete equivalent, sometimes called emulation, proceeds thr-Stages in design using

discrete equivalents ough the following stages:

1. Design a continuous compensation, as described in Chapters 1
through 7.

2. Find the discrete equivalent that, when implemented with the sys-
tem described by Fig. 8.1(b), best approximates the continuous
compensation.

3. Use discrete analysis, simulation, or experimentation to verify the
design.

Assume we are given a continuous compensation Dc(s), as shown
in Fig. 8.1(a). We wish to find a set of difference equations or Dd(z) for
the digital implementation of that compensation in Fig. 8.1(b). First,
we rephrase the problem as one of finding the best Dd(z) in the digital
implementation shown in Fig. 8.6(a) to match the continuous system
represented by Dc(s) in Fig. 8.6(b). In this section, we examine and
compare four methods for solving this problem.

It is important to remember, as stated earlier, that these methods are
approximations; there is no exact solution for all possible inputs because
Dc(s) responds to the complete time history of e(t), whereas Dd(z) has
access to only the samples e(kT). In a sense, the various digitization
techniques simply make different assumptions about what happens to
e(t) between the sample points.

8.3.1 Tustin’s Method
Tustin’s method is a digitization technique that approaches the problem
as one of numerical integration. Suppose

Figure 8.6
Comparison of
(a) digital and;
(b) continuous
implementation

e(kT)
e(t)

T
Dd(z)

u(kT)
ZOH u(t) e(t) Dc(s) u(t)

(a) (b)
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U(s)
E(s)

= Dc(s) = 1
s

,

which is integration. Therefore,

u(kT) =
∫ kT−T

0
e(t) dt+

∫ kT

kT−T
e(t) dt, (8.14)

which can be rewritten as

u(kT) = u(kT − T)+ area under e(t) over last period, T , (8.15)

where T is the sample period.
For Tustin’s method, the task at each step is to use trapezoidal inte-

gration, that is, to approximate e(t) by a straight line between the two
samples (see Fig. 8.7). Writing u(kT) as u(k) and u(kT −T) as u(k− 1)
for short, we convert Eq. (8.15) to

u(k) = u(k − 1)+ T
2

[e(k− 1)+ e(k)], (8.16)

or, taking the z-transform,

U(z)
E(z)

= T
2

(
1+ z−1

1− z−1

)
= 1

2
T

(
1−z−1

1+z−1

) . (8.17)

For Dc(s) = a/(s + a), applying the same integration approximation
yields

Dd(z) = a
2
T

(
1−z−1

1+z−1

)
+ a

.

In fact, substituting

s = 2
T

(
1− z−1

1+ z−1

)

for every occurrence of s in any Dc(s) yields a Dd(z) based on the trape-
zoidal integration formula. This is called Tustin’s method or the bilinearTustin’s method or bilinear

approximation approximation. Finding Tustin’s approximation by hand for even a sim-
ple transfer function requires fairly extensive algebraic manipulations.
The c2d function of Matlab expedites the process, as shown in the next
example.

Figure 8.7
Trapezoidal integration
in Tustin’s method

t

e(t)

kT - T kT
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EXAMPLE 8.1 Digital Controller for Example 6.15 Using Tustin’s
Approximation

Determine the difference equations to implement the compensation
from Example 6.15,

Dc(s) = 10
s/2+ 1
s/10+ 1

,

at a sample rate of 25 times bandwidth using Tustin’s approximation.
Compare the performance against the continuous system done in
Example 6.15.

Solution. The bandwidth, ωBW , for Example 6.15 is approximately
10 rad/sec, as can be deduced by observing that the crossover frequency
(ωc) is approximately 5 rad/sec and noting the relationship between ωc
and ωBW in Fig. 6.50. Therefore, the sample frequency should be

ωs = 25× ωBW = (25)(10) = 250 rad/sec.

Normally, when a frequency is indicated with the units of cycles per
second, or Hz, it is given the symbol f , so with this convention, we have

fs = ωs/(2π) � 40 Hz, (8.18)

and the sample period is then

T = 1/fs = 1/40 = 0.025 sec.

The discrete compensation is computed by the Matlab statement

s=tf('s');
sysDc = tf(10*(s/2 + 1)/(s/10 + 1);
T = 0.025;
sysDd = c2d(sysDc,T,'tustin')

which produces

Dd(z) = 45.56− 43.33 z−1

1− 0.7778 z−1 . (8.19)

We can then write the difference equation by inspecting Eq. (8.19) to get

u(k) = 0.7778u(k − 1)+ 45.56e(k)− 43.33e(k − 1),

or,

u(k) = 0.7778u(k − 1)+ 45.56[e(k)− 0.9510e(k − 1)]. (8.20)

Equation (8.20) computes the new value of the control, u(k), given the
past value of the control, u(k − 1), and the new and past values of the
error signal, e(k) and e(k− 1).

In principle, the difference equation is evaluated initially with k =
0, then k = 1, 2, 3, . . .However, there is usually no requirement that val-
ues for all times be saved in memory. Therefore, the computer only needs
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to have variables defined for the current and past values. The instruc-
tions to the computer to implement the feedback loop in Fig. 8.1(b)
with the difference equation from Eq. (8.20) would call for a continual
looping through the following code:

READ A/D: y, r
e = r− y
u = 0.7778up + 45.56[e− 0.9510ep]

OUTPUT D/A: u
up = u (where up will be the past value for the next loop through)
ep = e

go back to READ when T sec have elapsed since last READ.

To evaluate this discrete controller, we use Simulink to compare
the two implementations. Figure 8.8 shows the block diagram for the
comparison, and the results of the step responses are shown in Fig. 8.9.

Figure 8.8
Simulink block diagram
for transient response
of lead-compensation
designs with discrete
and analog
implementations
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Note sampling at 25 times the bandwidth causes the digital implemen-
tation to match the continuous one quite well. Generally speaking, if
you want to match a continuous system with a digital approximation of
the continuous compensation, a conservative approach is to sample at
approximately 25 times the bandwidth or faster.

8.3.2 Zero-Order Hold (ZOH) Method
Tustin’s method essentially assumed the input to the controller varied
linearly between the past sample rate and the current one, as shown
in Fig. 8.7. Another assumption is the input to the controller remains
constant throughout the sample period. In other words, for purposes
of this design approximation, we assume that the Dc(s) in Fig. 8.1(a) is
preceded by a ZOH whose function is to accept the value of e at sample
time, k, and hold that value constant until k + 1. This is not the actual
case; rather, the only ZOH in the system is the one preceding the plant,
G(s), as shown in Fig. 8.1(b). With this assumption, there is an exact
discrete equivalent for this system because the ZOH precisely describes
what happens between samples of e and the output u is dependent only
on the input at the sample times e(k).

For a controller described by Dc(s) preceded by a ZOH, given an
input, e(k), the system is essentially responding to a positive step at
sample time, k, followed by a negative step one cycle delayed. In other
words, one input sample produces a square pulse of height, e, that lasts
for one sample period. For a constant positive step input, e, at time k,
E(s) = e(k)/s, so the result would be,

Dd(z) = Z
{

Dc(s)
s

}
, (8.21)

where Z{F(s)} is the z-transform of the sampled time series whose
Laplace transform is the expression for F(s), that is, it is given on the
same line in Table 8.1. Furthermore, a constant negative step, one cycleZOH approximation
delayed, would be

Dd(z) = z−1Z
{

Dc(s)
s

}
. (8.22)

Therefore, the discrete transfer function for the square pulse is

ZOH transfer function Dd(z) = (1− z−1)Z
{

Dc(s)
s

}
. (8.23)

For a more complete derivation, see Chapter 4 in Franklin et al. (1998).
Equation (8.23) provides us with a discrete approximation to Dc(s) and
determines the difference equations to be used in Fig. 8.1(b).
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EXAMPLE 8.2 Digital Controller for Example 6.15 Using the ZOH
Approximation

Again, determine the difference equations to implement the compensa-
tion from Example 6.15,

Dc(s) = 10
s/2+ 1

s/10+ 1
,

at a sample rate of 25 times the bandwidth using the ZOH approxima-
tion. Compare the performance against the continuous system done in
Example 6.15 and with the results of Example 8.1.

Solution. The bandwidth is the same as the previous example, so the
sample period is unchanged

T = 0.025 sec.

The discrete compensation is computed by the Matlab statement, but
this time we use the ZOH version of c2d

s = tf('s');
sysDc =10*(s/2 + 1)/(s/10 + 1);
T = 0.025;
sysDd = c2d(sysDc,T,'zoh');

which produces

Dd(z) = (50− 47.79 z−1)

1− 0.7788 z−1 . (8.24)

We can then write the difference equation by inspecting Eq. (8.24) to get

u(k) = 0.7788u(k − 1)+ 50e(k)− 47.79e(k − 1),

or,

u(k) = 0.7788u(k − 1)+ 50[e(k)− 0.9558e(k − 1)]. (8.25)

Note the similarity between Eq. (8.25) and Eq. (8.20). There are very
small differences in the zero and pole locations and the overall gain. The
difference equations to be implemented in the digital controller are:

READ A/D: y, r
e = r− y
u = 0.7788up + 50[e− 0.9510ep]

OUTPUT D/A: u
up = u (where up will be the past value for the next loop through)
ep = e

go back to READ when T sec have elapsed since last READ.

Use of Simulink to compare the two implementations, in a manner
similar to that used for Example 8.1, yields the step responses shown in
Fig. 8.10. Note, again, that sampling at 25 times the bandwidth again
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Figure 8.10
Comparison between
the digital (using ZOH
approximation) and the
continuous controller
step response with a
sample rate 25 times
bandwidth:(a) position;
(b) control
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causes the digital implementation to match the continuous one quite
well, although for this case, use of the Tustin approximation matched
slightly better than the ZOH approximation. Historically, the advantage
of the ZOH method was that it involved simpler algebraic manipula-
tions; however, with the availability of control software such as Matlab,
that advantage has diminished. A comparison of all the methods will be
contained in Section 8.3.5.

8.3.3 Matched Pole–Zero (MPZ) Method
Another digitization method, called the matched pole–zero (MPZ)
method, is found by extrapolating from the relationship between the
s- and z-planes stated in Eq. (8.11). If we take the z-transform of a
sampled function x(k), the poles of X(z) are related to the poles of
X(s) according to the relation z = esT . The MPZ technique applies
the relation z = esT to the poles and zeros of a transfer function, even
though, strictly speaking, this relation applies neither to transfer func-
tions nor even to the zeros of a time sequence. Like all transfer-function
digitization methods, the MPZ method is an approximation; here the
approximation is motivated partly by the fact that z = esT is the correct
s to z transformation for the poles of the transform of a time sequence
and partly by the minimal amount of algebra required to determine the
digitized transfer function by hand, in the event that one wanted to
check the computer calculations.

Because physical systems often have more poles than zeros, it is
useful to arbitrarily add zeros at z = −1, resulting in a 1 + z−1 term
in Dd(z). This causes an averaging of the current and past input values,
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as in Tustin’s method. We select the low-frequency gain of Dd(z) so it
equals that of Dc(s).

MPZ Method Summary

1. Map poles and zeros according to the relation z = esT .
2. If the numerator is of lower order than the denominator, add pow-

ers of (z + 1) to the numerator until numerator and denominator
are of equal order.

3. Set the DC or low-frequency gain of Dd(z) equal to that of Dc(s).

For example, the MPZ approximation of

Dc(s) = Kc
s+ a
s+ b

, (8.26)

is

Dd(z) = Kd
z− e−aT

z− e−bT
, (8.27)

where Kd is found by causing the DC gain of Dd(z) to equal the DC
gain of Dc(s) using the continuous and discrete versions of the Final
Value Theorem. The result is

Kc
a
b
= Kd

1− e−aT

1− e−bT
,

or

Kd = Kc
a
b

(
1− e−bT

1− e−aT

)
. (8.28)

For a Dc(s) with a higher-order denominator, Step 2 in the method
calls for adding the (z+ 1) term. For example,

Dc(s) = Kc
s+ a

s(s+ b)
⇒ Dd(z) = Kd

(z+ 1)(z− e−aT )

(z− 1)(z− e−bT )
, (8.29)

however, because the DC gains of these transfer functions are infinite,
it is necessary to match the low frequency gains instead. This can be
accomplished by deleting the pure integral terms, that is, the poles at
s = 0 and z = 1, and proceeding as before to match the DC gains of the
remaining transfer functions for the two cases. Doing this, we find that

Kd = Kc
a

2b

(
1− e−bT

1− e−aT

)
. (8.30)

In the digitization methods described so far, the same power of z
appears in the numerator and denominator of Dd(z). This implies that
the difference equation output at time k will require a sample of the
input at time k. For example, the Dd(z) in Eq. (8.27) can be written

U(z)
E(z)

= Dd(z) = Kd
1− αz−1

1− βz−1 , (8.31)

where α = e−aT and β = e−bT . By inspection, we can see that Eq. (8.31)
results in the difference equation

u(k) = βu(k − 1)+ Kd [e(k)− αe(k− 1)]. (8.32)
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EXAMPLE 8.3 Design of a Space Station Attitude Digital Controller
Using the Matched Pole–Zero Approximation

A very simplified model of the space station attitude control dynamics
has the plant transfer function

G(s) = 1
s2 .

Design a digital controller to have a closed-loop natural frequency ωn ∼=
0.3 rad/sec and a damping ratio ζ = 0.7.

Solution. The first step is to find the proper Dc(s) for the system defined
in Fig. 8.11. After some trial and error, we find that the specifications
can be met by the lead compensation

Dc(s) = 0.81
s+ 0.2
s+ 2

. (8.33)

The root locus in Fig. 8.12 verifies the appropriateness of using
Eq. (8.33).

To digitize this Dc(s), we first need to select a sample rate. For a sys-
tem with ωn = 0.3 rad/sec, the bandwidth will also be about 0.3 rad/sec.
Let’s try a sample rate slightly slower than the previous examples to
obtain a sense of the effect. So let’s use approximately 20 times ωn. Thus

ωs = 0.3× 20 = 6 rad/sec.

A sample rate of 6 rad/sec is about 1 Hertz; therefore, the sample period
should be T = 1 sec. The MPZ digitization of Eq. (8.33), given by
Eqs. (8.27) and (8.28), yields

Dd(z) = 0.389
z− 0.82

z− 0.135

= 0.389− 0.319z−1

1− 0.135z−1 . (8.34)

Figure 8.11
Continuous-design
definition for
Example 8.3
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Figure 8.13
A digital control system
that is equivalent to
Fig. 8.11
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conversion

PlantComputer
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(8.35)
y(t)

Inspection of Eq. (8.34) gives us the difference equation

u(k) = 0.135u(k − 1)+ 0.389e(k)− 0.319e(k − 1), (8.35)

where
e(k) = r(k)− y(k),

and this completes the digital algorithm design. The complete digital
system is shown in Fig. 8.13.

The last step in the design process is to verify the design by imple-
menting it on the computer. Figure 8.14 compares the step response of
the digital system using T = 1 sec (20 × ωBW ) with the step response
of the continuous compensation. Note there is greater overshoot in the
digital system, which suggests a decrease in the damping due to the digi-
tal implementation. The average T/2 delay shown in Fig. 8.2 is the cause
of the reduced damping. For a better match to the continuous system,
it may be prudent to increase the sample rate. Figure 8.14 also shows
the response with sampling that is twice as fast (40×ωBW ) and it can be
seen that it comes much closer to the continuous system. Note the dis-
crete compensation needs to be recalculated for this faster sample rate
according to Eqs. (8.27) and (8.28).

Figure 8.14
Step responses of the
continuous and digital
implementations using
the MPZ equivalent with
slower sampling
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All the methods thus far required knowing e(k) in order to compute
u(k); however, it is impossible to sample e(k), compute u(k), then out-
put u(k) all in zero elapsed time; therefore, Eq. (8.35) is impossible to
implement precisely. However, if the equation is simple enough and/or
the computer is fast enough, a slight computational delay between the e
read and the u output will have a negligible effect on the actual response
of the system compared with that expected from the original design. A
rule of thumb would be to keep the computational delay on the order
of 1/10 of T . The real-time code and hardware can be structured so this
delay is minimized by making sure that computations between READ
A/D and OUTPUT D/A are minimized, and u is sent to the ZOH
immediately after its calculation.

8.3.4 Modified Matched Pole–Zero (MMPZ) Method
The Dd(z) in Eq. (8.29) would also result in u(k) being dependent on
e(k), the input at the same time point. If the structure of the computer
hardware prohibits minimizing the time between the READ and the
OUTPUT, or if the computations are particularly lengthy, it may be
desirable to derive a Dd(z) that has one less power of z in the numer-
ator than in the denominator; hence, the computer output u(k) would
require only input from the previous time, that is, e(k − 1). To do this,
we simply modify Step 2 in the matched pole–zero procedure so the
numerator is of lower order than the denominator by 1. We call this the
Modified Matched Pole-Zero (MMPZ) method. For example, if

Dc(s) = Kc
s+ a

s(s+ b)
,

we skip Step 2 to get

Dd(z) = Kd
z− e−aT

(z− 1)(z− e−bT )
, (8.36)

Kd = Kc
a
b

(
1− e−bT

1− e−aT

)
.

To find the difference equation, we multiply the top and bottom of
Eq. (8.36) by z−2 to obtain

Dd(z) = Kd
z−1(1− e−aT z−1)

1− z−1(1+ e−bT )+ z−2e−bT
. (8.37)

By inspecting Eq. (8.37) we can see the difference equation is

u(k) = (1+ e−bT )u(k−1)− e−bT u(k−2)+Kd [e(k−1)− e−aT e(k−2)].

In this equation, an entire sample period is available to perform the
calculation and to output u(k), because it depends only on e(k − 1).
A discrete analysis of this controller would therefore more accurately
explain the behavior of the actual system. However, because this con-
troller is using data that are one cycle old, it will typically not perform
as well as the MPZ controller in terms of the deviations of the desired
system output in the presence of random disturbances.
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8.3.5 Comparison of Digital Approximation Methods
A numerical comparison of the magnitude of the frequency response
for a first-order lag,

Dc(s) = 5
s+ 5

,

is made in Fig. 8.15 for the four approximation techniques at two differ-
ent sample rates. The results of the Dd(z) computations used in Fig. 8.15
are shown in Table 8.2. Note the MMPZ and ZOH methods are identi-
cal in this example; however, this will not always be the case when there
are zeros and poles. The MPZ and Tustin’s methods also appear to be
identical; however, there are minor differences as you can see from their
Dd(z) in Table 8.2. The major difference between the four approxima-
tions is that the two with the (z + 1) zeros yield a deep notch at ωs/2,
which is often a desirable feature.

Figure 8.15, which shows three of the four approximations, shows
that all the approximations are quite good at frequencies below about
1/5 the sample rate, or ωs

5 . If ωs/5 is sufficiently faster than the filter
break-point frequency—that is, if the sampling is fast enough—the
break-point characteristics of the lag will be accurately reproduced.
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Figure 8.15
A comparison of the frequency response of 3 discrete approximations at two sample rates

TABLE 8.2 Comparing Digital Approximations of Dd(z) for Dc(s) = 5/(s + 5)

ωs

Method 150 rad/sec 750 rad/sec

Matched pole–zero (MPZ) 0.0945
z + 1

z − 0.811
0.1715

z + 1
z − 0.657

Modified MPZ (MMPZ) 0.189
1

z − 0.811
0.343

1
z − 0.657

Tustin’s 0.0950
z + 1

z − 0.810
0.1735

z + 1
z − 0.653

ZOH 0.189
1

z − 0.811
0.343

1
z − 0.657
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Tustin’s technique and the MPZ method show a notch at ωs/2 because of
their zero at z = −1 from the z+1 term. Other than the large difference
in the vicinity approaching ωs/2 and higher, which is typically outside
the range of interest, the four methods have similar accuracies.

8.3.6 Applicability Limits of the Discrete Equivalent
Design Method

If we performed an exact discrete analysis or a simulation of a system
and determined the digitization for a wide range of sample rates, the sys-
tem could often be unstable for rates slower than approximately 5ωBW ,
and the damping would be degraded significantly for rates slower than
about 10ωBW . At sample rates � 20ωBW , design by discrete equivalents
yields reasonable results, and at sample rates of 25 times the bandwidth
or higher, discrete equivalents can be used with confidence.

As illustrated in Fig. 8.2, the errors partly come about because the
technique ignores the lagging effect of the ZOH that precedes the plantZOH transfer function
which, on the average, is T/2. The other source of error is the behavior
of the input signal between sample times. A method to account for the
T/2 delay is to include an approximation of the delay due to the ZOH:2

GZOH(s) = 2/T
s+ 2/T

. (8.38)

Once an initial design is carried out and the sampling rate has been
selected, we could improve on our discrete design by inserting Eq. (8.38)
into the original plant model and adjusting Dc(s) so that a satisfac-
tory response in the presence of the approximate sampling delay is
achieved. Therefore, we see that use of Eq. (8.38) partially alleviates
the approximate nature of using discrete equivalents.

For sample rates slower than about 10ωBW it is advisable to analyze
the entire system using an exact discrete analysis. If a discrete analysis
shows an unacceptable degradation of performance due to the sam-
pling, the design can then be refined using exact discrete methods. We
will cover this approach in Section 8.6.

8.4 Hardware Characteristics
A digital control system includes several unique components not found
in continuous control systems: an A/D converter is a device to sample
the continuous signal voltage from the sensor and to convert that signal
to a digital word; a D/A converter is a device to convert the digital word
from the computer to an analog voltage, an anti-alias prefilter is an ana-
log device designed to reduce the effects of aliasing, and the computer is
the device where the compensation Dd(z) is programmed and the calcu-
lations are carried out. This section provides a brief description of each
of these.

2This is the lowest order Padé approximate to a pure time delay. See Appendix W5.6.3
available online at www.pearsonglobaleditions.com.

www.pearsonglobaleditions.com
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8.4.1 Analog-to-Digital (A/D) Converters
As discussed in Section 8.1, A/D converters are devices that convert a
voltage level from a sensor to a digital word usable by the computer. At
the most basic level, all digital words are binary numbers consisting of
many bits that are set to either 1 or 0. Therefore, the task of the A/D
converter at each sample time is to convert a voltage level to the correct
bit pattern and often to hold that pattern until the next sample time.

Of the many A/D conversion techniques that exist, the most com-
mon are based on counting schemes or a successive-approximation
technique. In counting methods, the input voltage may be converted
to a train of pulses whose frequency is proportional to the voltage level.
The pulses are then counted over a fixed period using a binary counter,
thus resulting in a binary representation of the voltage level. A varia-
tion on this scheme is to start the count simultaneously with a voltage
that is linear in time and to stop the count when the voltage reaches the
magnitude of the input voltage to be converted.

The successive-approximation technique tends to be much faster
than the counting methods. It is based on successively comparing the
input voltage to reference levels representing the various bits in the digi-
tal word. The input voltage is first compared with a reference value that
is half the maximum. If the input voltage is greater, the most significant
bit is set, and the signal is then compared with a reference level that is
3/4 the maximum to determine the next bit, and so on. One clock cycle is
required to set each bit, so an n-bit converter would require n cycles. At
the same clock rate, a counter-based converter might require as many
as 2n cycles, which would usually be much slower.

With either technique, the greater the number of bits, the longer
it will take to perform the conversion. The price of A/D converters
generally goes up with both speed and bit size. In 2017, a 12-bit (res-
olution of 0.025%) converter with a high performance capability of 170
million samples per sec (170 MHz) sold for approximately $15 while a
12-bit converter with a good performance capability of 1 MHz sold for
approximately $2. Also now becoming common are 16-bit A/D convert-
ers (0.0015% resolution). A 16 bit A/D with 500 KHz capability sold for
approximately $5 in 2017. The performance has been improving con-
siderably every year and these numbers change substantially with each
edition of this book!

If more than one channel of data needs to be sampled and con-
verted to digital words, it is usually accomplished using a multiplexer
rather than by multiple A/D converters. The multiplexer sequentially
connects the converter into the channel being sampled.

8.4.2 Digital-to-Analog Converters
D/A converters, as mentioned in Section 8.1, are used to convert the
digital words from the computer to a voltage level, and are sometimes



main_1 — 2019/2/5 — 11:21 — page 661 — #26

8.4 Hardware Characteristics 661

referred to as Sample and Hold devices. They provide analog outputs
from a computer for driving actuators or perhaps a recording device
such as an oscilloscope or strip-chart recorder. The basic idea behind
their operation is that the binary bits cause switches (electronic gates)
to open or close, thus routing the electric current through an appropri-
ate network of resistors to generate the correct voltage level. Because
no counting or iteration is required for such converters, they tend to be
much faster than A/D converters. In fact, A/D converters that use the
successive-approximation method of conversion include D/A convert-
ers as components. The price of D/A converters is comparable to A/D
converters, but usually somewhat lower.

8.4.3 Anti-Alias Prefilters
An analog anti-alias prefilter is often placed between the analog sensor
and the A/D converter. Its function is to reduce the higher-frequency
noise components in the analog signal in order to prevent aliasing, thatAnalog prefilters reduce

aliasing is, having the noise be modulated to a lower frequency by the sampling
process.

An example of aliasing is shown in Fig. 8.16, where a 60 Hertz oscil-
latory signal is being sampled at 50 Hertz. The figure shows the result
from the samples as a 10 Hertz signal, and also shows the mechanism by
which the frequency of the signal is aliased from 60 to 10 Hertz. Alias-
ing will occur any time the sample rate is not at least twice as fast as any
of the frequencies in the signal being sampled. Therefore, to prevent
aliasing of a 60 Hertz signal, the sample rate would have to be faster
than 120 Hertz, clearly much higher than the 50 Hertz rate in the figure.

Aliasing can be explained from the sampling theorem of NyquistNyquist–Shannon
sampling theorem and Shannon. Their theorem basically states that, for the signal to be

accurately reconstructed from the samples, it must have no frequency
component greater than half the sample rate (ωs/2). Another result
of their theorem is that the highest frequency that can be unambigu-
ously represented by discrete samples is the Nyquist rate of ωs/2, an idea
discussed in Section 8.2.3.

Figure 8.16
An example of aliasing
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The result of aliasing on a digital control system can be substan-
tial. In a continuous system, noise components with a frequency much
higher than the control-system bandwidth normally have a small effect
because the system will not respond at the high frequency. However, in
a digital system, the frequency of the noise can be aliased down to the
vicinity of, or less than, the system bandwidth so the closed-loop sys-
tem would respond to the noise. Thus, the noise in a poorly designed
digitally controlled system could have a substantially greater effect than
if the control had been implemented using analog electronics.

The solution is to place an analog prefilter before the sampler. In
many cases, a simple first-order low-pass filter will do—that is,

Hp(s) = a
s+ a

, (8.39)

where the break point a is selected to be lower than ωs/2 so any noise
present with frequencies greater than ωs/2 is attenuated by the prefilter.
The lower the break-point frequency selected, the more the noise above
ωs/2 is attenuated. For example, if ωs is chosen to be 25ωBW , the anti-
aliasing filter breakpoint, a, should be selected lower than ωs/2, so that
a = 10ωBW would be a reasonable choice. A breakpoiont 10 × higher
than the bandwidth should not affect the stability or performance of
the closed-loop system; however, too low a break point may force the
designer to reduce the control system’s bandwidth or add more phase
lead to the compensation. The prefilter does not completely eliminate
the aliasing; however, it does attenuate the magnitude of the high fre-
quency noise that will be aliased. Through judicious choice of the
prefilter break point and the sample rate, the designer has the ability
to reduce the magnitude of the aliased noise to some acceptable level.

8.4.4 The Computer
The computer is the unit that does all the computations. Most digital
controllers used today are built around a microcontroller that con-
tains both a microprocessor and most of the other functions needed,
including the A/D and D/A conversion. For development purposes in
a laboratory, a digital controller could be a laptop or PC. The rela-
tively low cost of microprocessor technology has accounted for the large
increase in the use of digital control systems, which started in the 1980s
and has continued into the 2010s.

The computer consists of a central processor unit (CPU), which
does the computations and provides the system logic; a clock to syn-
chronize the system; memory modules for data and instruction storage;
and a power supply to provide the various required voltages. The
memory modules come in three basic varieties:

1. Read-only memory (ROM) is the least expensive, but after its man-
ufacture, its contents cannot be changed. Most of the memory in
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products manufactured in quantity is ROM. It retains its stored
values when power is removed.

2. Random-access memory (RAM) is the most expensive, but its values
can be changed by the CPU. It is required only to store the values
that will be changed during the control process and typically rep-
resents only a small fraction of the total memory of a developed
product. The values in memory are lost when power is removed.

3. Programmable read-only memory (EPROM) or Flash Memory is
similar to a ROM, but whose values can be changed. It retains
its stored values when power is removed but values are changed
at a slower speed than RAM. The readout speed is about the same
as ROM. Flash memory is becoming very common and is used in
cameras, USB memory sticks, smart phones, and so on.

Microprocessors for control applications generally come with a dig-
ital word size of 8, 16, or 32 bits, although some have been available
with 12 bits. Larger word sizes give better accuracy, but at an increase
in cost. The most economical solution is often to use an 8-bit micropro-
cessor, but to use two digital words to store one value (double precision)
in the areas of the controller that are critical to the system accuracy.
Many digital control systems use computers originally designed for dig-
ital signal-processing applications, so-called DSP chips, which give the
control designer full freedom to implement computationally advanced
control schemes at high sample rates on the order of MHz. For even
higher sample rates, Field Programmable Gate Arrays are sometimes
preferred.

8.5 Sample-Rate Selection
The selection of the best sample rate for a digital control system is the
result of a compromise of many factors. Sampling too fast can cause
a loss of accuracy while the basic motivation for lowering the sam-
ple rate ωs is cost, both of the digital hardware and the sensors. A
decrease in sample rate means more time is available for the control
calculations; hence, slower computers can be used for a given control
function or more control capability can be achieved from a given com-
puter. Either way, the cost per function is lowered. For systems with
A/D converters, less demand on conversion speed will also lower cost.
These economic arguments indicate that the best engineering choice
is the slowest possible sample rate that still meets all performance
specifications.

There are several factors that could provide a lower limit on the
acceptable sample rate:

1. Tracking effectiveness as measured by closed-loop bandwidth or by
time-response requirements, such as rise time and settling time;

2. Regulation effectiveness as measured by the error response to
random plant disturbances; and



main_1 — 2019/2/5 — 11:21 — page 664 — #29

664 Chapter 8 Digital Control

3. Error due to measurement noise and the associated prefilter.

A fictitious limit occurs when using discrete equivalents. The inher-
ent approximation in the method may give rise to decreased perfor-
mance or even system instabilities as the sample rate is lowered. This
can lead the designer to conclude that a faster sample rate is required.
However, there are two solutions:

1. Sample faster, and
2. Recognize that the approximations are invalid and refine the design

using disrete analysis design methods described in the subsequent
sections.

The ease of designing digital control systems with fast sample rates
and the low cost of very capable computers often drives the designer to
select a sample rate that is 40×ωBW or higher. For computers with fixed-
point arithmetic, very fast sample rates can lead to multiplication errors
that have the potential to produce significant offsets or limit cycles in
the control (see Franklin et al., 1998).

8.5.1 Tracking Effectiveness
An absolute lower bound on the sample rate is set by a specification
to track a command input with a certain frequency (the system band-
width). The sampling theorem (see Section 8.4.3 and Franklin et al.,
1998) states that in order to reconstruct an unknown, band-limited,
continuous signal from samples of that signal, we must sample at least
twice as fast as the highest frequency contained in the signal. There-
fore, in order for a closed-loop system to track an input at a certain
frequency, it must have a sample rate twice as fast; that is, ωs must be
at least twice the system bandwidth (ωs ⇒ 2× ωBW ). We also saw from
the results of mapping the s-plane into the z-plane (z = esT ) that the
highest frequency that can be represented by a discrete system is ωs/2,
which supports the conclusion of the theorem.

For systems with resonances, it is sometimes required to sample
fast enough to provide stabilization of the resonant modes. This topic is
covered in Franklin et al. (1998).

The closed-loop-bandwidth limitation provides the fundamental
lower bound on the sample rate. In practice, however, the theoreti-
cal lower bound of sampling at twice the bandwidth of the reference
input signal would not be judged sufficient in terms of the quality
of the desired time responses. For a system with a rise time on the
order of 1 sec (thus yielding a closed-loop bandwidth on the order of
0.5 Hertz), it is reasonable to insist on a sampling rate of 10 to 20 Hertz,
which is a factor of 20 to 40 times ωBW . The purposes of choosing a
sample rate much greater than the bandwidth are to reduce the delay
between a command and the system response to the command, and
also to smooth the system output to the control steps coming out of
the ZOH.
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8.5.2 Disturbance Rejection
Disturbance rejection is an important—if not the most important—
aspect of any control system. Disturbances enter a system with various
frequency characteristics ranging from steps to white noise. For the
purpose of sample-rate selection, the higher-frequency random distur-
bances are the most influential. However, the impact of high frequency
disturbances is affected by the anti-aliasing filter as well as the sample
rate. For a very high frequency noise, it would be foolish to sample fast
enough to attenutate the disturbance without the use of a prefilter for
reasons discussed in the next subsection.

Assuming the prefilter is well designed so there is little or no aliasing
of noise with a frequency greater than ωs/2, the sample rate selection
pretty much follows the same rule of thumb as Tracking Effectiveness;
that is, sample rates on the order of 25 times ωBW or higher are typical.

8.5.3 Effect of Anti-Alias Prefilter
Digital control systems with analog sensors typically include an ana-
log anti-alias prefilter between the sensor and the sampler as described
in Section 8.4.3. The prefilters are low-pass, and the simplest transfer
function is

Hp(s) = a
s+ a

. (8.40)

so the noise above the prefilter break point a is attenuated. The goal
is to provide enough attenuation at half the sample rate (ωs/2) such that
the noise above ωs/2, when aliased into lower frequencies by the sampler,
will not be detrimental to control system performance.

A conservative design procedure is to select the prefilter break point
to be sufficiently higher than the system bandwidth that the phase lag
from the prefilter does not significantly alter the system stability. This
procedure allows the prefilter to be ignored in the basic control sys-
tem design. For example, selecting a = 10ωBW would be a reasonable
choice. Furthermore, for a good reduction in the high-frequency noise
at ωs/2, we might choose a sample rate that is about 10 times higher
than the prefilter break point. This selection would reduce the high fre-
quency noise above ωs/2 that would be aliased into a lower frequency
by at least a factor of 5. The result of this conservative prefilter design
example is that the sample rate would be on the order 100 times faster
than the system bandwidth! Using this sort of design procedure, the
prefilter influence will likely provide the lower bound on the selection of
the sample rate. This kind of process was carried out in past years when
one group of a company designed the analog control system, then gave
the design to the digital group to put it in the computer. In fact, this
is still the current practice in some industries where the performance of
the control system is critical.

An alternative design procedure is to allow significant phase lag
from the prefilter at the system bandwidth. This requires us to include
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the analog prefilter characteristics in the plant model when carrying
out the control design, and requires an integrated design effort between
the analog and digital design groups, or better yet, one group to do it
all. It allows the use of lower sample rates, but at the possible expense
of increased complexity in the compensation because additional phase
lead must be provided to counteract the prefilter’s phase lag. If this pro-
cedure is used and low prefilter break points are allowed, the effect of
aliased sensor noise is small, and the prefilter essentially has no effect
on the sample rate.

It may seem counterintuitive that placing a lag (the analog prefilter)
in one portion of the controller and a counteracting lead [extra lead in
Dd(z)] in another portion of the controller provides a net positive effect
on the overall system. The net gain is a result of the fact that the lag
is in the analog part of the system where high frequencies can exist.
The counteracting lead is in the digital part of the system where fre-
quencies above the Nyquist rate do not exist. The result is a reduction
in the high frequencies before the sampling which are not reamplified
by the counteracting digital lead, thus producing net reduction in high
frequency disturbances. Furthermore, these high frequencies are par-
ticularly insidious with a digital controller because of the aliasing that
would result from the sampling.

8.5.4 Asynchronous Sampling
As noted in the previous paragraphs, separating the prefilter design
from the control-law design may require using a faster sample rate than
otherwise. This same result may show up in other architecture types. For
example, a smart sensor with its own computer running asynchronously
relative to the primary control computer will not be amenable to direct
digital design because the overall system transfer function depends on
the phasing between the smart sensor and the primary digital controller.
Therefore, if asynchronous digital subsystems are present, sample rates
on the order of 20 × ωBW or slower in any module should be used with
caution, and the system performance checked through simulation or
experiment.

8.6 Discrete Design
It is possible to obtain an exact discrete model that relates the samples of

�
the continuous plant y(k) to the input control sequence u(k). This plant
model can be used as part of a discrete model of the feedback system
including the compensation Dd(z). Analysis and design using this dis-
crete model is called discrete design or, alternatively, direct digital design.
Once a discrete model of the entire system is obtained, the designer can
develop a discrete controller entirely in the discrete domain. This pro-
cess is particularly advantageous for systems whose sample rates are



main_1 — 2019/2/5 — 11:21 — page 667 — #32

8.6 Discrete Design 667

constrained to be very slow compared to their bandwidth, that is, with
sample rates (ωs < 10 × ωn). This would normally only occur if the
sample rate was limited by the sampling process or sensor characteris-
tics rather than the microcontroller, which have become very fast and
inexpensive. The following subsections will describe how to find the dis-
crete plant model (see Section 8.6.1), what the feedback compensation
looks like when designing with a discrete model (see Section 8.6.2), how
the design process is carried out (see Section 8.6.3), and how various
discrete designs can be analyzed (see Section 8.6.4).

8.6.1 Analysis Tools
The first step in performing a discrete analysis of a system with some
discrete elements is to find the discrete transfer function of the continu-
ous portion. For a system similar to that shown in Fig. 8.1(b), we wish
to find the transfer function between u(kT) and y(kT). This is precisely
the case discussed in Section 8.3.2; however, here the ZOH is real so
there is no approximation involved. It is an exact discrete equivalent for
this system; the ZOH precisely describes what happens between sam-
ples of u(kT) and the output y(kT) is dependent only on the input at
the sample times u(kT).

For a plant described by G(s) and preceded by a ZOH, the discrete
transfer function was essentially given by Eq. (8.23), and is repeated
here with Dc(s) replaced by G(s).

G(z) = (1− z−1)Z
{

G(s)
s

}
, (8.41)

where Z{F(s)} is the z-transform of the sampled time series whoseThe exact discrete
equivalent Laplace transform is the expression for F(s), given on the same line

in Table 8.1. Equation (8.41) allows us to replace the mixed (continu-
ous and discrete) system shown in Fig. 8.17(a) with the equivalent pure
discrete system shown in Fig. 8.17(b).

The analysis and design of discrete systems is very similar to the
analysis and design of continuous systems; in fact, all the same rules
apply. The closed-loop transfer function of Fig. 8.17(b) is obtained
using the same rules of block-diagram reduction—that is,

Dd(z)©
 - 

 + 

ZOHR(s) Y(s)

(a)

Dd(z)©
 - 

 + 

G(z) Y(z)R(z)

(b)

G(s)

Figure 8.17
Comparison of: (a) a mixed system; and (b) its pure discrete equivalent
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Y(z)
R(z)

= Dd(z)G(z)
1+Dd(z)G(z)

. (8.42)

To find the characteristic behavior of the closed-loop system, we need
to find the factors in the denominator of Eq. (8.42)—that is, the closed-
loop poles or the roots of the discrete characteristic equation

1+Dd(z)G(z) = 0.

The root-locus techniques used in continuous systems to find roots of
a polynomial in s apply equally well and without modification to the
polynomial in z; however, the interpretation of the results is quite dif-
ferent, as illustrated in Fig. 8.4. A major difference is that the stability
boundary is now the unit circle instead of the imaginary axis.

EXAMPLE 8.4 Discrete Root Locus

For the case in which G(s) in Fig. 8.17(a) is

G(s) = a
s+ a

and Dd(z) = K, draw the root locus with respect to K, and compare
your results with a root locus of a continuous version of the system.
Discuss the implications of your loci.

Solution. It follows from Eq. (8.41) that

G(z) = (1− z−1)Z
[

a
s(s+ a)

]

= (1− z−1)

[
(1− e−aT )z−1

(1− z−1)(1− e−aT z−1)

]

= 1− α
z− α ,

where
α = e−aT .

To analyze the performance of the closed-loop system, standard root-
locus rules apply. The result is shown in Fig. 8.18(a) for the discrete case
and in Fig. 8.18(b) for the continuous case. In contrast to the continuous
case, in which the system remains stable for all values of K, in the dis-
crete case the system becomes oscillatory with decreasing damping ratio
as z goes from 0 to−1 and eventually becomes unstable. This instability
is due to the lagging effect of the ZOH, which is properly accounted for
in the discrete analysis.

8.6.2 Feedback Properties
In continuous systems, we typically start the design process using the
following basic design elements: proportional, derivative, or integral
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Figure 8.18
Root loci for: (a) the
z-plane; and (b) the
s-plane

Re(s)

Im(s)

Re(z)

Im(z)

z = a

z = 0

z = - 1

(a) (b)

s = - a

control laws, or some combination of these, sometimes with a lag
included. The same ideas can be used in discrete design. Alternatively,
the Dd(z) resulting from the digitization of a continuously designed
Dc(s) will produce these basic design elements, which will then be used
as a starting point in a discrete design. The discrete control laws are as
follows:

Proportional

u(k) = Ke(k)⇒ Dd(z) = K. (8.43)

Derivative

u(k) = KTD[e(k)− e(k− 1)], (8.44)

for which the transfer function is

Dd(z) = KTD(1− z−1) = KTD
z− 1

z
= kD

z− 1
z

. (8.45)

Integral

u(k) = u(k− 1)+ Kp

TI
e(k), (8.46)

for which the transfer function is

Dd(z) = K
TI

(
1

1− z−1

)
= K

TI

(
z

z− 1

)
= kI

(
z

z− 1

)
. (8.47)

Lead Compensation

The examples in Section 8.3 showed that a continuous lead compensa-
tion leads to difference equations of the form

u(k+ 1) = βu(k)+ K[e(k+ 1)− αe(k)], (8.48)

for which the transfer function is

Dd(z) = K
1− αz−1

1− βz−1 . (8.49)
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8.6.3 Discrete Design Example
Digital control design consists of using the basic feedback elements of
Eqs. (8.43) to (8.49) and iterating on the design parameters until all
specifications are met.

EXAMPLE 8.5 Direct Discrete Design of the Space Station Digital
Controller

Design a digital controller to meet the same specifications as in Exam-
ple 8.3 using discrete design.

Solution. The discrete model of the 1/s2 plant, preceded by a ZOH, is
found through Eq. (8.41) to be

G(z) = T2

2

[
z+ 1
(z− 1)2

]
,

which, with T = 1 sec, becomes

G(z) = 1
2

[
z+ 1
(z− 1)2

]
.

Proportional feedback in the continuous case yields pure oscillatory
motion, so in the discrete case we should expect even worse results. The
root locus in Fig. 8.19 verifies this. For very low values of K (where
the locus represents roots at very low frequencies compared to the sam-
ple rate), the locus is tangent to the unit circle (ζ ∼= 0 indicating pure
oscillatory motion), thus matching the proportional continuous design.

For higher values of K, Fig. 8.19 shows that the locus diverges into
the unstable region because of the effect of the ZOH and sampling. To
compensate for this, we will add a derivative term to the proportional
term so the control law is

U(z) = K[1+ TD(1− z−1)]E(z), (8.50)

which yields compensation of the form

Dd(z) = K
z− α

z
, (8.51)

Figure 8.19
z-plane root locus for
a 1/s2 plant with
proportional feedback

Re(z)

Im(z)

-1
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Figure 8.20
z-plane locus for
the 1/s2 plant with
Dd(z) = K(z − 0.85)/z
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where the new K and α replace the K and TD in Eq. (8.50). Now, the
task is to find the values of α and K that yield good performance. The
specifications for the design are that ωn = 0.3 rad/sec and ζ = 0.7.
Figure 8.4 indicates that this s-plane root location maps into a desired
z-plane location of

z = 0.78± 0.18j.

Figure 8.20 is the locus with respect to K for α = 0.85. The location of
the zero (at z = 0.85) was determined by trial and error until the locus
passed through the desired z-plane locations. The value of the gain when
the locus passes through z = 0.78 ± 0.18j is K = 0.374. Equation (8.51)
now becomes

Dd(z) = 0.374
z− 0.85

z
. (8.52)

Normally, it is not particularly advantageous to match specific z-plane
root locations; rather it is necessary only to pick K and α (or TD) to
obtain acceptable z-plane roots, a much easier task. In this example, we
want to match a specific location only so we can compare the result with
the design in Example 8.3.

The control law that results is

U(z) = 0.374(1− 0.85z−1)E(z),

or
u(k) = 0.374e(k)− 0.318e(k − 1), (8.53)

which is similar to the control equation (8.35) previously obtained.
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The controller in Eq. (8.53) basically differs from the continuously
designed controller [see Eq. (8.35)] only in the absence of the u(k − 1)
term. The u(k − 1) term in Eq. (8.35) results from the lag term (s + b)
in the compensation [see Eq. (8.33)]. The lag term is typically included
in analog controllers both because it supplies noise attenuation, and
because pure analog differentiators are difficult to build. Some equiv-
alent lag in discrete design naturally appears as a pole at z = 0 (see
Fig. 8.20) and represents the one-sample delay in computing the deriva-
tive by a first difference. For more noise attenuation, we could move the
pole to the right of z = 0, thus resulting in less derivative action and
more smoothing, the same trade-off that exists in continuous control
design.

8.6.4 Discrete Analysis of Designs
Any digital controller, whether designed by discrete equivalents or
directly in the z-plane, can be analyzed using discrete analysis, which
consists of the following steps:

1. Find the discrete model of the plant and ZOH using Eq. (8.41).
2. Form the feedback system including Dd(z).
3. Analyze the resulting discrete system.

We can determine the roots of the system using a root locus (as
described in Section 8.6.3) or we can determine the time history (at the
sample instants) of the discrete system.

EXAMPLE 8.6 Damping and Step Response in Digital versus
Continuous Design

Use discrete analysis to determine the equivalent s-plane damping and
the step responses of the digital designs in Examples 8.3 and 8.5,
and compare your results with the damping and step response of the
continuous case in Example 8.3.

Solution. The Matlab statements to evaluate the damping and step
response of the continuous case in Example 8.3 are

s=tf('s');
sysGc = 1/(s^2);
sysDc = 0.81*(s+0.2)/(s+2);
sysGDc = series(sysGc,sysDc);
sysCLc = feedback(sysGDc,1);
step(sysCLc)
damp(sysCLc)

To analyze the digital control cases, the model of the plant preceded
by the ZOH is found using the following statements:

T = 1;
sysGz = c2d(sysGc,T,'zoh');
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Figure 8.21
Step response of the
continuous and digital
systems in Examples 8.3
and 8.6
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Analysis of the digital control designed using the discrete equivalent
[see Eq. (8.35)] in Example 8.3 is performed by the statements

z = tf('z',T); % specifies z-transform based on input T
sysDz =.389*(z - .82)/(z - .135);
sysDGz = series(sysGz,sysDz);
sysCLz = feedback(sysDGz,1);
step(sysCLz)
damp(sysCLz)

Likewise, the discrete design of Dd(z) from Eq. (8.52) can be analyzed
by the same sequence.

The resulting step responses are shown in Fig. 8.21. The calculated
damping ζ and complex root natural frequencies ωn of the closed-loop
systems are

Continuous case : ζ = 0.705, ωn = 0.324;

Discrete equivalent : ζ = 0.645, ωn = 0.441;

Discrete design : ζ = 0.733, ωn = 0.306.

The figure shows increased overshoot for the discrete equivalent method
that occurred because of the decreased damping of that case. Very little
increased overshoot occurred in the discrete design, because that com-
pensation was adjusted specifically so that the equivalent s-plane damp-
ing of the discrete system was approximately at the desired damping
value of ζ = 0.7.

Although the analysis showed some differences between the perfor-
mance of the digital controllers designed by the two methods, neither
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the performance nor the control equations [see Eqs. (8.35) and (8.53)]
are substantially different. This similarity results because the sample
rate is fairly fast compared to ωn—that is, ωs ∼= 20 × ωn. If we were
to decrease the sample rate, the numerical values in the compensa-
tions would become increasingly different, and the performance would
degrade considerably for the discrete equivalent case.

As a general rule, discrete design should be used if the sampling fre-
quency is slower than 10 × ωn. At the very least, a discrete equivalent
design with slow sampling (ωs < 10×ωn) should be verified by a discrete
analysis or by simulation, as described in this Section, and the compen-
sation adjusted if needed. A simulation of a digital control system is a
good idea in any case. If it properly accounts for all delays and possibly
asynchronous behavior of different modules, it may expose instabilities
that are impossible to detect using continuous or discrete linear analy-
sis. A more complete discussion regarding the effects of sample rate on
the design was discussed in Section 8.5.

8.7 Discrete State-Space Design Methods
Chapter 7 described the design options available for carrying
out continuous designs using the state-space description of the
system. These methods can also be applied to discrete mod-
els, a subject that is described in Section W8.7 on our website
www.pearsonglobaleditions.com. It is also discussed in much greater
detail in Franklin et al. (1998).

8.8 Historical Perspective
One of the earliest examples of actual control of systems based on sam-
pled data came with the use of search RADAR in WWII. In that case,
the position of the target was available only once each revolution of
the antenna. The theory of sampled data systems was developed by
the mathematician W. Hurewicz3 and published as a chapter in H. M.
James, N. B. Nichols, and R. S. Phillips, Theory of Servomechanisms,
vol. 25, Rad Lab Series, New York, McGraw Hill, 1947. The histori-
cal perspective for Chapter 5 discussed the introduction of computers
for engineers performing design activities. The possibility of using com-
puters for direct digital control motivated the continuation of work on
sampled-data systems during the 1950s, especially at Columbia Uni-
versity under Professor J. R. Ragazzini. That work was published in
Ragazzini and Franklin (1958). Early applications were in the process
control industry where the relatively large and expensive computers

3Hurewicz died in 1956 falling off a ziggurat (a Mexican pyramid) on a conference outing
at the International Symposium on algebraic topology in Mexico. It is suggested that he
was “. . . a paragon of absentmindedness, a failing that probably led to his death.”

www.pearsonglobaleditions.com
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available at the time could be justified. Professor Karl Åström intro-
duced direct digital control of a paper mill in Sweden in the early
1960s.

In 1961, when President Kennedy announced the goal of sending a
man to the moon, there were no digital autopilots for aerospace vehi-
cles. In fact, small digital computers suitable for implementing control
systems were virtually nonexistent. The team at the MIT Draper Labs
(called the Instrumentation Lab at that time) in charge of designing
and building the Apollo control systems initially designed the control
systems for the lunar and command modules with conventional ana-
log electronics. However, they discovered that those systems would be
too heavy and complex for the mission. So the decision was made to
design and build the first aerospace digital control system. Bill Wid-
nall, Dick Battin, and Don Fraser were all key players in the successful
design and execution of that system for the Apollo flights in late 1960s.
The group went on to demonstrate a digital autopilot for NASA’s F-
8 in the 1970s, and digital autopilots went on to become dominant
over the 1980s and beyond. In fact, with the introduction of inexpen-
sive digital signal processors, most control systems of any kind became
digital by the turn of the century and, today, very few control systems
are being implemented with analog electronics. This evolution has had
an effect on the training for controls engineers. In the past, the ability to
design and build the specialized circuitry for analog electronic controls
caused many controls engineers to have an Electrical Engineering back-
ground. Now, with easily programmable digital computers being readily
available, the background of controls engineers tends more toward the
specialties that are most familiar with the systems being controlled.

SUMMARY

• The simplest and most expedient digital control design technique is
to transform a continuous controller design to its discrete form—
that is, to use its discrete equivalent.

• Design using discrete equivalents entails (a) finding the continu-
ous compensation Dc(s) using the ideas in Chapters 1 to 7, and
(b) approximating Dc(s) with difference equations using a dis-
cretization methods such as Tustin’s method, the ZOH method, or
the matched-pole–zero method.

• In order to analyze a discrete controller design, or any discrete sys-
tem, the z-transform is used to determine the system’s behavior. The
z-transform of a time sequence f (k) is given by

Z{ f (k)} = F(z) =
∞∑

k=0

f (k)z−k,

and has the key property that
Z{ f (k− 1)} = z−1F(z).
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This property allows us to find the discrete transfer function of a
difference equation, which is the digital equivalent of a differen-
tial equation for continuous systems. Analysis using z-transforms
closely parallels that using Laplace transforms.

• Normally z-transforms are found using the computer (Matlab) or
using the look-up Table 8.1.

• The discrete Final Value Theorem is

lim
k→∞

x(k) = lim
z→1

(1− z−1)X(z),

provided that all poles of (1− z−1)X(z) are inside the unit circle.
• For a continuous signal f (t) whose samples are f (k), the poles of

F(s) are related to the poles of F(z) by

z = esT .

• The following are the most common discrete equivalents:

1. Tustin’s approximation:

Dd(z) = Dc(s)
∣∣
s= 2

T

(
z−1
z+1

)
.

2. The matched pole–zero (MPZ) approximation:
• Map poles and zeros by z = esT .
• Add powers of (z + 1) to the numerator until numerator

and denominator are of equal order or the numerator is one
order less than the denominator.

• Set the low-frequency gain of Dd(z) equal to that of Dc(s).

• If designing by discrete equivalents, a minimum sample rate of
20 times the bandwidth is recommended. Typically, even faster
sampling is useful for best performance.

• Analog prefilters are commonly placed before the sampler in order
to attenuate the effects of high-frequency measurement noise. A
sampler aliases all frequencies in the signal that are greater than half
the sample frequency to lower frequencies; therefore, prefilter break
points should be selected so that no significant frequency content
remains above half the sample rate.

• The discrete model of the continuous plant G(s) preceded by a
ZOH is

G(z) = (1− z−1)Z
{

G(s)
s

}
.

The discrete plant model plus the discrete controller can be ana-
lyzed using the z-transform or simulated using Simulink.

• Discrete design is an exact design method and avoids the approx-
imations inherent with discrete equivalents. The design procedure
entails (a) finding the discrete model of the plant G(s), and (b) using
the discrete model to design the compensation directly in its dis-
crete form. The design process is more cumbersome than discrete
equivalent design, and requires that a sample rate be selected before
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commencing the design. A practical approach is to commence the
design using discrete equivalents, then tune up the result using
discrete design.

• Discrete design using G(z) closely parallels continuous design, but
the stability boundary and interpretation of z-plane root locations
are different. Figure 8.5 summarizes the response characteristics.

• If using discrete design, system stability can theoretically be assured
when sampling at a rate as slow as twice the bandwidth. How-
ever, for good transient performance and (random) disturbance
rejection, best results are obtained by sampling at 10 times the
closed-loop bandwidth or faster. In some cases, for example with
troublesome vibrational modes, it is sometimes useful to sample
more than twice as fast as the vibrational mode.

REVIEW QUESTIONS

8.1 What is the Nyquist rate? What are its characteristics?

8.2 Describe the discrete equivalent design process.

8.3 Describe how to arrive at a Dd(z) if the sample rate is 30× ωBW .

8.4 For a system with a 1 rad/sec bandwidth, describe the consequences of
various sample rates.

8.5 Give two advantages for selecting a digital processor rather than analog
circuitry to implement a controller.

8.6 Give two disadvantages for selecting a digital processor rather than
analog circuitry to implement a controller.

8.7 Describe how to arrive at a Dd(z) if the sample rate is 5× ωBW .	

PROBLEMS

Problems for Section 8.2: Dynamic Analysis of Discrete Systems

8.1 The z-transform of a discrete-time filter h(k) at a 1.5 Hz sample rate is

H(z) =
(

1+ (1/5)z−1
)

[1− (1/7)z−1][1+ (1/2)z−1]
.

(a) Let u(k) and y(k) be the discrete input and output of this filter. Find
a difference equation relating u(k) and y(k).

(b) Find the natural frequency and damping coefficient of the filter’s
poles.

(c) Is the filter stable?

8.2 Use the z-transform to solve the difference equation

y(k)− 0.5y(k − 1)− 7.5y(k − 2) = 3u(k− 1)+ 7.5u(k − 2),
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where

u(k) =
{

k, k ≥ 0,
0, k < 0,

y(k) = 0, k < 0.

8.3 The one-sided z-transform is defined as

F(z) =
∞∑

0

f (k)z−k.

(a) Show that the one-sided transform of f (k + 1) is Z{ f (k + 1)} =
zF(z)− zf (0).

(b) Use the one-sided transform to solve for the transforms of the
Fibonacci numbers generated by the difference equation u(k + 2) =
u(k + 1) + u(k). Let u(0) = u(1) = 1. [Hint: You will need to find
a general expression for the transform of f (k + 2) in terms of the
transform of f (k).]

(c) Compute the pole locations of the transform of the Fibonacci
numbers.

(d) Compute the inverse transform of the Fibonacci numbers.
(e) Show that, if u(k) represents the kth Fibonacci number, then the ratio

u(k + 1)/u(k) will approach
(

1+√5
2

)
. This is the golden ratio valued

so highly by the Greeks.

8.4 Prove the seven properties of the s-plane-to-z-plane mapping listed in
Section 8.2.3.

Problems for Section 8.3: Design Using Discrete Equivalents

8.5 A unity feedback system has an open-loop transfer function given by

G(s) = 178
s[s+ 17]

.

The following lag compensator added in series with the plant yields a
phase margin of 50◦ and a crossover frequency of 30.6 rad/sec:

Dc(s) = 4.141
(0.0475s+ 1)
0.02246s+ 1

.

Using the matched pole–zero approximation, determine an equivalent
digital realization of this compensator for a sample rate of 40 Hz.

8.6 The following transfer function is a lead network designed to add about
33.7◦ of phase at ω1 = 2.47 rad/sec:

H(s) = 0.7s+ 1
0.2s+ 1

.

(a) Assume a sampling period of T = 2/3 sec, and compute and plot
in the z-plane the pole and zero locations of the digital implementa-
tions of H(s) obtained using (1) Tustin’s method and (2) pole–zero
mapping. For each case, compute the amount of phase lead provided
by the network at z1 = ejω1T

1 .
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(b) Using a log–log scale for the frequency range ω = 0.5 to ω = 100
rad/sec, plot the magnitude Bode plots for each of the equivalent
digital systems you found in part (a), and compare with H(s). (Hint:
Magnitude Bode plots are given by H(z)| = |H(ejωT )|.)

8.7 The following transfer function is a lag network designed to introduce a
gain attenuation of 2(−6 dB) at ω1 = 0.025 rad/sec:

H(s) = 20s+ 1
80s+ 1

.

(a) Assume a sampling period of T = 0.5 sec, and compute the plot in
the s-plane the pole and zero locations of the digital implementations
H(s) obtained using (1) Tustin’s method and (2) pole–zero mapping.
For each case, compute the amount of gain attenuation provided by
the network at z1 = ejω1T .

(b) For each of the equivalent digital system in part (a), plot the Bode
magnitude curves over the frequency range ω = 0.001 to 1 rad/sec.

Problem for Section 8.5: Sample Rate Selection

8.8 For the system shown in Fig. 8.22, find values for K, TD, and TI so the
closed-loop poles satisfy ζ > 0.7 and ωn > 0.5 rad/sec. Discretize the
PID controller using

(a) Tustin’s method
(b) The matched pole–zero method

Use MATLAB to simulate the step response of each of these digital
implementations for sample times of T = 0.5, 0.05, and 0.005 sec.

Figure 8.22
Control system for
Problem 8.8

©
 + 

 - 
YR

E
s(s + 0.5)

1
K(1 + TDs  + 

TIs
1 )

Problems for Section 8.6: Discrete Design	
8.9 Consider the system configuration shown in Fig. 8.23, where

G(s) = 60(0.5s+ 3)

(s− 0.1)(s2 + 5s+ 12)(s+ 5)
.

(a) Find the transfer function G(z) for T = 0.5 assuming the system is
preceded by a ZOH.

(b) Use MATLAB to draw the root locus of the discrete system with
respect to K.

(c) What is the range of K for which the closed-loop discrete system is
stable?

(d) Compare your results of part (c) to the case where an analog
controller is used (that is, where the sampling switch is always closed).
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(e) Use MATLAB to find the K value to yield a damping factor of
ζ = 0.6 for both the continuous and discrete systems. Plot the step
response of both cases.

Figure 8.23
Control system for
Problem 8.9

©
 + 

 - 
G(s) YKR

T

8.10 Single-axis Satellite Attitude Control: Satellites often require attitude
control for proper orientation of antennas and sensors with respect to
Earth. Figure 2.7 shows a communication satellite with a three-axis
attitude-control system. To gain insight into the three-axis problem, we
often consider one axis at a time. Figure 8.24 depicts this case, where
motion is only allowed about an axis perpendicular to the page. The
equations of motion of the system are given by

I θ̈ =MC +MD,

where

I = motion of inertia of the satellite about its mass center,

MC = control torque applied by the thrusters,

MD = disturbance torques,

θ = angle of the satellite axis with respect to an inertial reference

with no angular acceleration.

We normalize the equations of motion by defining

u = MC
I

, wd =
MD

I
,

and obtain
θ̈ = u+ wd .

Taking the Laplace transform yields

θ(s) = 1

s2
[u(s)+ wd(s)],

Figure 8.24
Satellite control
schematic for
Problem 8.10

u

Inertial

reference
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which with no disturbance becomes

θ(s)
u(s)
= 1

s2
= G1(s).

In the discrete case where u is applied through a ZOH, we can use the
methods described in this chapter to obtain the discrete transfer function

G1(z) = θ(z)
u(z)
= T2

2

[
z+ 1

(z− 1)2

]
.

(a) Sketch the root locus of this system by hand assuming proportional
control.

(b) Draw the root locus using MATLAB to verify the hand sketch.
(c) Add a discrete controller to the position feedback so that the domi-

nant poles correspond to ζ = 0.57 and ωn = 2.5π
10T .

(d) What is the controller gain if T = 0.5 sec? If T = 1 sec.
(e) Plot the closed-loop step response and the associated control time

history for T = 1 sec.

8.11 It is possible to suspend a mass of magnetic material by means of an
electromagnet whose current is controlled by the position of the mass
(Woodson and Melcher, 1968). The schematic of a possible setup is
illustrated in Fig. 8.25, and a photo of a working system at Stanford
University is shown in Fig. 9.1. The equations of motion are

mẍ = −mg+ f (x, I),

where the force on the ball due to the electromagnet is given by f (x, I).
At equilibrium, the magnet force balances the gravity force. Suppose we
let I0 represent the current at equilibrium. If we write I = I0 + i, where i
represents a deviation from the nominal current, I0, expand f about x =
0 and I = I0, and neglect higher-order terms, we obtain the linearized
equation

mẍ = k1x+ k2i. (8.54)

Figure 8.25
Schematic of magnetic
levitation device for
Problem 8.11
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Reasonable values for the constants in Eq. (8.54) are m = 0.02 kg, k1 =
20 N/m, and k2 = 0.4 N/A.

(a) Compute the transfer function from I to x, and draw the (continu-
ous) root locus for the simple feedback i = −Kx.

(b) Assume the input is passed through a ZOH, and let the sampling
period be 0.02 sec. Compute the transfer function of the equivalent
discrete-time plant.

(c) Design a digital control for the magnetic levitation device so the
closed-loop system meets the following specifications: tr ≤ 0.1 sec,
ts ≤ 0.4 sec, and overshoot ≤ 20%.

(d) Plot a root locus with respect to k1 for your design, and discuss
the possibility of using your closed-loop system to balance balls of
various masses.

(e) Plot the step response of your design to an initial disturbance dis-
placement on the ball, and show both x and the control current i.
If the sensor can measure x only over a range of ±1/4 cm and the
amplifier can provide a current of only 1 A, what is the maximum
displacement possible for control, neglecting the nonlinear terms in
f (x, I)?

8.12 Repeat Problem 5.26 in Chapter 5 by constructing discrete root loci and
performing the designs directly in the z-plane. Assume the output y is
sampled, the input u is passed through a ZOH as it enters the plant, and
the sample rate is 15 Hz.

8.13 Design a digital controller for the antenna servo system shown in
Figs. 3.60 and 3.61 and described in Problem 3.35. The design should
provide a step response with an overshoot of less than 8% and a rise time
of less than 95 sec.

(a) What should the sample rate be?
(b) Use the matched pole–zero discrete equivalent method.
(c) Use discrete design and the z-plane root locus.

8.14 The system

G(s) = 100
(13s+ 1)(0.7s+ 1)

is to be controlled with a digital controller having a sampling period
of T = 0.4 sec. Using a z-plane root locus, design compensation that
will respond to a step with a rise time tr ≤ 2.24 sec and an overshoot
Mp ≤ 6.5%. What can be done to reduce the steady-state error?

8.15 The discrete transfer function for pure derivative control is

Dd(z) = KTD
z− 1

Tz
,

where the pole at z = 0 adds some destabilizing phase lag. Can this phase
lag be removed by using derivative control of the form

Dd(z) = KTD
(z− 1)

T
?

Support your answer with the difference equation that would be required
and discuss the requirements to implement it.
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A Perspective on Nonlinear Systems
All systems are nonlinear, especially if large signals are considered.
On the other hand, almost all physical systems can be well approxi-
mated by linear models if the signals are small. For example, if θ is
small, then sin(θ) ≈ θ and cos(θ) ≈ 1. Similarly, in analog elec-
tronic devices such as amplifiers, the operation will be nearly linear
if the signals are small with respect to the supply voltage. Finally, as
we will consider later in this chapter in an optional section, Lyapunov
showed that if the linear approximation of a system is stable near an
equilibrium point, then the truly nonlinear system will be stable for
some neighborhood of the equilibrium point. For all these reasons,
the analysis and design methods presented thus far in this book have
considered only the enormously powerful techniques available for lin-
ear models. However, if the signals cause a device to saturate or if the
system includes nonlinearities that are active for small signals, such
as certain kinds of friction, then the nonlinear effects must be taken
into account to explain the behavior of the system. In this chapter, a
few of the tools available for this purpose will be described.

683
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Chapter Overview
Because every nonlinear system is in many ways unique, a vast
number of approaches are used in nonlinear control design. The
approaches to analysis and design of nonlinear systems that we will
describe may be classified under four categories. In Section 9.2,
methods of reducing the problem to a linear model will be discussed.
In most cases, considering the small signal approximation is ade-
quate. In some cases there are nonlinearities for which an inverse
can be found, and placing the inverse before the physical nonlinearity
results in an overall system that responds linearly. In yet other cases,
some nonlinear models can be reduced to an exact linear form by the
clever use of feedback, in a technique called “computed torque” in the
field of robotics.

The second category is a heuristic approach based on consider-
ing the nonlinearity to be a varying gain. In Section 9.3, cases will be
considered for which the nonlinearity has nomemory as, for example,
with an amplifier whose output saturates when the signal gets large.
The idea is to consider the amplifier as if its gain begins to be reduced
as the signal gets large. Because the root locus is based on evaluat-
ing the system characteristic roots as gain changes, this point of view
leads to a heuristic use of the root locus to predict how such a system
will respond to changing input signal sizes. Section 9.4 treats cases in
which the nonlinearity has dynamics ormemory; then the root locus is
not useful. For these cases, a technique introduced by Kochenburger
in 1950 known as the describing function can be used. To apply this
method, a sinusoid is applied to the nonlinear part of the system and
the first harmonic of the periodic response is computed. The ratio of
the input to the output is taken as if it were a linear but variable fre-
quency response. Thus the Nyquist plot is the natural domain in which
to consider the system behavior.

While the heuristic approaches may give very useful insight into
the system’s behavior, they cannot be used to decide if the system is
guaranteed to be stable. For this, onemust turn to the analysis of sta-
bility as studied in control theory. The most famous of these theories
is that of internal stability developed by Lyapunov. As an introduction
to the idea of a system response as a trajectory in space, Section 9.5
describes analysis in the phase plane then presents the stability the-
ory. Examples are given of using the stability theorem to guide design
of a controller so the system is guaranteed to be stable if the initial
assumptions about the system hold. With these methods, the control
engineer is given a start on the path to the effective understanding
and design of real control problems. Finally, Section 9.6 provides a
historical perspective for the material in this chapter.
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9.1 Introduction and Motivation: Why Study
Nonlinear Systems?

It is intuitively clear that at some level of signal strength any physical
system will be nonlinear, and that some systems are nonlinear at any
and all signal levels. On the other hand, we began our study by devel-
oping linear approximate models, and all our design methods thus far
have been based on the assumption that the plant can be represented
by a linear transfer function. In this chapter, we shall give some of the
reasons for believing that all the time spent studying linear techniques
was not a waste of time, but we shall also try to explain why it is very
important to understand how to take nonlinear effects into account in
control system design.

We begin by showing that we can combine the root-locus technique,
which plots roots of the characteristic equation as a function of var-
ious gain values, with the observation that many nonlinear elements
can be viewed as a gain that changes as signal level changes. While the
method is, at this point, entirely heuristic, the simulation results are very
promising. Many properties of systems containing such zero-memory
nonlinear elements can be predicted by plotting a root locus versus gain
at the point of the nonlinearity. However, the method, as presented, is
not on a firm foundation, and the designer is left to wonder if there
is some unexplored region of the real state space or the signal spaces
where catastrophe awaits. After all, the model is an approximation, and
no matter how extensive the simulation, it is not possible to cover every
situation.

Following the use of the root locus, we turn to methods based on
the frequency response. One of the great advantages of the frequency
response is that, in many cases, one can obtain the transfer function
experimentally on the real system. In the most basic approach, a sinu-
soidal signal is applied to the system and the amplitude and phase of the
output sinusoid are measured. However, noise and inevitable nonlinear
effects cause the output to be more complicated than a simple sinusoid,
so the designer extracts the fundamental component and treats it as if
it is the whole story. One gets the same result if a spectrum analyzer
is used to compute a transfer function. The approach computes what
Kochenburger called the describing function. From this point of view,
a describing function can be defined for nonlinear elements, including
those with memory. Again, simulations are promising and many useful
designs are done with this technique but, as with the use of root locus
to design nonlinear systems, this method is also on shaky ground.1

So what is to be made of this situation? The only possibility
is to face up to the facts and take on nonlinear behavior directly.
Fortunately, a firm foundation in mathematics was established when
A. M. Lyapunov published his work on the stability of motion in 1892.

1And as we live in California, we know how dangerous it is to be on shaky ground.
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This work was translated into French in 1907 and recovered in a control
context by Kalman and Bertram in 1960. Lyapunov gave two methods
for the study of stability. For his first method, he considered stability
based on the linear approximation, the very thing required to justify our
concentration on that approach in this book. He proved the remarkable
result that if the linear approximation is strictly stable, having all roots in
the left half-plane (LHP), then the nonlinear system will have a region
of stability around the equilibrium point where the linear approxima-
tion applies. Furthermore, he proved that if the linear approximation
has at least one root in the right half-plane (RHP), then the nonlinear
system cannot have any region of stability in the neighborhood of the
equilibrium. The size of the stable region in the state space is not given
by the linear terms, but is included in the construction used for the
proof. That construction constituted his second method. Lyapunov’s
second method is based on the mathematical equivalent of finding a
scalar function that describes the internal energy stored in the system.
He proved that if such a function is constructed, and if the derivative
of the function is negative on trajectories of the dynamic equations of
the system, then the function and the state on which it depends will
eventually drain away and the state will come to rest at the equilibrium
point. A function having these properties is called a Lyapunov function.
Of course, this simple description omits a great deal of complexity; for
example, there are dozens of definitions of stability. However, the con-
cept remains that if a Lyapunov function can be found, then the system
on which it is based will be stable. As described, the theory gives a
sufficient condition for stability. If a Lyapunov function is not found,
the designer does not know if one does not exist, or if the search has
just been inadequate. A great deal of research has been directed toward
finding Lyapunov functions for particular classes of nonlinear systems.

Lyapunov’s methods are based on differential equations in normal
or state form and are thus concerned with internal stability. Frequency-
response methods, on the other hand, are external measures, and there
has been interest in developing stability results based on the external
response of the system. One such method is the circle criterion, which
we will describe in this chapter. The method can be described as con-
sidering the energy seen at the terminal of the system and noting if it is
always flowing into the terminals. If so, it is reasonable to assume that
eventually all energy will be gone and the system will be stable. For a
formal proof of the method, researchers have turned to Lyapunov’s sec-
ond method, but the result is expressed in terms of external properties,
such as the Nyquist plot of the linear portion of the system that faces
the nonlinear elements. Again, this tool gives a basis for setting a firm
foundation under a method of design for a particular class of nonlinear
systems.

As should be clear at this point, the theory of nonlinear control is
a vast and sophisticated topic, and in this text we can give only a brief
introduction to a small part of it. However, the foundation of control
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design rests on this theory, and the more the designer understands of
the theory, the better he or she understands both the limits and the
opportunities of problems. It is our hope that by considering this mate-
rial, students will be stimulated to further their profitable study of this
fascinating topic.

9.2 Analysis by Linearization
Three methods of reducing some nonlinear systems to a suitable linear
model are presented in this section. The differential equations of motion
for almost all processes selected for control are nonlinear. On the other
hand, both analysis and control design methods we have discussed so
far are much easier for linear than for nonlinear models. Linearization
is the process of finding a linear model that approximates a nonlinear
one. Fortunately, as Lyapunov proved over 100 years ago, if a small-
signal linear model is valid near an equilibrium and is stable, then there
is a region (which may be small, of course) containing the equilibrium
within which the nonlinear system is stable. So we can safely make a
linear model and design a linear control for it such that, at least in the
neighborhood of the equilibrium, our design will be stable. Since a very
important role of feedback control is to maintain the process variables
near equilibrium, such small-signal linear models are a frequent starting
point for control design.

An alternative approach to obtain a linear model for use as the basis
of control system design is to use part of the control effort to cancel the
nonlinear terms and to design the remainder of the control based on
linear theory. This approach—linearization by feedback—is popular in
the field of robotics, where it is called the method of computed torque.
It is also a research topic for control of aircraft. Section 9.2.2 takes a
brief look at this method. Finally, some nonlinear functions are such
that an inverse nonlinearity can be found to be placed in series with the
nonlinearity so that the combination is linear. This method is often used
to correct mild nonlinear characteristics of sensors or actuators that
have small variations in use, as will be discussed in Section 9.2.3.

9.2.1 Linearization by Small-Signal Analysis
For a system with smooth nonlinearities and a continuous derivative,
one can compute a linear model that is valid for small signals. In many
cases, these models can be used for design. A nonlinear differential
equation is an equation for which the derivatives of the state have a non-
linear relationship to the state itself and/or the control. In other words,
the differential equations cannot be written in the form2

ẋ = Ax+ Bu,

2This equation assumes the system is time invariant. A more general expression would be
ẋ = f(x, u, t).
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but must be left in the form

ẋ = f(x, u). (9.1)

For small-signal linearization, we first determine equilibrium values of
xo, uo, such that ẋo = 0 = f(xo, uo), and we let x = xo + δx and
u = uo + δu. We then expand the nonlinear equation in terms of the
perturbations from these equilibrium values, which yields

ẋo + δẋ ∼= f(xo, uo)+ Aδx+ Bδu,

where A and B are the best linear fits to the nonlinear function f(x, u) at
xo and uo, computed as

A =
[
∂f
∂x

]

xo,uo

and B =
[
∂f
∂u

]

xo,uo

. (9.2)

Subtracting out the equilibrium solution, this reduces to

δẋ = Aδx+ Bδu, (9.3)

which is a linear differential equation approximating the dynamics of
the state about the equilibrium point. Normally, the δ notation is
dropped and it is understood that x and u refer to the deviation from
the equilibrium.

In developing the models discussed thus far in this book, we have
encountered nonlinear equations on several occasions: the pendulum
in Example 2.6, the hanging crane in Example 2.8, the AC induc-
tion motor in Section 2.2, the tank flow in Example 2.19, and the
hydraulic actuator in Example 2.20. In each case, we assumed either
that the motion was small or that motion from some operating point
was small, so nonlinear functions were approximated by linear func-
tions. The steps followed in those examples essentially involved finding
A and B in order to linearize the differential equations to the form of
Eq. (9.3), as illustrated in the next several examples. The linearization
functions in Matlab include linmod and linmod2.

EXAMPLE 9.1 Linearization of Nonlinear Pendulum

Consider the nonlinear equations of motion of the simple pendulum
in Example 2.5. Derive the equilibrium points for the system and
determine the corresponding small-signal linear models.

Solution. The equation of motion is

θ̈ + g
�

sin θ = Tc

m�2 . (9.4)

We can rewrite the equation of motion in state-variable form, with
x = [ x1 x2 ]T = [ θ θ̇ ]T , as

ẋ =
[

x2
−ω2

o sin x1 + u

]
=
[

f1(x, u)
f2(x, u)

]
= f(x, u),
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where ωo =
√

g
�

and u = Tc

m�2 . To determine the equilibrium state,

suppose the (normalized) input torque has a nominal value of uo = 0.
Then

ẋ1 = θ̇ = 0,

ẋ2 = θ̈ = −g
�

sin θ = 0,

so the equilibrium conditions correspond to θo = 0, π (that is, the
downward and the inverted pendulum at rest configurations, respec-
tively). The equilibrium state and the input are xo = [ θo 0 ]T , uo = 0,
and the state-space matrices are given by

A =

⎡
⎢⎢⎣

∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

⎤
⎥⎥⎦

xo,uo

=
[

0 1
−ω2

o cos θo 0

]
,

B =

⎡
⎢⎢⎣

∂f1

∂u
∂f2

∂u

⎤
⎥⎥⎦

xo,uo

=
[

0
1

]
.

The linear system has eigenvalues of ±jωo and ±ωo corresponding
to θo = 0 and π , respectively, with the latter inverted case being unstable
as expected.

EXAMPLE 9.2 Linearization of Motion in a Ball Levitator

A simplified version of a magnetic bearing that can be built in a labo-
ratory is shown in Fig. 9.1, where one electromagnet is used to levitate

Figure 9.1
Magnetic ball levitator
used in the laboratory
Source: Photo courtesy of Gene
Franklin
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a metal ball. The physical arrangement of the levitator is depicted in
Fig. 9.2. The equation of motion of the ball, derived from Newton’s
law, Eq. (2.1), is

mẍ = fm(x, i)−mg, (9.5)

where the force fm(x, i) is caused by the field of the electromagnet. Theo-
retically, the force from an electromagnet falls off with an inverse square
relationship to the distance from the magnet, but the exact relationship
for the laboratory levitator is difficult to derive from physical principles
because its magnetic field is so complex. However, the forces can be
measured with a scale. Figure 9.3 shows the experimental curves for a
ball with a 1-cm diameter and a mass of 8.4×10−3 kg. For the current of
i2 = 600 mA and the displacement x1 shown in the figure, the magnetic
force fm just cancels the gravity force, mg = 82× 10−3 N. (The mass of
the ball is 8.4× 10−3 kg, and the acceleration of gravity is 9.8 m/ sec2.)
Therefore, the point (x1, i2) represents an equilibrium. Using the data,
find the linearized equations of motion about the equilibrium point.

Figure 9.2
Model for ball
levitation

x

i

Figure 9.3
Experimentally
determined force curves
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Solution. First we write, in expanded form, the force in terms of devia-
tions from the equilibrium values x1 and i2:

fm(x1 + δx, i2 + δi) ∼= fm(x1, i2)+ Kxδx+ Kiδi. (9.6)

The linear gains are found as follows: Kx is the slope of the force versus
x along the curve i = i2, as shown in Fig. 9.3, and is found to be about
14 N/m. Ki is the change of force with current for the value of fixed
x = x1. We find that for i = i1 = 700 mA at x = x1, the force is about
122×10−3 N, and at i = i3 = 500 mA at x = x1, it is about 42×10−3 N.
Thus

Ki ∼= 122× 10−3 − 42× 10−3

700− 500
= 80× 10−3 N

200 mA
∼= 400× 10−3 N/A
∼= 0.4 N/A.

Substituting these values into Eq. (9.6) leads to the following linear
approximation for the force in the neighborhood of equilibrium:

fm ∼= 82× 10−3 + 14δx+ 0.4δi.

Substituting this expression into Eq. (9.5) and using the numerical
values for mass and gravity force, we get for the linearized model

(8.4× 10−3)ẍ = 82× 10−3 + 14δx+ 0.4δi − 82× 10−3.

Because x = x1 + δx, then ẍ = δẍ. The equation in terms of δx is thus

(8.4× 10−3)δẍ = 14δx+ 0.4δi,

δẍ = 1667δx+ 47.6δi, (9.7)

which is the desired linearized equation of motion about the equilibrium
point. A logical state vector is x = [δx δẋ]T , which leads to the standard
matrices

A =
[

0 1
1667 0

]
and B =

[
0

47.6

]
,

and the control u = δi.
A real-world example of this technology is the Shanghai Maglev

Train (SMT) in Figure 9.4 that was built in 2004. It travels at
431Km/hour, but the high cost of building the required precision track
has, to date, kept any extensions from being built.

EXAMPLE 9.3 Linearization of the Water Tank Revisited

Repeat the linearization of Example 2.19 using the concepts presented
in this section.

Solution. Equation (2.94) may be written as

ẋ = f (x, u), (9.8)
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Figure 9.4
Shanghai Maglev Train

where x � h, u � win, and f (x, u) = − 1
RAρ
√

p1 − pa + 1
Aρwin =

− 1
RAρ

√
ρgh− pa + 1

Aρwin. The linearized equations are of the form

δẋ = Aδx+ Bδu, (9.9)

where

[A]xo,uo
= ∂f
∂x
=
[
∂f
∂h

]

ho,uo

= ∂

∂h

[
− 1

RAρ

√
ρgh− pa

]

ho,uo

(9.10)

= − g
2AR

1√
ρgho − pa

= − g
2AR

1√
po − pa

, (9.11)

and

[B]xo,uo
= ∂f
∂u
= ∂f
∂win

= 1
Aρ

. (9.12)

However, note some flow is required to maintain the system in equi-
librium so that Eq. (9.9) is valid; specifically, we see from Eq. (2.94)
that

uo = wino =
1
R

√
po − pa for ḣ = 0, (9.13)

and the δu in Eq. (9.9) is δwin, where win = wino + δwin. Therefore,
Eq. (9.9) becomes

δḣ = Aδh+ Bδwin = Aδh+ Bwin − B
1
R

√
po − pa (9.14)

and matches Eq. (2.97) precisely.

9.2.2 Linearization by Nonlinear Feedback
Linearization by feedback is accomplished by subtracting the nonlinearNonlinear feedback
terms out of the dynamic equations and adding them to the control.
The result is a linear system, provided that the computer implementing
the control has enough capability to compute the nonlinear terms fast
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enough and the resulting control does not cause the actuator to saturate.
A more detailed understanding of the method is best achieved through
an example.

EXAMPLE 9.4 Linearization of the Nonlinear Pendulum

Consider the equation of a simple pendulum developed in Example 2.6
[see Eq. (2.21)]. Linearize the system by using nonlinear feedback.

Solution. The equation of motion is
ml2θ̈ +mgl sin θ = Tc. (9.15)

If we compute the torque to be
Tc = mgl sin θ + u, (9.16)

then the motion is described by
ml2θ̈ = u. (9.17)

Equation (9.17) is a linear equation no matter how large the angle θ
becomes. We use it as the model for purposes of control design because
it enables us to use linear analysis techniques. The resulting linear con-
trol will provide the value of u based on measurements of θ ; however,
the value of the torque actually sent to the equipment would derive
from Eq. (9.16). For robots with two or three rigid links, this computed-
torque approach has led to effective control. It is also being researched
for the control of aircraft, where the linear models change considerably
in character with the flight regime.

9.2.3 Linearization by Inverse Nonlinearity
The simplest case of the introduction of nonlinearities into a control
design is that of inverse nonlinearities. It is sometimes possible to reverseInverse nonlinearity
the effect of some nonlinearities. For example, suppose we have a system
whose output is the square of the signal of interest:

y = x2. (9.18)
One clever and rather obvious technique is to undo the nonlinearity by
preceding the physical nonlinearity with a square root nonlinearity,

x = √(.), (9.19)
as shown in the next example. The overall cascaded system would then
be linear.

EXAMPLE 9.5 Linearization of the Rapid Thermal Processing (RTP)
System

Consider the RTP system that uses a nonlinear lamp as an actuator, as
shown in Fig. 9.5. Suppose the input to the lamp is voltage V and the
output is power P, and they are related by

P = V2.
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Controller

V¿
©

 - 
Y R Dc(s)

Lamp RTP plant

G(s) = 
0

P = V2
V P 0.5

s + 0.08

 + 

Figure 9.5
Linearization through inverse nonlinearity

Design an inverse nonlinearity to linearize the system.

Solution. We simply precede the lamp input nonlinearity with a square
root nonlinearity

V = √V ′.
The overall open-loop cascaded system is now linear for any value of
the voltage:

Y = G(s)P = G(s)V2 = G(s)V ′.
Thus we can use linear control design techniques for the dynamic com-
pensator, Dc(s). Note a nonlinear element has been inserted in front of
the square root element to ensure that the input to this block remains
nonnegative at all times. The controller is then implemented as shown
in Fig. 9.5. For a detailed application of this method for control design,
refer to the RTP case study in Section 10.6.

9.3 Equivalent Gain Analysis Using the Root Locus
As we have tried to make clear, every real control system is nonlinear,
and the linear analysis and design methods we have described thus far
use linear approximations to the real models. There is one important
category of nonlinear systems for which linearization is not appropriate
and for which some significant analysis (and design) can be done. This
category comprises systems in which the nonlinearity has no dynamics
and is well approximated as a gain that varies as the size of its input
signal varies, so-called memoryless nonlinearities. Sketches of a few
such nonlinear system elements and their common names are shown
in Fig. 9.6.

The stability of systems with memoryless nonlinearities can be stud-Memoryless nonlinearity
ied heuristically using the root locus. The technique is to replace the
memoryless nonlinearity by an equivalent gain K, and a root locus is
plotted versus this gain. For a range of input signal amplitudes, the
equivalent gain will take on a range of values, and the closed-loop roots
of the system are examined in this range as if the gain were fixed. This
is illustrated by the next several examples.
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Figure 9.6
Nonlinear elements
without dynamics:
(a) saturation;
(b) relay; (c) relay with
dead zone; (d) gain
with dead zone;
(e) preloaded spring,
or coulomb plus
viscous friction;
(f) quantization
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EXAMPLE 9.6 Changing Overshoot and Saturation Nonlinearity

Consider the system with saturation shown in Fig. 9.7. Determine the
stability properties of the system using the root-locus technique.

Solution. The root locus of this system versus K with the saturation
removed is shown in Fig. 9.8. At K = 1, the damping ratio is ζ =
0.5. As the gain is reduced, the locus shows that the roots move toward
the origin of the s-plane with less and less damping. Plots of the step
responses of this system were obtained using Simulink. A series of step
inputs r with magnitudes r = 2, 4, 6, 8, 10, and 12 was introduced

Figure 9.7
Dynamic system with
saturation
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Figure 9.8
Root locus of
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in Fig. 9.7 with the
saturation removed Re(s)
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Figure 9.9
Step responses of
system in Fig. 9.7 for
various input step sizes
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to the system, and the results are shown in Fig. 9.9. As long as the
signal entering the saturation remains less than 0.4, the system will be
linear and should behave according to the roots at ζ = 0.5. However,
notice that as the input gets larger, the response has more and more
overshoot and slower and slower recovery. This can be explained by
noting that larger and larger input signals correspond to smaller and
smaller effective gain K, as seen in Fig. 9.10. From the root-locus plot
of Fig. 9.8, we see as K decreases, the closed-loop poles move closer to
the origin and have a smaller damping ζ , which explains the longer rise
and settling times, increased overshoot, and greater oscillatory response.

EXAMPLE 9.7 Stability of Conditionally Stable System Using the Root
Locus

As a second example of a nonlinear response described by signal-A nonlinear example:
stability depends on input
magnitude

dependent gain, consider the system with a saturation nonlinearity as
shown in Fig. 9.11. Determine whether the system is stable.

Solution. The root locus for the system, excluding the saturation, is
plotted in Fig. 9.12. From this locus, we can readily calculate that the
imaginary axis crossing occurs at ω0 = 1 and K = 1

2 . Systems such as
this, which are stable for (relatively) large gains but unstable for smaller
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Figure 9.11
Block diagram of a
conditionally stable
system
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system in Fig. 9.11

Im
ag

in
ar

y
 a

x
is

-6 -1-2-3-4-5 20 1

Real axis

-3

-2

-1

0

1

2

3

gains, are called conditionally stable systems. If K = 2, which cor-Conditional stability
responds to ζ = 0.5 on the locus, the system would be expected to
show responses consistent with ζ = 0.5 for small reference input sig-
nals. However, as the reference input size gets larger, the equivalent
gain would get smaller due to the saturation, and the system would
be expected to become less well damped. Finally, the system would
be expected to become unstable at some point for large inputs. Step
responses from nonlinear simulation of the system with K = 2 for
input steps of size r = 1.0, 2.0, 3.0, and 3.5 are shown in Fig. 9.13.
These responses confirm our predictions. Furthermore, the marginally
stable case shows oscillations near 1 rad/sec, which is predicted by the
frequency at the point at which the root locus crosses into the RHP.

Figure 9.13
Step responses of the
system in Fig. 9.11
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EXAMPLE 9.8 Analysis and Design of System with Limit Cycle Using
the Root Locus

The final illustration of the use of the root locus to give a qualitativeA nonlinear example: an
oscillatory system with
saturation

description of the response of a nonlinear system is based on the block
diagram in Fig. 9.14. Determine whether the system is stable and find
the amplitude and the frequency of the limit cycle. Modify the controller
design to minimize the effect of limit-cycle oscillations.

Solution. This system is typical of electromechanical control problems
in which the designer perhaps at first is not aware of the resonant mode
corresponding to the denominator term s2 + 0.2s + 1, (ω = 1, ζ = 0.1).
The root locus for this system versus K, excluding the saturation, is
illustrated in Fig. 9.15. The imaginary axis crossing can be verified to
be at ω0 = 1, K = 0.2; thus a gain of K = 0.5 is enough to force
the roots of the resonant mode into the RHP, as shown by the dots. If
the system gain is set at K = 0.5, our analysis predicts a system that
is initially unstable but becomes stable as the gain decreases. Thus we
would expect the response of the system with the saturation to build up
due to the instability until the magnitude is sufficiently large that the
effective gain is lowered to K = 0.2 and then stop growing!

Plots of the step responses with K = 0.5 for three steps of size
r = 1, 4, and 8 are shown in Fig. 9.16(a). The control signal is shown
in Fig. 9.16(b) for r = 1 and a similar saturation situation occurs for
the other two cases, but with the onset of the limit cycle later depending
on the value of r. Again our heuristic analysis is exactly correct: The
error builds up to a fixed amplitude then starts to oscillate at a fixed

Figure 9.14
Block diagram of a
system with an
oscillatory mode
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Figure 9.16
(a) Step responses of
the system in Fig. 9.14,
(b) control signal for
r = 1
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amplitude. The oscillations have a frequency of ≈1 rad/sec and hold
constant amplitude regardless of the step sizes of the input. In this case,
the response always approaches a periodic solution of fixed amplitude
known as a limit cycle, so-called because the response is cyclic and isLimit cycle
approached in the limit as time grows large.

Returning to Fig. 9.13 in Example 9.7, we can be easily convinced
that the first transient to a step of size 3 is nearly a sinusoid. We can
predict that the system is just on the border of stability for an equiv-
alent gain corresponding to a root-locus gain of 1/2 when the locus
crosses into the RHP. In order to prevent the limit cycle, the locus has
to be modified by compensation so no branches cross into the RHP.
One common method of doing this for a lightly damped oscillatory
mode is to place compensation zeros near the poles at a frequency
such that the angle of departure of the root-locus branch from these
poles is toward the LHP, a procedure called phase stabilization ear-
lier. Example 5.8 for collocated mechanical motion demonstrated that
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Figure 9.17
Root locus including
compensation
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a pole–zero pair located in this manner will often cause a locus branch
to go from the pole to the zero, looping to the left, and thus staying
away from the RHP. Figure 9.17 shows the root locus for the system,
1/[s(s2 + 0.2s+ 1.0)], including a notch compensation with zeros located
as just discussed. In addition, the compensation also includes two poles
to make the compensation physically realizable. In this case, both poles
were placed at s = −10, fast enough to not cause stability problems with
the system, yet slow enough that high-frequency noise would not be
amplified too much. Thus, the compensation used for the root locus is

Dc(s) = 123
s2 + 0.18s+ 0.81

(s+ 10)2
,

where the gain of 123 has been selected to make the compensation’s DC
gain equal to unity. This notch filter compensation attenuates inputs in
the vicinity of ω2

n = 0.81 or ωn = 0.9 rad/sec, so that any input from
the plant resonance is attenuated, and is thus prevented from detracting
from the stability of the system. Figure 9.18 shows the system, includ-
ing the notch filter, and Fig. 9.19 shows the time response for two step
inputs. Both inputs, r = 2 and 4, are sufficiently large that the nonlinear-
ity is saturated initially; however, because the system is unconditionally
stable, the saturation results only in lowering the gain, so the response
is slower than predicted by linear analysis but still stable, as also pre-
dicted by our piecewise linear analysis. In both cases, the nonlinearity
eventually becomes unsaturated, and the system stabilizes to its new
commanded value of r.

Figure 9.18
Block diagram of the
system with a notch
filter
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Figure 9.19
Step responses of the
system in Fig. 9.18
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9.3.1 Integrator Antiwindup
In any control system, the output of the actuator can saturate because
the dynamic range of all real actuators is limited. For example, a valve
saturates when it is fully open or closed, the control surfaces on an
aircraft cannot be deflected beyond certain angles from their nominal
positions, electronic amplifiers can produce only finite voltage outputs,
etc. Whenever actuator saturation happens, the control signal to the
process stops changing and the feedback path is effectively opened. If
the error signal continues to be applied to the integrator input under
these conditions, the integrator output will grow (windup) until the sign
of the error changes and the integration turns around. The result can
be a very large overshoot, as the output must grow to produce the nec-
essary unwinding error, and poor transient response is the result. In
effect, the integrator is an unstable element in open-loop and must be
stabilized when saturation occurs.3

Consider the feedback system shown in Fig. 9.20. Suppose a given
reference step is more than large enough to cause the actuator to sat-
urate at umax. The integrator continues integrating the error e, and the
signal uc keeps growing. However, the input to the plant is stuck at
its maximum value, namely u = umax, so the error remains large until
the plant output exceeds the reference and the error changes sign. The
increase in uc is not helpful, since the input to the plant is not changing,
but uc may become quite large if saturation lasts a long time. It will then
take a considerable negative error e (and the resulting poor transient
response) to bring the integrator output back to within the linear band
where the control is not saturated.

3In process control, integral control is usually called reset control, and so integrator
windup is often called reset windup. Without integral control, a given setpoint of, say,
10 results in a response of less value, say, 9.9. The operator must then reset to 10.1 to
bring the output to the desired value of 10. With integral control the controller automat-
ically brings the output to 10 with a setpoint of 10; hence the integrator does automatic
reset.



main_1 — 2019/2/5 — 11:22 — page 702 — #20

702 Chapter 9 Nonlinear Systems

Figure 9.20
Feedback system with
actuator saturation
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The solution to this problem is an integrator antiwindup circuit,
which “turns off” the integral action when the actuator saturates. (This
can be done quite easily with logic, if the controller is implemented
digitally, by including a statement such as “if |u| = umax, kI = 0”;
see Chapter 8.) Two equivalent antiwindup schemes are shown in
Fig. 9.21(a, b) for a PI controller. The method in Fig. 9.21(a) is some-
what easier to understand, whereas the one in Fig. 9.21(b) is easier to
implement, as it does not require a separate nonlinearity but uses the
saturation itself.4 In these schemes, as soon as the actuator saturates, the
feedback loop around the integrator becomes active and acts to keep
the input to the integrator at e1 small. During this time, the integra-
tor essentially becomes a fast first-order lag. To see this, note we can
redraw the portion of the block diagram in Fig. 9.21(b) from e to uc, as
shown in Fig. 9.21(c). The integrator part then becomes the first-order
lag shown in Fig. 9.21(d). The antiwindup gain, Ka, should be chosen
to be large enough that the antiwindup circuit keeps the input to the
integrator small under all error conditions.

The effect of the antiwindup is to reduce both the overshoot and
the control effort in the feedback system. Implementation of such anti-
windup schemes is a necessity in any practical application of integral
control, and omission of this technique may lead to serious deteriora-
tion of the response. From the point of view of stability, the effect of the
saturation is to open the feedback loop and leave the open-loop plant
with a constant input and the controller as an open-loop system with
the system error as input.

Purpose of antiwindup The purpose of the antiwindup is to provide local feedback to
stabilize the controller only when the main loop is opened by
signal saturation, and any circuit that does this will perform as
antiwindup.5

4In some cases, especially with mechanical actuators such as an aircraft control surface
or a flow control valve, it is not desirable and may cause damage to have the physical
device bang against its stops. In such cases, it is common practice to include an electronic
saturation with lower limits than those of the physical device, so that the system hits the
electrical stops just before the physical device will saturate.
5A more sophisticated scheme might use an antiwindup feedback at a lower level of
saturation than that imposed by the actuator, so PD control continues for a time after
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Figure 9.21
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EXAMPLE 9.9 Antiwindup Compensation for a PI Controller

Consider a plant with the transfer function for small signals,

G(s) = 1
s

,

and a PI controller,

Dc(s) = kp + kI

s
= 2+ 4

s
,

integration has been stopped. Any such scheme needs to be analyzed carefully to evaluate
its performance and to assure stability.
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in the unity feedback configuration. The input to the plant is limited to
±1.0. Study the effect of antiwindup on the response of the system.

Solution. Suppose we use an antiwindup circuit with a feedback gain
of Ka = 10, as shown in the Simulink block diagram of Fig. 9.22.
Figure 9.23(a) shows the step response of the system with and with-
out the antiwindup element. Figure 9.23(b) shows the corresponding
control effort. Note the system with antiwindup has substantially less
overshoot and less control effort.

A careful look at Figures 9.23 and 9.24 provides insight into how
the integrator antiwindup scheme works. Let us first consider the sys-
tem without antiwindup. The value of the initial tracking error is so
large that the proportional controller goes “full blast” and the actuator
saturates at its maximum value (“high-sat”) immediately as shown in
Fig. 9.23(b). The value of the component of the control signal due to
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Simulink diagram for the antiwindup example
Source: Franklin, Gene F. Feedback Control of Dynamic Systems, 8E, 2019, Pearson Education, Inc., New York, NY.
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Explanation of the antiwindup scheme (a) error and control signals without antiwindup (b) error and
control signals with antiwindup

integral control, uI , starts off as positive because the value of the track-
ing error signal is positive as seen in Fig. 9.24(a). The signal uI builds
up over time and reaches its maximum value of 2.0 at t = 1.1 sec when
the tracking error goes through zero and starts to decrease afterwards
as shown in Fig. 9.24(a). However, the system remains in saturation
because of the large value of uI . It does not come out of saturation
until the tracking error has been negative for sufficient amount of time
and the value of uI has decreased enough so the overall control signal
(u = uP+uI ) is below its maximum saturation value of unity. Eventually
the system does come out of saturation. Meanwhile the tracking error
signal e(t) changes sign, that is it goes from positive to negative, around
t = 1 sec as seen in Fig. 9.24(a). At t = 3 sec, the tracking error goes
through zero again and the overshoot is gone. Note the system never
reaches the lower saturation limit (“low-sat”). The effects of not hav-
ing the antiwindup are large overshoot of 53% and considerable control
effort, as seen in Figure 9.23.

The system’s response is quite different with the antiwindup scheme
in place. The system again saturates immediately at its maximum value
due to the large initial tracking error signal. However, in sharp contrast
to the previous case, the control signal component due to the integral
term, uI , goes negative as shown in Fig. 9.24(b). The antiwindup scheme
works rapidly to produce an input signal to the integrator so the system
is led out of saturation. The system comes out of saturation faster by
almost a factor of 3 at t = 0.52 sec before the tracking error changes
sign at t = 1.2 sec [see Fig. 9.24(b)]. The tracking error goes through
zero again at t = 2.8 sec, and the overshoot is gone. In this case, the
overall magnitude of the tracking error is smaller, the overshoot has
been reduced from around 53% to 15% and the control effort is also
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lower as seen in Fig. 9.23(b). Hence the antiwindup technique produces
superior performance.

9.4 Equivalent Gain Analysis Using Frequency
Response: Describing Functions

The behavior of systems containing any one of the nonlinearities shown
in Fig. 9.6 can be qualitatively described by considering the nonlinear
element as a varying signal-dependent gain. For example, with the sat-
uration element (see Fig. 9.6(a)), it is clear that for input signals with
magnitudes of less than h, the nonlinearity is linear with the gain N/h.
However, for signals larger than h, the output size is bounded by N,
while the input size can get much larger than h, so once the input exceeds
h, the ratio of output to input goes down. Thus, saturation has the gain
characteristics shown in Fig. 9.10. All actuators saturate at some level. If
they did not, their output would increase to infinity, which is physically
impossible. An important aspect of control system design is sizing the
actuator, which means picking the size, weight, power required, cost,
and saturation level of the device. Generally, higher saturation levels
require bigger, heavier, and more costly actuators. From a control point
of view, the key factor that enters into the sizing is the effect of the
saturation on the control system’s performance.

A nonlinear analysis method known as describing functions, based
on the assumption that the input to the nonlinearity is sinusoidal,
can be used to predict the behavior of a class of nonlinear systems.
A nonlinear element does not have a transfer function. However, for
a certain class of nonlinearities, it is possible to replace the nonlin-
earity by a frequency-dependent equivalent gain for analysis purposes.
We can then study the properties of the loop, such as its stability. The
describing function method is mostly a heuristic method, and its aim is
to try to find something akin to a “transfer function” for a nonlinear
element. The idea is that in response to a sinusoidal excitation, most
nonlinearities will produce a periodic signal (not necessarily sinusoidal)
with frequencies being the harmonics of the input frequency. Hence
one may view the describing function as an extension of the frequency
response to nonlinearities. We can assume that, in many cases, we may
approximate the output by the first harmonic alone, and the rest can be
neglected. This basic assumption means that the plant behaves approx-
imately as a low-pass filter, and this is luckily a good assumption in
most practical situations. The other assumptions behind the describing
function are that the nonlinearity is time invariant and that there is a
single nonlinear element in the system. Indeed, the describing function
is a special case of the more sophisticated harmonic balance analysis. Its
roots go back to the early studies in the Soviet Union and elsewhere. The
method was introduced by Kochenburger in 1950 in the United States.
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Figure 9.25
Nonlinear element

yfu

He proposed that the Fourier series be used to define an equivalent gain,
Keq (Truxal, 1955, p. 566). This idea has proved to be very useful in
practice. The method is heuristic, but there are attempts at establishing
a theoretical justification for the technique (Bergen and Franks, 1971;
Khalil, 2002; Sastry, 1999). In fact, the method works much better than
is warranted by the existing theory!

Consider the nonlinear element f (u) shown in Fig. 9.25. If the input
signal u(t) is sinusoidal of amplitude a, or

u(t) = a sin(ωt), (9.20)

then the output y(t) will be periodic with a fundamental period equal to
that of the input and consequently with a Fourier series described by

y(t) = a0 +
∞∑

i=1

ai cos( jωt)+ bi sin( jωt), (9.21)

= a0 +
∞∑

i=1

Yi sin( jωt+ θi),

where

ai = 2
π

∫ π

0
y(t) cos( jωt) d(ωt), (9.22)

bi = 2
π

∫ π

0
y(t) sin( jωt) d(ωt), (9.23)

Yi =
√

a2
i + b2

i , (9.24)

θi = tan−1
(

ai

bi

)
. (9.25)

Kochenburger suggested that the nonlinear element could be described
by the first fundamental component of this series as if it were a linear
system with a gain of Y1 and phase of θ1. If the amplitude is varied, the
Fourier coefficients and the corresponding phases will vary as a func-
tion of the input signal amplitude, due to the nonlinear nature of the
element. He called this approximation a describing function (DF). TheDescribing function
describing function is defined as the (complex) quantity that is a ratio
of the amplitude of the fundamental component of the output of the
nonlinear element to the amplitude of the sinusoidal input signal and is
essentially an “equivalent frequency response” function:

DF = Keq(a,ω) = b1 + ja1

a
= Y1(a,ω)

a
e jθ1 = Y1(a,ω)

a
∠θ1. (9.26)

Hence the describing function is defined only on the jω axis. In the
case of memoryless nonlinearities that are also an odd function [that
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is, f (−a) = −f (a)], then the coefficients of the Fourier series cosine
terms are all zeros, and the describing function is simply

DF = Keq(a) = b1

a
, (9.27)

and is independent of the frequency ω. This is the usual case in control,
and saturation, relay, and dead-zone nonlinearities all result in such
describing functions. Computation of the describing function for the
nonlinear characteristics of Fig. 9.6 is generally straightforward, but
tedious. It can be done either analytically or numerically, and may also
be determined by an experiment. We will now focus on computation of
several describing functions for some very common nonlinearities.

EXAMPLE 9.10
Describing Function for a Saturation Nonlinearity

A saturation nonlinearity is shown in Fig. 9.26(a) and is the most com-
mon nonlinearity in control systems. The saturation function (sat) is
defined as

sat(u) =
⎧⎨
⎩
+1, u > 1,
u, |u| ≤ 1,
−1, u < −1.

If the slope of the linear region is k and the final saturated values are
±N, then the function is

y = N sat
(

k
N

u
)

.

Find the describing function for this nonlinearity.

Solution. Consider the input and output signals of the saturation ele-
ment shown in Fig. 9.26. For an input sinusoid of u = a sinωt with
amplitude a ≤ N

k , the output is such that the DF is just a gain of unity.
With a ≥ N

k , we need to compute the amplitude and phase of the funda-
mental component of the output. Since saturation is an odd function,
all the cosine terms in Eq. (9.21) are zeros and a1 = 0. According to
Eq. (9.27),

Keq(a) = b1

a
,

Figure 9.26
(a) Saturation
nonlinearity; (b) input
and output signals
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so

b1 = 2
π

∫ π

0
N sat

(
k
N

a sinωt
)

sinωt d(ωt),

since the integral for the coefficient b1 over the interval ωt = [0,π ] is
simply twice that of the interval ωt = [0,π/2]. Then

b1 = 4N
π

∫ π
2

0
sat
(

k
N

a sinωt
)

sinωt d(ωt).

We can now divide the integral into two parts corresponding to the lin-
ear and saturation parts. Let us define the saturation time ts as the time
when

ts = 1
ω

sin−1
(

N
ak

)
or ωts = sin−1

(
N
ak

)
. (9.28)

Then

b1 = 4Nω
πa

(∫ ωts

0
sat
(

k
N

a sinωt
)

sinωt dt+
∫ π

2

ωts

sinωt dt

)

= 4Nω
πa

(∫ ωts

0

k
N

a sin2 ωt dt+
∫ π

2

ωts

sinωt dt

)

= 4Nω
πa

(∫ ωts

0

k
2N

a(1− cos 2ωt) dt+
∫ π

2

ωts

sinωt dt

)

= 4Nω
πa

(
k

2N
at |ts

0 −
k

2N
a sin 2ωt |ts

0 −
1
ω
(cos

π

2
− cos ts)

)
.

But using Eq. (9.28), we have

sinωts = N
ka

and cosωts =
√

1−
(

N
ka

)2

.

We finally obtain

Keq(a) =

⎧⎪⎨
⎪⎩

2
π

(
k sin−1

(
N
ak

)
+ N

a

√
1−
(

N
ka

)2
)

, ka
N > 1,

k, ka
N ≤ 1.

(9.29)

Figure 9.27 shows a plot of Keq(a) indicating it is a real function inde-
pendent of frequency and results in no phase shifts. It is seen that the
describing function is initially a constant, then decays essentially as a
function of the reciprocal of the input signal amplitude, a.

EXAMPLE 9.11 Describing Function for a Relay Nonlinearity

Find the describing function for the relay or sgn function shown in
Fig. 9.6(b) and defined as

sgn(u) =
⎧
⎨
⎩
+1 if u > 0,
0 if u = 0,
−1 if u < 0.



main_1 — 2019/2/5 — 11:22 — page 710 — #28

710 Chapter 9 Nonlinear Systems

Figure 9.27
Describing function for
saturation nonlinearity
with k = N = 1
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Solution. The output is a square wave of amplitude N for every size
input; thus Y1 = 4N

π
and Keq = 4N

πa . The solution can also be obtained
from Eq. (9.29) if we let k→∞. For small angles,

sin−1
(

N
ak

)
∼= N

ak
,

and thus, from Eq. (9.27), we have

Keq(a) = 2
π

(
k
(

N
ak

)
+ N

a

)
= 4N
πa

. (9.30)

The preceding two nonlinearities were memoryless. Next we con-
sider a nonlinearity with memory. Nonlinearities with memory occur
in many applications, including magnetic recording devices, backlash
in mechanical systems, and in electronic circuits. Consider the bistable
electronic circuit in Fig. 9.28 that is called a Schmitt trigger (Sedra and
Smith, 1991). This circuit has memory. Referring to Fig. 9.29, if the
circuit is in the state where vout = +N, then positive values of vin do
not change the state. To “trigger” the circuit into the state vout = −N,
we must make vin negative enough to make v negative. The threshold
value is h = NR1

R2
. The Schmitt trigger is employed commonly in space-

craft control (Bryson, 1994). We next find the describing function for a
hysteresis nonlinearity.

Figure 9.28
Schmitt trigger circuit
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Figure 9.29
Hysteresis nonlinearity
for Schmitt trigger
circuit
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EXAMPLE 9.12 Describing Function for a Relay with Hysteresis Nonlinearity

Consider the relay function with hysteresis shown in Fig. 9.30(a). Find
the describing function for this nonlinearity.

Solution. A system with hysteresis tends to stay in its current state.
Until the input to the signum function is past the value h, it is not possi-
ble to determine the output uniquely without knowing its past history.
That implies that we have a nonlinearity with memory. The output is
a square wave with amplitude N as long as the input amplitude a is
greater than the hysteresis level h. From Fig. 9.30(b), it is seen that the
square wave lags the input in time. The lag time can be computed as the
time when

a sinωt = h or ωt = sin−1
(

h
a

)
. (9.31)

Because the phase angle is known for all frequencies,

Keq(a) = 4N
πa

∠− sin−1
(

h
a

)
= 4N
πa

e
−j sin−1

(
h
a

)
, (9.32)

= 4N
πa

⎛
⎝
√

1−
(

h
a

)2

− j
h
a

⎞
⎠ . (9.33)

Figure 9.30
(a) Hysteresis
nonlinearity; (b) input
and output to the
nonlinearity u
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Figure 9.31
Describing function for
the hysteresis
nonlinearity for h = 0.1
and N = 1: (a)
magnitude; (b) phase M
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The describing function is then given by

Keq(a) =

⎧⎪⎨
⎪⎩

4N
πa

(√
1−
(

h
a

)2 − j h
a

)
, a ≥ h,

0, a < h.

(9.34)

The describing function is plotted in Fig. 9.31. The magnitude is pro-
portional to the reciprocal of the input signal amplitude, and the phase
varies between −90o and 0o.

9.4.1 Stability Analysis Using Describing Functions
The Nyquist theorem can be extended to deal with nonlinear systems
whose nonlinearities have been approximated by describing functions.
In the standard linear system analysis, the characteristic equation is 1+
KL = 0, where the loop gain is L = DcG and

L = − 1
K

. (9.35)

As described in Section 6.3, we look at the encirclements of the −1/K
point to determine stability. With a nonlinearity represented by the
describing function, Keq(a), the characteristic equation is of the form
1+ Keq(a)L = 0, and it follows that

L = − 1
Keq(a)

. (9.36)

Now we have to look at the intersection of L with a plot of −1/Keq(a).
If the curve L intersects −1/Keq(a), then the system will oscillate at the
crossing amplitude, al , and the corresponding frequency, ωl , keeping
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Figure 9.32
Closed-loop system with
a nonlinearity f
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in mind the approximate nature of the describing function. We then
look for encirclements to decide whether the system would be stable for
that particular value of the gain, as if it were a linear system. If so, we
deduce that the nonlinear system is stable. Otherwise, we infer that the
nonlinear system is unstable.

Figure 9.32 shows an example of an otherwise linear system, except
for a single nonlinearity. The nonlinear elements may indeed have a ben-
eficial effect and may limit the amplitude of oscillations. The describing
function analysis can be used to determine the amplitude and frequency
of the limit cycle. Strictly speaking, a limit cycling system can be con-
sidered to be unstable. In reality, the trajectory of the limit cycling is
confined to a finite region of the state space. If this region is within
allowable performance, then the response is tolerable. In some cases, the
limit cycling is a beneficial effect (see the case study in Section 10.4). The
system does not possess asymptotic stability, since the system does not
come to a rest at the origin of the state space. The describing function
can be beneficial in determining the conditions under which instability
results and can even suggest remedies in eliminating instability, as illus-
trated in the next example, in which the Nyquist plot of the linear loop
gain, L, as well as the negative reciprocal of the describing function,
−1/Keq(a), are superimposed. The point at which they cross corre-
sponds to the limit cycle. To determine the amplitude and frequency
of the limit cycle, we can rewrite Eq. (9.36) as follows:

Re{L( jω)}Re{Keq(a)} − Im{L( jω)}Im{Keq(a)} + 1 = 0, (9.37)

Re{L( jω)}Im{Keq(a)} + Im{L( jω)}Re{Keq(a)} = 0.

We can then solve these two equations for the possible two
unknown values of the limit-cycle frequency, ωl , and the corresponding
amplitude, al , as illustrated in the ensuing examples.

EXAMPLE 9.13 Conditionally Stable System

Consider the feedback system in Fig. 9.14. Determine the amplitude
and the frequency of the limit cycle using the Nyquist plot.

Solution. The Nyquist plot of the system is superimposed on
−1/Keq(a) as shown in Fig. 9.33. Note the negative of the reciprocal
of the describing function, using Eq. (9.29), is
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Figure 9.33
Nyquist plot and
describing function to
determine limit cycle
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which is a straight line that is coincident with the negative real axis and
is parameterized as a function of the input signal amplitude, a. The
point of the intersection of the two curves at −0.5 corresponds to the
limit-cycle frequency of ωl = 1. A plot of the describing function for
k = 1 and N = 0.1 is shown in Fig. 9.34, and a magnitude of Keq = 0.2
corresponds to a limit-cycle amplitude of al = 0.63.

Alternatively, from the root locus of our example shown in Fig.
9.15, the gain at the imaginary-axis crossover is 0.2; then, from
Eq. (9.29), we have

Figure 9.34
Describing function for
saturation nonlinearity
with N = 0.1 and k = 1
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Keq = 2
π

⎛
⎝sin−1

(
0.1
a

)
+ 0.1

a

√
1−
(

0.1
a

)2
⎞
⎠ = 0.2.

If we approximate the arcsine function by its argument as

sin−1
(

0.1
a

)
≈ 0.1

a
,

then

2
π

⎛
⎝
(

0.1
a

)
+ 0.1

a

√
1−
(

0.1
a

)2
⎞
⎠ = 0.2,

which leads to the polynomial equation

π2a4 − 2πa3 + (0.1)2 = 0,

and we find the relevant solution to be a = 0.63. By measurement on
the time history of Fig. 9.16, the amplitude of the oscillation is 0.62,
which is in good agreement with our prediction.

For systems with nonlinearities that have memory, we can also use
the Nyquist technique, as illustrated in the next example.

EXAMPLE 9.14 Determination of Stability with a Hysteresis Nonlinearity

Consider the system with a hysteresis nonlinearity shown in Fig. 9.35.
Determine whether the system is stable and find the amplitude and the
frequency of the limit cycle.

Solution. The Nyquist plot for the system is shown in Fig. 9.36.
The negative reciprocal of the describing function for the hysteresis
nonlinearity is

− 1
Keq(a)

= − 1

4N
πa

(√
1−
(

h
a

)2 − j h
a

) = − π

4N

[√
a2 − h2 + jh

]
.

In this case, N = 1 and h = 0.1, and we have

− 1
Keq(a)

= −π
4

[√
a2 − 0.01+ j0.1

]
.

Figure 9.35
Feedback system with
hysteresis nonlinearity
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Figure 9.36
Nyquist plot and DF to
determine limit-cycle
properties
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Figure 9.37
Simulink diagram for
system with hysteresis
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This is a straight line parallel to the real axis that is parameter-
ized as a function of the input signal amplitude a and is also plotted in
Fig. 9.36. The intersection of this curve with the Nyquist plot yields the
frequency and the corresponding amplitude of the stable limit cycle. We
can also determine the limit-cycle information analytically:

− 1
Keq(a)

= −π
4

[√
a2 − 0.01+ j0.1

]
= G( jω) = 1

jω( jω + 1)
.

Clearing the denominator in the preceding equation, we have

π

4

√
a2 − 0.01ω2 + 0.1π

4
ω − 1+ j

[
0.1π

4
ω2 − π

4

√
a2 − 0.01ω

]
= 0.

Setting the real and imaginary parts equal to zero yields two equa-
tions and two unknowns. The relevant solution is ωl = 2.2 rad/sec
and al = 0.24. A Simulink implementation of the closed-loop sys-
tem is shown in Fig. 9.37. The step response of the system is shown
in Fig. 9.38, and the limit cycle has an amplitude of al = 0.24 and a
frequency of ωl = 2.2 rad/sec and is well predicted by our analysis.

9.5 Analysis and Design Based on Stability
The central requirement of any control system is stability, and the design

�
methods we have studied are based on this fact. The root locus is a plot
of closed-loop poles in the s-plane, and the designer is always aware of
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Figure 9.38
Step response
displaying limit-cycle
oscillations
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the fact that if a root strays into the right half of the plane, the sys-
tem will be unstable. Designs based on the state representation include
pole placement, where the desired locations of the poles are, of course,
selected to be well within the stable region. In a similar fashion, Nyquist
proved conditions for stability based on the frequency response, and
designers are aware of the encirclement requirements of their plots or,
equivalently, of the gain and phase margins of stability margins in the
Bode plots. Prior to either of these methods, mathematicians studied the
stability of ordinary differential equations (ODE), and these and other
sophisticated techniques are needed to face the problems of nonlinear
systems. We begin with a graphical representation of ODE solutions
known as the phase plane and introduce the methods of Lyapunov and
others as an introduction to this area of control design.

9.5.1 The Phase Plane
Whereas the root locus and the frequency-response methods consider
the system response indirectly via either the poles and zeros of the
transfer function or the gain and phase of the frequency response, the
phase plane considers the time response directly by plotting the trajec-
tory of the state variables. Although direct visualization restricts the
method to second-order systems having only two state variables, the
ability of the method to consider nonlinearities, as well as to give new
insight into linear systems, makes a quick look at the technique well
worthwhile.

To illustrate the ideas of the phase plane, consider a fictional motor
system shown in Fig. 9.39 with the open-loop transfer function

G(s) = 1
s(Ts+ 1)

.

If we assume T = 1/6 and the amplifier is (for the moment) not
subject to saturation and has gain K where K = 5T , the state equations
for the closed-loop system can be written as
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Figure 9.39
An elementary position
feedback system with a
nonlinear actuator
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ẋ1 = x2, (9.38)

ẋ2 = −5x1 − 6x2, (9.39)

y = x1. (9.40)

Because these equations are time invariant, the time can be eliminated
by dividing Eq. (9.38) into Eq. (9.39), with the result that

dx2

dx1
= −5x1 − 6x2

x2
. (9.41)

The solution to this equation gives a plot of x2 versus x1 or, in other
words, a trajectory in the phase plane of coordinates (x1, x2).6 Before
plotting Eq. (9.41), it is useful to consider the system equations first in
matrix form as ẋ = Ax for which

A =
[

0 1
−5 −6

]
.

If in this equation we assume x = xoest, where both s and xo are
constants, then ẋ = xosest, and the equation can be reduced as follows:

ẋ = Ax, (9.42)

xosest = Axoest, (9.43)

[sI− A]xoest = 0, (9.44)

[sI− A]xo = 0. (9.45)

Here it should be recognized that Eq. (9.45) is the eigenvector equation
for the matrix A, which, in component form, is

[
s −1
5 s+ 6

] [
x01
x02

]
=
[

0
0

]
. (9.46)

As described in Appendix WE available online Eq. (9.46) has a solution
only if the determinant of the coefficient matrix is zero, for which

s(s+ 6)+ 5 = 0, (9.47)

(s+ 1)(s+ 5) = 0. (9.48)

6If the slope dx2/dx1 is set to a constant, the relation between x2 and x1 is a straight line.
If the known values of slopes are marked along a set of these lines, the trajectories can be
readily sketched. For example, along the x1 axis, where x2 = 0, the slope is ∞ and the
trajectories are vertical. This method is called the method of isoclines.
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The two values of s for which the equation has a solution are the eigen-
values s = −1 and s = −5. If we substitute s = −1 into Eq. (9.46), we
obtain [ −1 −1

5 −1+ 6

] [
x01
x02

]
=
[

0
0

]
, (9.49)

from which the solution for the initial state vector is x02 = −x01. This
line in the state space is the eigenvector corresponding to the eigenvalue
s = −1. If we repeat this process with s = −5, the result is

[ −5 −1
5 −5+ 6

] [
x01
x02

]
=
[

0
0

]
, (9.50)

and, in this case, the solution for the eigenvector is x02 = −5x01.
Consider what all this means. We started with the assumption that

the time solution for the state is a constant times an exponential. We
found that this is possible only if the exponential is either e−t or e−5t.
In the first case, the state must lie along the vector x02 = −x01, and in
the second, the state must lie along the vector x02 = −5x01. With this
knowledge, we compute the solutions to Eq. (9.38) and Eq. (9.39) for
different initial conditions and plot x1(t) versus x2(t) in Fig. 9.40. In
the figure, the two eigenvectors are identified by the thick lines. When
we look at these curves, it is clear that all the paths start parallel to
the (fast!) eigenvector corresponding to s = −5, and quickly move to
the (slow!) one corresponding to s = −1. All trajectories approach the
equilibrium point at the origin of the state space.

The plot will be substantially changed if the amplifier saturates. For
example, if the amplifier saturates at a value of u = 0.5, then the velocity,
x2, will rapidly approach this value and will be stuck there until the
position reaches a value that brings the amplifier out of saturation. The
new plot is shown in Fig. 9.41.

Figure 9.40
Phase-plane plot of a
system with poles at
s = −1 and s = −5
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Figure 9.41
Phase-plane plot with
saturation
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Figure 9.42
Phase-plane plot for a
system with complex
poles
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Notice in the linear region the motion is almost entirely along the
slow eigenvector. Finally, we note the phase-plane portrait changes
again when the poles are complex. In that case, the motion of the state
variables are composed of damped sinusoids and the plot of x1 ver-
sus x2 is along a spiral. A collection of trajectories for various initial
conditions is shown in Fig 9.42.

These few examples just scratch the surface of phase-plane analy-
sis but give some idea of the use of this format in helping a designer
to visualize dynamic responses. Note this visualization is mostly use-
ful for systems with two (dominant) modes. For higher order systems,
the concept still holds, but visualization becomes significantly more
difficult.
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Bang-Bang Control

One example of design for a nonlinear system based on the phase plane
is that of optimal minimum-time control in the face of control satura-
tion. For our purposes here, the simplest version of this widely used
technique is introduced: that of the 1/s2 plant. The equations are

ÿ = u, (9.51)

e = y− yf , (9.52)

where y(0) = ẏ(0) = 0, yf is a constant, and the control is constrained
to be |u| ≤ 1. The problem is to drive the error to be identically zero in
minimum time. If we define state variables as x1 = e and x2 = ė = ẏ,
the equations reduce to

ẋ1 = x2, (9.53)

ẋ2 = u, (9.54)

x1(0) = −yf , (9.55)

x1(tf ) = x2(tf ) = 0, (9.56)

and the problem is to minimize tf . Intuitively, this is the problem of the
eager driver who wishes to speed from one stop to the next in minimum
time. She would put the pedal to the metal for a time then switch to
stand on the brakes as the car skids to a stop at just the right place.
A basic result of the theory of optimal control confirms this intuitive
idea that the solution to this problem is, if yf > 0, to apply full positive
control for a time, then to switch to full negative control at just the right
time to cause the error to reach the origin and stop there. To study the
case, a plot of the trajectories of the plant in the phase plane for the
two cases of u = 1 and u = −1 is given in Fig. 9.43. For u = +1, the

Figure 9.43
Phase-plane of the 1/s2
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Figure 9.44
Switching curve for the
1/s2 plant
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trajectories start in the fourth quadrant and move up to the first. For
u = −1, they start in the second quadrant and move down to the third.

Two segments of this family are of particular interest: those that
pass through the origin. Once the path reaches one of these, a constant
control will bring the state to the desired final resting place. Therefore,
for any initial condition, once the trajectory reaches one of the two
curves going through the origin, the correct action is to switch the con-
trol (u = +1 to −1, or u = −1 to +1) so the trajectory will follow that
curve to the origin. The “switching curve” is plotted in Fig. 9.44.

For a second-order plant, the switching curve can be found by
reversing the time in the equations of motion, setting the initial state to
zero and applying the maximum control. The process can be repeated
with minimum control to sweep out the other branch of the curve.

For any initial condition above the curve, u = −1 is applied and for
any initial condition below the curve, u = +1 is used. As described, the
result will be a minimum-time response. Notice the curve has vertical
slope at the origin; as a result, the implementation is extremely sensi-
tive in this neighborhood. A modified version known as the proximate
time-optimal system (PTOS) used in the computer disk drive industry
was studied by Workman (1987). The modification consists of shifting
the curves a bit and replacing the infinite slope at the origin with a
finite-slope, linear control region. The result has been widely used for
hard-disk drives and similar systems, and is also called “sliding mode”
control.

Typical responses for a time-optimal system and for a PTOS sys-
tem generated with Simulink are given in Figs. 9.45 to 9.47. Notice the
response times are almost exactly the same, but while the time-optimal
system control has a violent chatter at the end where the switching curve
has infinite slope, the output of the PTOS system slips into its final value
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Figure 9.45
Response of a
time-optimal system
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Figure 9.46
Response of a PTOS
system
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smoothly. For a more exact study, we need to turn to the nonlinear
equations.

9.5.2 Lyapunov Stability Analysis
The stability of motion as studied by Lyapunov involves sophisticated
mathematics beyond the scope of this text. Here we will present heuris-
tic arguments giving the flavor of the theory and state a few of the most
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Figure 9.47
Simulink diagram for
position feedback
system
Source: Reprinted with
permission of The MathWorks,
Inc.
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basic results. Lyapunov presented two methods for the study of stability
of motion described by systems of ODEs. His indirect or first method is
based on linearization of the equations and drawing conclusions about
the stability of the nonlinear system by considering the stability of the
linear approximation. He proved the results of the first method by use
of his direct or second method, in which the nonlinear equations are con-
sidered directly. A discussion of the indirect method serves to introduce
both methods. The problem requires a new definition of stability suit-
able for vector-matrix equations. Intuitively, we say a system is stable if
initial conditions of moderate size result in a response that remains of
moderate size. To express this mathematically, first we need a definition
of “size.” For this, we use the norm of a vector for which the symbol is
‖x‖. Of the many possible definitions, the familiar Euclidean measure
is selected and defined by its square as ‖x‖2 = xT x = ∑n

i=1 x2
i . With

this idea, the definition of stability used is that if one is given a sphere
of any radius ε, one can find a smaller sphere of radius δ such that if
the initial state is inside δ, then the trajectory will, for all time, remain
inside ε. A bit more formally, the system is stable if, for any given ε > 0,Stability in the sense of

Lyapunov one can find a δ > 0 such that if ||x(0)|| < δ, then ||x(t)|| < ε for all t.
If the state is not only stable, but in the limit as t→∞, ||x(t)|| → 0, the
system is said to be asymptotically stable. If, for any ε, it is possible to
select δ arbitrarily large, then the system is said to be stable in the large.

Study of these matters begins with the time-invariant ODE equa-
tion

ẋ = f(x), (9.57)

for which the linear approximation is

ẋ = Ax+ g(x). (9.58)

In this equation, it is assumed all the linear terms are in Ax and higher-
order terms are in g(x), in the sense that when x gets small, g(x) gets
small faster, as expressed by

lim‖x‖→0

‖g(x)‖
‖x‖ = 0. (9.59)

Lyapunov’s second method begins with the intuitive notion that one
measure of the size of the state of a physical system is the total energy
stored in the system at any instant, and the observation that when the
stored energy is no longer changing, the system must be at rest. For
an electric circuit, for example, the electric energy is proportional to
the square of the capacitor voltages and the magnetic energy is propor-
tional to the square of the inductor currents. Lyapunov extracted the
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abstract essence of this idea and defined a scalar function of the state
V(x), called a Lyapunov function, having the following properties:Lyapunov function

1. V(0) = 0;
2. V(x) > 0, ‖x‖ �= 0;
3. V is continuous and has continuous derivatives with respect to all

components of x;
4. V̇(x) = ∂V

∂x ẋ = ∂V
∂x f(x) ≤ 0 along trajectories of the equation.

The first three conditions ensure that in a neighborhood of the ori-
gin the function is like a smooth bowl sitting at the origin of the state
space. The fourth condition, which obviously depends on the equations
of motion, ensures that if δ is selected so the initial conditions are deeper
in the bowl than any part of the ball defined by ε, the trajectory never
climbs higher on the bowl than it was at the start and so remains within
ε, and the system will be stable. Furthermore, if condition 4 is strength-
ened to be V (x) < 0, then the value of the function must fall to zero
and, by condition 1, the state also goes to zero. The stability theorem,
which is the basis for Lyapunov’s second method, states that

Lyapunov’s second
method

If a Lyapunov function can be found for a system, then the
motion is stable and, furthermore, if V(x) < 0, the motion
is asymptotically stable. The second method is to search for a
Lyapunov function.

The hard part for the application of this theory is the statement “If
a Lyapunov function can be found.” Only in the linear case is a pre-
scription given for finding a Lyapunov function; otherwise the theory
only gives the engineer a hunting license to look for such a function.
We are now in a position to consider the indirect method for stability of
Eq. (9.58).

Perhaps because energy in simple systems is a sum of the squares of
the variables, for this problem, Lyapunov considers a quadratic candi-
date for V by assuming that a symmetric positive definite matrix P can
be found and the function defined as V(x) = xT Px. Clearly the first
three conditions are satisfied by this function; the fourth condition must
be tested before it can be concluded that we have a Lyapunov function.
The calculation of V̇ is

V(x) = xT Px, (9.60)

V̇(x) = ẋT Px+ xT Pẋ (9.61)

= (Ax+ g(x))T Px+ xT P(Ax+ g(x)) (9.62)

= xT (AT P+ PA)x+ 2xT Pg(x). (9.63)

A basic matrix result, known as a Lyapunov equation, is

AT P+ PA = −Q, (9.64)
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and he showed that if A is a stability matrix having all its eigenvalues
in the LHP, then for any positive definite matrix Q, the solution P of
this equation will also be positive definite. The argument from here is to
select Q and solve for P. Then, if the eigenvalues of A are in the LHP, P
will be positive definite, so V(x) is a possible Lyapunov function and

V̇(x) = −xT Qx + 2xT Pg. (9.65)

The final part of the argument is to note that, by Eq. (9.59), if x is
small enough, then the first term of Eq. (9.65) will dominate, the fourth
condition is satisfied, V is a Lyapunov function, and the system has
been proven to be stable. Note the requirement that x be small enough
guarantees only that there is a neighborhood of the origin which is sta-
ble. Further conditions are needed to show that the bowl defined by V
extends to∞ in all directions as ||x|| tends to∞ (and not before!), so
stability holds for all states and is “in the large.”

There is also an instability theorem which shows that if any eigen-
value of A is in the RHP, then the origin will be unstable. If all the poles
of A are in the LHP except for some simple poles on the imaginary axis,
then stability depends on further properties of the nonlinear terms, g(x).
With this result in hand, the first or indirect method of Lyapunov can
be stated:Lyapunov’s first method

1. Find the linear approximation and compute the eigenvalues of A.
2. If all the eigenvalues are in the LHP, then there is a region of

stability about the origin.
3. If at least one of the eigenvalues is in the RHP, then the origin is

unstable.
4. If there are simple eigenvalues on the imaginary axis and all other

values are in the LHP, then no statement about stability can be
made based on this method.

EXAMPLE 9.15 Lyapunov Stability for a Second-Order System

Use Lyapunov’s method to find conditions for the stability of a second-
order linear system described by the state matrix

A =
[ −α β

−β −α
]

.

Solution. For the linear case, we can take any positive definite Q we
like; the simplest is Q = I. The corresponding Lyapunov equation is[ −α −β

β −α
] [

p q
q r

]
+
[

p q
q r

] [ −α β

−β −α
]
=
[ −1 0

0 −1

]
.

(9.66)
Multiplying out Eq. (9.66) and equating coefficients, we get

−αp− βq− αp− βq = −1, (9.67)

−αq− βr+ βp− αq = 0, (9.68)

βq− αr+ βq− αr = −1. (9.69)
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Equations (9.67) to (9.69) are readily solved to get p = r = 1/2α, q = 0,
so

P =
[ 1

2α 0
0 1

2α

]
,

and the determinants are 1/2α > 0 and 1/4α2 > 0. Thus P > 0, so we
conclude that the system is stable if α > 0.

For systems with many state variables and nonnumeric parame-
ters, solution of the Lyapunov equation can be burdensome, but the
result is an equivalent alternative to Routh’s method for computing the
conditions for stability in a system with literal parameters.

EXAMPLE 9.16 Lyapunov’s Direct Method for a Position Feedback System

Consider the position feedback system modeled in Fig. 9.39. Illustrate
the use of the direct method on this nonlinear system. Simulate the sys-
tem using Simulink, assuming T = 1, and evaluate the step response of
the system.

Solution. We assume the actuator, which is perhaps only an amplifier
in this case, has a significant nonlinearity, which is shown in the figure
as a saturation but is possibly more complex. We will assume only that
u = f (e), where the function lies in the first and third quadrants so that∫ e

0 f (e) de > 0. We also assume f (e) = 0 implies that e = 0, and we
will assume T > 0, so the system is open-loop stable. The equations of
motion are

ė = −x2, (9.70a)

ẋ2 = − 1
T

x2 + f (e)
T

. (9.70b)

For a Lyapunov function, consider something like kinetic plus potential
energy:

V = T
2

x2
2 +
∫ e

0
f (σ ) dσ . (9.71)

Clearly, V = 0 if x2 = e = 0 and, because of the assumptions about f ,
V > 0 if x2

2 + e2 �= 0. To see whether the V in Eq. (9.71) is a Lyapunov
function, we compute V̇ as follows:

V̇ = Tx2ẋ2 + f (e)ė

= Tx2

[
− 1

T
x2 + f (e)

T

]
+ f (e)(−x2)

= −x2
2.

Hence V̇ ≤ 0 and the origin is Lyapunov stable. Moreover, V̇ is always
decreasing if x2 �= 0, and Eq. (9.70b) indicates that the system has no
trajectory with x2 ≡ 0, except x2 = 0. Thus we can conclude that the
system is asymptotically stable for every f that satisfies two conditions:
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Figure 9.48
Step response for
position control system
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∫

f dσ > 0 and (2) f (e) = 0 implies that e = 0. The Simulink dia-
gram for the system is shown in Fig. 9.47 for T = 1. The step response
of the system is shown in Fig. 9.48.

As we mentioned earlier, the study of the stability of nonlinear sys-
tems is vast, so we have only touched here on some important points and
methods. Further material for study can be found in LaSalle and Lef-
schetz (1961), Kalman and Bertram (1960), Vidyasagar (1993), Khalil
(2002), and Sastry (1999).

Lyapunov Redesign of Adaptive Control

One of the classical applications of Lyapunov stability theory to control
is a technique known as Lyapunov redesign. The idea is to construct
the system with some key control parameters unspecified, propose a
candidate Lyapunov function, then select the available components to
force the candidate to succeed and be an actual Lyapunov function
from which stability can be concluded. The method was applied in an
early paper by Parks (1966) to a model reference adaptive control sys-
tem. A block diagram of the simple system first considered is drawn in
Fig. 9.49.

In this system, the model and the plant have the same dynamics
but different gains. The objective is to adjust the control gain, Kc, so
KcKp = Km, and the plant output, yp, will equal the model output, ym.
A proposed heuristic rule, known as the “MIT” rule, was based on the

Figure 9.49
Block diagram of a
simple model reference
adaptive control system ©
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idea that if we define the cost as the square of the instantaneous error
and move Kc so as to make this cost smaller, the result should drive Kc
to the right value. If the gradient of the cost is positive (pointing uphill,
so to speak), the gain should be reduced, and if the gradient is negative,
the gain should be increased. Thus the time derivative of the gain should
be proportional to the negative of the gradient. In equation form,

J = e2, (9.72)

∂J
∂Kc
= 2e

∂e
∂Kc

, (9.73)

dKc

dt
= −Be

∂e
∂Kc

, (9.74)

where B is the “adaptive gain” to be chosen. From the block diagram,

E(s) = KcKp − Km

Ts+ 1
R(s), (9.75)

∂E
∂Kc
= Kp

Ts+ 1
R (9.76)

= Kp

Km
Ym. (9.77)

If we substitute the result of Eq. (9.77) into Eq. (9.74), the result is the
MIT rule,

dKc

dt
= −B′eYm, (9.78)

where there is a new adaptive gain, B′. Unfortunately, the stability of
this rule is not established, and some analysis showed that it could be
unstable under reasonable circumstances, such as if there are unmod-
eled dynamics or disturbances. Parks proposed that Lyapunov redesign
would be a better idea and also proposed that, rather than taking K̇c
given by Eq. (9.74), this choice be made in a way that guarantees sta-
bility. His idea begins with the differential equations where r = ro is a
constant:

Tė+ e = (KcKp − Km)ro, (9.79)

K̇c = −B′eYm. (9.80)

To simplify things, the definition is made that x = (KcKp − Km) and
ẋ is to be found. Parks selects V = e2 + λx2 as a candidate Lyapunov
function and computes

V̇ = 2eė+ 2λxẋ (9.81)

= 2e
(xro

T
− e

T

)
+ 2λxẋ. (9.82)

If ẋ in the last equation is selected to be ẋ = − ero
λT , then V̇ = −2 e2

T ,
the conditions for a Lyapunov function are satisfied, and stability is
assured for the given assumptions. Working back, we find that the new
algorithm is

K̇c = −B′′ero. (9.83)
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Figure 9.50
Block diagram of
adaptive control of a
motor
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Obviously, this result does not address issues arising from unmodeled
dynamics or disturbances, but the principle is clear: Leaving key control
equations to be defined so as to obtain a Lyapunov function can put the
stability of a system on a firm foundation.

As a second example of Lyapunov redesign, consider the adaptive
control of a motor shown in Fig. 9.50. Defining the model output as ym
and the plant output as yp, the equations are

ÿm + 2ζωnẏm + ω2
nym = ω2

nr, (9.84)

ÿp + 2ζωnẏp + ω2
nyp = KcKpω

2
n(r− yp)+ ω2

nyp. (9.85)

(In the equation for yp, the term ω2
nyp has been added to both sides to

make the error equation simpler.) The error is defined as e = ym − yp
and an equation for error can be obtained by subtracting the equation
for yp from that for ym. The result is

ë+ 2ζωnė+ ω2
nye = ω2

n(1− KcKp)(r− yp). (9.86)

The idea now is to find an equation for Kc that will result in a Lyapunov
function for the error equation. To simplify the calculation, we define
the parameter x = 1 − KcKp, for which ẋ = −KpK̇c and in terms of
which the error equation is

ëp + 2ζωnė+ ω2
ne = ω2

nx(r− yp). (9.87)

At this point, Parks suggests consideration of V = e2 + αė2 + βx2 as
a possible function. We need to find ẋ so this V will be a Lyapunov
function. The equation for the derivative is

V̇ = 2eė+ 2αėë+ 2βxẋ (9.88)

= 2eė+ 2αė{−2ζωnė− ω2
ne+ ω2

nx(r− yp)} + 2βxẋ (9.89)

= −4αζωnė2 + 2eė(1− αω2
n)+ x{2αėω2

n(r− yp)+ 2βẋ}. (9.90)

If we take 1− αω2
n = 0 and 2αėω2

n(r− yp)+ 2βẋ = 0, then the equation
for V̇ simplifies to V̇ = −4αζωnė2, which is always negative, and V is
a Lyapunov function and the system is stable. Substituting for x, we get
the adaptive control law
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Figure 9.51
Block diagram of a
nonlinear system

Time-varying

nonlinearity

G(s)©
-

+ y

yf(t, y)y

r K 0

K̇c = −β ′ė(r− yp), (9.91)

where β ′ is a new constant equal to αω2
n

Kpβ
. Clearly, we have only touched

on Lyapunov’s theory of stability, and our examples of redesign are
ancient history from 1966, but they illustrate the principle very well and
give a good start to further study of this important area.

9.5.3 The Circle Criterion
A nonlinear system with only one single-input–single-output nonlin-
earity may be represented as shown in Fig. 9.51 by drawing the block
diagram from the points of the input and output of the nonlinearity. In
the literature, this is referred to as the Lur’e problem after the Soviet
scientist who first studied it.

We assume the system is unforced and thus r ≡ 0. It is possible to
derive a graphical sufficient condition for stability of such systems. Even
though this method is practical, it may lead to conservative results in
some cases, although extensions exist that yield less conservative results
(see Safonov and Wyetzner 1987). First, we define sector conditions for
memoryless nonlinearities.

Sector Conditions

A function f (x) with a scalar input and a scalar output belongs to the
sector [k1, k2] if, for all inputs x,

k1x2 ≤ f (x)x ≤ k2x2. (9.92)

This relationship may be rewritten as

k1 ≤ f (x)
x
≤ k2, x �= 0. (9.93)

Basically, the definition says that the graph of f (x) lies between two
straight lines of slopes k1 and k2 going through the origin, as shown in
Fig. 9.52. In this definition, k1 and k2 are allowed to be −∞ or +∞.
Note that the sector conditions place no limits on the incremental gain
or slope of the function f (x). The ensuing examples illustrate how k1
and k2 are determined.

EXAMPLE 9.17 Computation of a Sector for Signum Nonlinearity

Determine a sector that contains the signum function y = f (u), shown
in Fig. 9.6(b).
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Figure 9.52
Output of the
nonlinearity confined in
a sector

f(t, y)y

Slope k2

Slope k1

y

Solution. Since sgn(0) = 0, we know the only line going through the
origin that bounds the signum function from above is the y-axis, corre-
sponding to a slope of k2 = ∞. Similarly, the line going through the
origin that bounds the signum function from below has a slope of zero
and corresponds to the x-axis; therefore, k1 = 0. Hence, the sector for
the signum function is [0,∞].

EXAMPLE 9.18 Sector for a Saturation Nonlinearity

Consider the saturation nonlinearity shown in Fig. 9.53. Determine a
sector for this function.

Figure 9.53
Sector for saturation

Output

Input
0.1

0.1
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Solution. The function is bounded above by a line of slope 1, k2 = 1,
and is bounded below by the x-axis, k1 = 0, as shown in the figure.
Therefore, the sector for this function is [0, 1].

Circle Criterion

In 1949, the Russian scientist Aizermann conjectured that if a Lur’e
system is stable with f replaced by any linear gain between the limits
k1 < k < k2, then the system will be stable, with the gain replaced by
a nonlinearity in the sector [k1, k2]. That means if a single-loop (strictly
proper) continuous-time feedback system as shown in Fig. 9.51 with a
linear forward path (A, B, C) is stable for all linear fixed feedback gains
k in the range k1 < k < k2, such that the resultant closed-loop system
matrix A + kBC is stable, then the nonlinear system having a memory-
less nonlinear time-varying feedback term f (t, y) in the sector [k1, k2],
shown in Fig. 9.51, is also stable. Unfortunately, this conjecture is not
true as counterexamples exist.7 However, a variation of Aizermann’s
conjecture is true and is known as the circle criterion.

Rather than giving a rigorous proof of the criterion, we describe
a heuristic argument that gives insight into the problem and moti-
vates the proof. An electric circuit with a linear impedance, Z( jω) =
R(ω) + jX(ω), is described by Ohm’s law as V = IZ(s). We assume
Z is composed of real components, which means that the real part R
is even and the imaginary part X is odd; that is R(−ω) = R(ω) and
X(−ω) = −X(ω). If R(ω) � δ > 0 for all ω, the impedance is called
strictly passive. It will dissipate energy. The instantaneous power into
the circuit is p = v(t)i(t), and the total energy absorbed by the circuit
is e = ∫∞0 v(t)i(t) dt. Referring to the figure, Ohm’s law is equivalent to
the plant equation Y = UG(s) with Y as voltage, U as current, and
G(s) = R+ jX as the impedance. Applying the expression for energy to
the plant equation and using the theorem by Parseval8 to convert this
to the frequency domain yields

∫ ∞
0

y(t)u(t) dt = 1
2π

∫ ∞
−∞

U( jω)Y(−jω) dω (9.94)

= 1
2π

∫ ∞
−∞

U( jω)U(−jω)G(−jω) dω (9.95)

= 1
2π

∫ ∞
−∞
|U( jω)|2 (R− jX) dω (9.96)

= 1
2π

∫ ∞
−∞
|U( jω)|2 R(ω) dω. (9.97)

7Aizermann’s conjecture spurred a lot of research in this area and led to the development
of the Kalman–Yakubovich–Popov lemma, giving state-space conditions for a passive
system. The lemma is used in a proof of the circle criterion.
8See Appendix A.
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In the last step, the fact that X is odd was used. At this point, the
use of more or less conventional notation will simplify the equations
substantially. We define inner products and norms as∫ ∞

0
y(t)u(t) dt = < y, u >, (9.98)

‖u‖2 =
∫ ∞

0
[u(t)]2 dt =< u, u > . (9.99)

With this notation, and with the assumption that R � δ > 0, Eq. (9.97)
is reduced to

< y, u > � δ ‖u‖2 . (9.100)

Turning now to the nonlinear component, using the same concept of
“energy” and assuming that f is in the sector [0, K], we have

∫ ∞
0

y(t)f (y, t) dt =
∫ ∞

0

[ f (y, t)]2

f ( y, t)
y(t)

dt (9.101)

� ‖f ( y, t)‖2
K

(9.102)

� ‖u(t)‖
2

K
. (9.103)

The assumption now is that if the total energy given by the sum of
Eq. (9.100) and Eq. (9.102) is positive, then the system must be stable, as
energy is being steadily lost. The actual value of the energy lost would
be equal to the initial energy stored in the elements of the system. From

this one would conclude that if δ‖u‖2 + ‖u(t)‖2K > 0, then the system is
stable. Thus, the criterion is

δ ‖u‖2 + ‖u(t)‖
2

K
> 0, (9.104)

[
Re{G( jω)} + 1

K

]
‖u(t)‖2 > 0, (9.105)

Re{KG( jω)+ 1} > 0. (9.106)

In deriving Eq. (9.106), the assumption was made that the nonlinear-
ity was in a zero sector, [0, K]. If the function is actually in the sector
[k1, k2], it can be reduced to a zero sector by adding and subtract-
ing k1 in the block diagram as shown in Fig. 9.54. With this change,
the dynamic system is replaced by H = G

1+k1G and the function by
f ′ = f − k1, which is in the sector [k2 − k1, 0]. With these changes,
the stability criterion is transformed to

Re
{

1+ (k2 − k1)
G

1+ k1G

}
> 0, (9.107)

Re

{
1+ k1G + (k2 − k1)G

1+ k1G

}
> 0, (9.108)
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Figure 9.54
Block diagram
manipulation for sector

+
-

u(t) y(t)

v(t) = f(y)

Function

Gain1

Gain

Transfer fcnRepeating

sequence stair

1

G(s)

-
+

-
+

k1

k1

f(u)

Re
{

1+ k2G( jω)
1+ k1G( jω)

}
> 0. (9.109)

A bilinear function such as F = 1+ k2G( jω)
1+ k1G( jω) in Eq. (9.109) will map a cir-

cle in the F plane into another circle in the G plane (see Appendix WD,
available online at www.pearsonglobaleditions.com). In this case, the
acceptable region is Re{F} > 0, of which the boundary is the imaginary
axis, so the map is from the imaginary axis, a circle of infinite radius,
into a finite circle. Because the functions are real, the circle must be cen-
tered on the real axis and we need only locate the two points on the real
axis. For example, when F = 0, we have 1 + k2G = 0 or G = − 1

k2
.

The other point on the real axis is when the function is infinite, at which
point 1+k1G = 0 or G = − 1

k1
. Thus the circle in the G plane is centered

on the real axis and goes through the points
[
− 1

k2
,− 1

k1

]
as plotted in

Fig. 9.55. Since F had to avoid the LHP, if we set F = −1, which is in
the forbidden region, and solve, we find that G = −2

k1+k2
, which is inside

the circle, from which we conclude that the system will be stable if the
plot of G( jω) avoids this circle.

The actual theorem is as follows:
The nonlinear system described is asymptotically stable given that

1. f (t, y) lies in the sector [k1, k2] with 0 ≤ k1 < k2 and

Figure 9.55
Illustration of circle
criterion

Im(L)

Re(L)

1-
k1

1-
k2

www.pearsonglobaleditions.com
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2. the Nyquist plot of the transfer function G( jω) = C( jωI − A)−1B
does not intersect or encircle the “critical circle,” which is cen-
tered on the real axis and passes through the two points −1/k1 and
−1/k2, as shown in Fig. 9.55.

In effect, the usual Nyquist “−1” point is replaced by the critical
disk. This result is known as the circle criterion or circle theorem andCircle criterion
is due to Sandberg (1964) and Zames (1966). Note these conditions are
sufficient but not necessary, because intersection of the transfer function
G(s) with the circle as defined does not prove instability. The critical
circle is centered at

c = 1
2

[
− 1

k1
− 1

k2

]
= −k1 + k2

2k1k2
,

and has a radius of
k2 − k1

2k1k2
.

If k1 = 0, then the critical circle degenerates into a half plane defined
by Re {G} � −1/k2.

The circle criterion and the describing function are related. In fact,
for the case of time-invariant odd nonlinearities that are within a sector
and whose describing functions are real, the describing function satisfies
the relationship

k1 ≤ Keq(a) ≤ k2 for all a, (9.110)

so

− 1
k1
≤ − 1

Keq(a)
≤ − 1

k2
, (9.111)

and the plot of the negative reciprocal of the describing function will
lie inside the critical circle. This can be seen by the following lower and
upper bounds:

Keq(a) = 2
πa

∫ π

0
f (a sin(ωt)) sin(ωt) d(ωt)

≥ 2k1

π

∫ π

0
sin2(ωt) d(ωt) = k1, (9.112)

Keq(a) = 2
πa

∫ π

0
f (a sin(ωt)) sin(ωt) d(ωt)

≤ 2k2

π

∫ π

0
sin2(ωt) d(ωt) = k2. (9.113)

The equivalent gain analysis and describing functions yield the
same results. If we take the gain of the describing function, then the
amplitude of the limit cycle can be predicted as with the describing
functions. Both equivalent gain techniques can be used to determine
stability, but as we have seen, the circle criterion allows for time-varying
nonlinearities.
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Figure 9.56
Nyquist plot and circle
criterion

0

Im(G)

Re(G)

-0.1j

+0.1j

-0.5-1

v= 1

a = 0.63

Nyquist plot

EXAMPLE 9.19 Determination of Stability Using the Circle Criterion

Consider the system in Example 9.7. Determine the stability properties
of the system using the circle criterion.

Solution. The related sector is the same one found in Example 9.18.
The critical circle degenerates into a half plane defined by Re(G) ≤ −1,
as shown in Fig. 9.56. Since the Nyquist plot lies entirely to the right of
the critical circle, the system is stable.

9.6 Historical Perspective
Almost all physical dynamic systems are nonlinear; hence, it is not sur-
prising that the study of nonlinear systems has a long and rich history.
The study of nonlinear systems goes back to astronomy and the study of
the stability of the solar system dating back to Torricelli (1608–1647),
Laplace, and Lagrange. The field received a jolt of “energy” with the
doctoral dissertation of A. M. Lyapunov in Russia in 1892. He was try-
ing to solve the stability of rotating bodies of fluids posed by Poincaré
and recognized that if he could show that system-stored energy was
always decreasing, then the system would be stable and eventually come
to rest. The study of Lyapunov functions was introduced to the control
field in 1960 by Kalman and Bertram, and has evolved rapidly since
then.

Maxwell was the first to study stability by linearization about an
equilibrium point by the derivation of the linear model for the Watt’s
fly-ball governor and stating that the system will be stable if the char-
acteristic roots have negative real parts. Kochenburger derived the
describing function method in 1950 in an attempt to handle nonlinear-
ities based on frequency-response ideas. Lur’e proposed the absolute
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stability problem in 1944, and in 1961, Popov developed the circle cri-
terion for nonlinear stability analysis. Yakubovich (1962) and Kalman
(1963) later established connections between Lur’e and Popov’s results.

The study of adaptive control received a lot of attention during the
three decades of the 1960s, 1970s, and 1980s. Adaptive controllers are
both time varying and nonlinear in general. During the 1960s sensitivity
methods and the MIT rule for adaptive adjustments were developed by
Draper and others. Methods to study adaptive systems based on Lya-
punov’s methods and passivity were developed in the 1970s. Robust
adaptive control methods were studied in the 1980s. Also, there has
been a lot of research on systems, such as the weather, where a minute
change in initial conditions or parameters can cause drastic changes in
the response of the system. Such systems are said to be chaotic. In all
recent studies of nonlinear systems, the availability of powerful com-
puters to solve the equations and to graph the results has been critical.
Development of a general theory of nonlinear control continues to be a
dream of control theorists and is an ongoing quest.

SUMMARY

• The nonlinear equations of motion may be approximated by linear
ones by considering a small-signal linear model that is accurate near
an equilibrium.

• In many cases, the inverse of a nonlinearity may be used to linearize
a system.

• Nonlinearities without dynamics, such as saturation, can be ana-
lyzed using the root locus by considering the nonlinearity to be a
variable gain.

• The root-locus technique can be used to determine the limit-
cycle properties for memoryless nonlinearities, and yields the same
results as the describing function.

• The describing function is essentially a heuristic method with
the goal of finding a frequency-response function for a nonlinear
element.

• The stability of systems with a single nonlinearity can be studied
using the describing function method.

• The describing function can be used to predict periodic solutions in
feedback systems.

• The Nyquist plot together with the describing function can be used
to determine limit-cycle properties.

• The phase plane considers the time response directly by plotting the
trajectory of the state variables and allows nonlinear behavior to be
displayed.

• The stability of a nonlinear system in state-space description can be
studied by the methods of Lyapunov.

• The circle criterion provides a sufficient condition for stability.
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REVIEW QUESTIONS

9.1 Why do we approximate a physical model of the plant (which is always
nonlinear) with a linear model?

9.2 How would you linearize the nonlinear system equation for radiation
heat transfer Ṫ = T4 + T + u?

9.3 A lamp used as a thermal actuator has a nonlinearity such that the
experimentally measured output power is related to the input voltage by
P = V1.6. How would you deal with such a nonlinearity in feedback
control design?

9.4 What is integrator windup?

9.5 Why is an antiwindup circuit important?

9.6 Using the nonlinear saturation function having gain 1 and limits ±1,
sketch the block diagram of saturation for an actuator that has gain 7
and limits of ±20.

9.7 What is a describing function and how is it related to a transfer function?

9.8 What are the assumptions behind the use of the describing function?

9.9 What is a limit cycle in a nonlinear system?

9.10 How can one determine the describing function for a nonlinear system in
the laboratory?

9.11 What is the minimum-time control strategy for a satellite attitude control
with bounded controls?

9.12 How are the two Lyapunov methods used?

PROBLEMS

Problems for Section 9.2: Analysis by Linearization

9.1 An electric field transducer that can be used as a microphone or a speaker
can be described by the following equations:

Mechanical:

M
d2x

dt2
+ B

dx
dt
+ K(x− �)+ εo

2
A
(

v
x

)2
= f (t) (9.114)

Electrical:
d
dt

( εo
x

Av
)
= vs − v

R
(9.115)

where
M = mass of the moving plate,
B = damping coefficient,
K = spring constant,
x = separation of plates,
� = natural length of spring,
A = area of plate,
v = voltage across plates,
f = force on plate (input),
Vs= bias voltage,
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R = resistance
The output is

y = −R
d
dt

(
εoAv

x

)
. (9.116)

(a) Using the state variables x1 = x, x2 = ẋ, x3 = v
x , write the equations

in state variable form.
(b) Find the equations which describe equilibrium points for x and v if

f (t) = 0.
(c) Let the equilibrium points be X and V , and find a set of linearized

equations about X and V .

9.2 Figure 9.57 shows a simple pendulum system in which a cord is wrapped
around a fixed cylinder. The motion of the system that results is described
by the differential equation

(l + Rθ)θ̈ + g sin θ + Rθ̇2 = 0,

where

l = length of the cord in the vertical (down) position,

R = radius of the cylinder.

Figure 9.57
Motion of cord wrapped
around a fixed cylinder

R
u

l

l + Ru

(a) Write the state-variable equations for this system.
(b) Linearize the equation around the point θ = 0, and show for small

values of θ , the system equation reduces to an equation for a simple
pendulum—that is,

θ̈ + (g/�) = 0.

9.3 The circuit shown in Fig. 9.58 has a nonlinear conductance G such that
iG = g(vG) = vG(vG − 1)(vG − 4). The state differential equations are

di
dt
= −i + v,

Figure 9.58
Nonlinear circuit for
Problem 9.3

i

L = 1
iG

R = 1u

+

-
C = 1   y

+

-

-   yG +

G

'
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dv
dt
= −i + g(u− v),

where i and v are the state variables and u is the input.

(a) One equilibrium state occurs when u = 1, yielding i1 = v1 = 0. Find
the other two pairs of v and i that will produce equilibrium.

(b) Find the linearized model of the system about the equilibrium point
u = 1, i1 = v1 = 0.

(c) Find the linearized models about the other two equilibrium points.

9.4 Consider the circuit shown in Fig. 9.59; u1 and u2 are voltage and cur-
rent sources, respectively, and R1 and R2 are nonlinear resistors with the
following characteristics:

Resistor 1: i1 = G(v1) = v3
1,

Resistor 2: v2 = r(i2).

Figure 9.59
A nonlinear circuit

R2

x1

+

-

R1

 y2 +-

y1 -+

1 F
u1

(=1 V)

+

-

i1

i2 = x3

+

-

1 H
u2

(= 27 A)

1 F

+ x2  -

'

Here, the function r is defined in Fig. 9.60.

Figure 9.60
Nonlinear resistance

i2

y2

1

-1 0
Slope = 1/2

Slope = 1

(a) Show that the circuit equations can be written as

ẋ1 = G(u1 − x1)+ u2 − x3,

ẋ2 = x3,

ẋ3 = x1 − x2 − r(x3).

Suppose we have a constant voltage source of 1 volt at u1 and a con-
stant current source of 27 amps (that is, uo

1 = 1, uo
2 = 27). Find the
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equilibrium state xo = [ xo
1, xo

2, xo
3
]T for the circuit. For a par-

ticular input uo, an equilibrium state of the system is defined to be
any constant state vector whose elements satisfy the relation

ẋ1 = ẋ2 = ẋ3 = 0.

Consequently, any system started in one of its equilibrium states will
remain there indefinitely until a different input is applied.

(b) Due to disturbances, the initial state (capacitance, voltages, and
inductor current) is slightly different from the equilibrium, and so
are the independent sources; that is,

u(t) = uo + δu(t),
x(t0) = xo(t0)+ δx(t0).

Do a small-signal analysis of the network about the equilibrium
found in (a), displaying the equations in the form

δ
·
x1 = f11δx1 + f12δx2 + f13δx3 + g1δu1 + g2δu2.

(c) Draw the circuit diagram that corresponds to the linearized model.
Give the values of the elements.

9.5 Consider the nonlinear system

ẋ = −x2e− 1
x + sin u, x(0) = 1.

(a) Assume uo = 0 and solve for xo(t).
(b) Find the linearized model about the nominal solution in part (a).

9.6 Linearizing effect of feedback: We have seen that feedback can reduce the
sensitivity of the input–output transfer function with respect to changes
in the plant transfer function, and reduce the effects of a disturbance act-
ing on the plant. In this problem, we explore another beneficial property
of feedback: It can make the input–output response more linear than the
open-loop response of the plant alone. For simplicity, let us ignore all
the dynamics of the plant and assume the plant is described by the static
nonlinearity

y(t) =
{

u, u ≤ 1,
u+ 1

2 , u > 1.

(a) Suppose we use proportional feedback

u(t) = r(t)+ α(r(t)− y(t)),

where α ≥ 0 is the feedback gain. Find an expression for y(t) as a
function of r(t) for the closed-loop system. (This function is called the
nonlinear characteristic of the system.) Sketch the nonlinear transfer
characteristic for α = 0 (which is really open loop), α = 1, and α = 2.

(b) Suppose we use integral control:

u(t) = r(t)+
t∫

0

(r(τ )− y(τ ))dτ .
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The closed-loop system is therefore nonlinear and dynamic. Show
that if r(t) is a constant, say r, then lim

t→∞y(t) = r. Thus, the integral

control makes the steady-state transfer characteristic of the closed-
loop system exactly linear. Can the closed-loop system be described
by a transfer function from r to y?

9.7 This problem shows that linearization does not always work. Consider
the system

ẋ = αx3, x(0) �= 0.

(a) Find the equilibrium point and solve for x(t).
(b) Assume α = 1. Is the linearized model a valid representation of the

system?
(c) Assume α = −1. Is the linearized model a valid representation of the

system?

9.8 Consider the object moving in a straight line with constant velocity
shown in Fig. 9.61. The only available measurement is the range to the
object. The system equations are

⎡
⎣

ẋ
v̇
ż

⎤
⎦ =
⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦
⎡
⎣

x
v
z

⎤
⎦ ,

where

z = constant,

ẋ = constant = v0,

r =
√

x2 + z2.

Derive a linear model for this system.

Figure 9.61
Diagram of the moving
object for Problem 9.8

Object

z

x
0

Problems for Section 9.3: Equivalent Gain Analysis Using the
Root Locus

9.9 Consider the third-order system shown in Fig. 9.62.

(a) Sketch the root locus for this system with respect to K, showing your
calculations for the asymptote angles, departure angles, and so on.

(b) Using graphical techniques, locate carefully the point at which the
locus crosses the imaginary axis. What is the value of K at that point?
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Figure 9.62
Control system for
Problem 9.9

Y

-

+
KR

s3

(s + 1)2e u
©

(c) Assume due to some unknown mechanism, the amplifier output
is given by the following saturation non-linearity (instead of by a
proportional gain K):

u =
⎧⎨
⎩

e, |e| ≤ 1,
1, e > 1,
−1, e < −1.

Qualitatively describe how you would expect the system to
respond to a unit-step input.

9.10 Consider the system with the plant transfer function

G(s) = 1

s2 + 1
.

We would like to use PID control of the form

Dc(s) = 10
(

1+ 1
2s
+ 2s
)

,

to control this system. It is known that the system’s actuator is a sat-
uration nonlinearity with a slope of unity and |u| ≤ 10. Compare the
system response for a step input of size 10 with and without antiwindup
circuit. Plot both the step response and the control effort using Simulink.
Qualitatively describe the effect of the antiwindup circuit.

9.11 Consider the system with the open-loop plant

G(s) = 1

(s+ 1)3

and the nominal PID controller

Dc(s) = 2+ 1
s
+ s

0.01s+ 1

The system has an actuator saturation nonlinearity with the slope of one
and |u| ≤ 2. Design an antiwindup scheme for this feedback system.
Compare the step responses and control efforts for the system with and
without antiwindup.

Problems for Section 9.4: Equivalent Gain Analysis Using
Frequency Response: Describing Functions

9.12 Compute the describing function for the relay with dead-zone nonlinear-
ity shown in Fig. 9.6(c).

9.13 Compute the describing function for gain with dead-zone nonlinearity
shown in Fig. 9.6(d).
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9.14 Compute the describing function for the preloaded spring or Coulomb
plus viscous friction nonlinearity shown in Fig. 9.6(e).

9.15 Consider the quantizer function shown in Fig. 9.63 that resembles a
staircase. Find the describing function for this nonlinearity then write
a Matlab .m function to generate it.

Figure 9.63
Quantizer nonlinearity
for Problem 9.15

d1 d2 d3 d4

h

u

q

2q

3q

4q

y

9.16 Derive the describing function for the ideal contactor controller shown
in Fig. 9.64. Is it frequency dependent? Would it be frequency dependent
if it had a time delay or hysteresis? Graphically sketch the time histo-
ries of the output for several amplitudes of the input and determine the
describing function values for those inputs.

Figure 9.64
Contactor for
Problem 9.16

Output

Input
d

T

9.17 A contactor controller of an inertial platform is shown in Fig. 9.65, where

I = 0.1 kg ·m2,
I
B
= 10 sec,

h
c
= 1,

J
c
= 0.01 sec, τL = 0.1 sec, τf = 0.01 sec,
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Figure 9.65
Block diagram of the
system for Problem 9.17 Is + B

1
s
1

d

T

Motor and controller
Gimballed

Gyro

wv

wmK
tLs + 1

tf s + 1
h

cs(    s + 1)J
c

d = 10−5 rad, T = 1 N ·m.

The required stabilization resolution is approximately 10−6 rad:

Kϕm > d for ϕm > 10−6 rad.

Discuss the existence, amplitude, and frequency of possible limit cycles as
a function of the gain K and the DF of the controller. Repeat the problem
for a deadband with hysteresis.

9.18 Nonlinear Clegg Integrator: There have been some attempts over the years
to improve upon the linear integrator. A linear integrator has the disad-
vantage of having a phase lag of 90◦ at all frequencies. In 1958, J. C. Clegg
suggested that we modify the linear integrator to reset its state, x, to zero
whenever the input to the integrator, e, crosses zero (that is, changes sign).
The Clegg integrator has the property that it acts like a linear integrator
whenever its input and output have the same sign. Otherwise, it resets its
output to zero. The Clegg integrator can be described by

x(t) = e(t), if e(t) �= 0,
x(t+) = 0, if e(t) = 0,

where the latter equation implies that the state of the integrator, x, is reset
to zero immediately after e changes sign. It can be implemented with op-
amps and diodes. A potential disadvantage of the Clegg integrator is that
it may induce oscillations.

(a) Sketch the output of the Clegg integrator if the input is e = a sin(ωt).
(b) Prove that the DF for the Clegg integrator is

N(a,ω) = 4
πω
− j

1
ω

.

and this amounts to a phase lag of only 38◦.

Problems for Section 9.5: Analysis and Design Based on Stability�
9.19 Compute and sketch the optimal reversal curve and optimal control for

the minimal-time control of the plant

ẋ1 = x2,

ẋ2 = −x2 + u,

|u| ≤ 1.

Use the reverse-time method and eliminate the time.
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9.20 Sketch the optimal reversal curve for the minimal-time control with |u| ≤
1 of the linear plant

ẋ1 = x2,

ẋ2 = −2x1 − 3x2 + u.

9.21 Sketch the time-optimal control law for

ẋ1 = x2,

ẋ2 = −x1 + u,

|u| ≤ 1,

and show a trajectory for x1(0) = 3 and x2(0) = 0.

9.22 Consider the thermal control system shown in Fig. 9.66. The physical
plant can be a room, an oven, etc.

(a) What is the limit-cycle period?
(b) If Tr is commanded as a slowly increasing function, sketch the output

of the system, T . Show the solution for Tr “large.”

Figure 9.66
Thermal system for
Problem 9.22

+

-

yTr
T

N

h

e B

s + a

1

Sensor

©

9.23 Several systems, such as a spacecraft, a spring-mass system with resonant
frequency well below the frequency of switching, and a large motor-
driven load with very small friction can be modeled as just an inertia.
For an ideal switching curve, sketch the phase portraits of the system.
The switching function is e = θ + τω. Assume τ = 10 sec and the control
signal = 10−3 rad/ sec2. Now sketch the results with

(a) deadband,
(b) deadband plus hysteresis,
(c) deadband plus time delay T ,
(d) deadband plus a constant disturbance.

9.24 Compute the amplitude of the limit cycle in the case of satellite attitude
control with delay

I θ̈ = N u(t−�),
using

u = −sgn(τ θ̇ + θ).
Sketch the phase-plane trajectory of the limit cycle and time history of θ
giving the maximum value of θ .
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9.25 Consider the point mass pendulum with zero friction as shown in
Fig. 9.67. Using the method of isoclines as a guide, sketch the phase-
plane portrait of the motion. Pay particular attention to the vicinity of
θ = π . Indicate a trajectory corresponding to spinning of the bob around
and around rather than oscillating back and forth.

Figure 9.67
Pendulum for
Problem 9.25

lu

M

9.26 Draw the phase trajectory for a system

ẍ = 10−6 m/ sec2

between ẋ(0) = 0, x(0) = 0, and x(t) = 1 mm. Find the transition time tf
by graphical means from the parabolic curve by comparing your solution
with two different interval sizes and the exact solution.

9.27 Consider the system with equations of motion

θ̈ + θ̇ + sin θ = 0.

(a) What physical system does this correspond to?
(b) Draw the phase portraits for this system.
(c) Show a specific trajectory for θ(0) = 0.5 rad and θ̇ = 0.

9.28 Consider the nonlinear upright pendulum with a motor at its base as an
actuator. Design a feedback controller to stabilize this system.

9.29 Consider the system
ẋ = − sin x.

Prove that the origin is an asymptotically stable equilibrium point.

9.30 A first-order nonlinear system is described by the equation ẋ = −f (x),
where f (x) is a continuous and differentiable nonlinear function that
satisfies the following:

f (0) = 0,

f (x) > 0, for x > 0,

f (x) < 0, for x < 0.

Use the Lyapunov function V(x) = x2/2 to show that the system is stable
near the origin (x = 0).

9.31 Use the Lyapunov equation

AT P+ PA = −Q = −I,
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Figure 9.68
Control system for
Problem 9.31

+
-

R(s) = 0

(s + 4)(s -  1)

K
Y(s)©

to find the range of K for which the system in Fig. 9.68 will be stable.
Compare your answer with the stable values for K obtained using Routh’s
stability criterion.

9.32 Consider the system

d
dt

[
x1
x2

]
=
[

x1 + x2u
x2(x2 + u)

]
, y = x1.

Find all values of α and β for which the input u(t) = αy(t)+β will achieve
the goal of maintaining the output y(t) near 1.

9.33 Consider the nonlinear autonomous system

d
dt

⎡
⎣

x1
x2
x3

⎤
⎦ =
⎡
⎣

x2(x3 − x1)

x2
1 − 1
−x1x3

⎤
⎦ .

(a) Find the equilibrium point(s).
(b) Find the linearized system about each equilibrium point.
(c) For each case in part (b), what does Lyapunov theory tell us about

the stability of the nonlinear system near the equilibrium point?

9.34 Consider the circuit shown in Fig. 9.69. For what diode characteristics
will this system be stable?

Figure 9.69
Circuit diagram for
Problem 9.34

iC iC

C L iL V

-

+

9.35 Van der Pol’s equation: Consider the system described by the nonlinear
differential equation

ẍ+ ε(1+ x2)ẋ+ x = 0

with the constant ε > 0. This nonlinear equation represents the model of
electrical activity of the heart and oscillations in some electrical circuits.

(a) Show that the equations can be put in the form [Liénard or (x,y)
plane]

ẋ = y+ ε
(

x3

3
− x

)
,

ẏ = −x.
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(b) Use the Lyapunov function V = 1
2

(
x2 + ẋ2

)
, and sketch the region

of stability as predicted by this V in the Liénard plane.
(c) Plot the trajectories of part (b) and show the initial conditions that

tend to the origin. Simulate the system in Simulink using various ini-
tial conditions on x(0) and ẋ(0). Consider two cases, with ε = 0.5
and ε = 1.0.

9.36 Duffing’s equation: Consider the system described by the nonlinear
differential equation

ẍ+ kẋ+ εx3 = u,

where u = A cos(t). This equation represents the model of a hard spring
where k is the spring constant and if ε > 0, the spring gets stiffer as the
displacement increases. Let k = 0.05, ε = 1, and A = 7.5.

(a) Build a simulation of the system in Simulink. Show the system
response can be very sensitive to slight perturbations on the initial
conditions x(0), ẋ(0) (the system is said to be chaotic). Simulate the
response of the system with x(0) = 3 and ẋ(0) = 4 for t = 30
sec. Repeat the simulation for slightly perturbed initial conditions
x(0) = 3.01 and ẋ(0) = 4.01. Compare the two results.

(b) Consider the unforced Duffing equation (u = 0). Plot the time
response of the system for x(0) = 1, ẋ(0) = 1 for t = 200 sec. Draw
the phase-plane plot for the system. Show the origin is an equilibrium
point.

(c) Now consider the forced Duffing equation (u �= 0). Find the solution
to the Duffing equation for x(0) = −1, ẋ(0) = 1 for t = 30 sec. Draw
the phase-plane plot (ẋ(t) versus x(t)) for this case.

(d) Repeat part (c) for k = 0.25, ε = 1, and A = 8.5.
(e) Repeat part (c) for k = 0.1, ε = 1, and A = 11.
(f) We can get more insight into the system by plotting ẋ(tj) versus x(tj)

at several hundred points at 2π periodic observation times. In other
words, rather than looking at the system continuously, we “strobe”
the system and plot the behavior at strobe times only. Show that
unlike the phase-plane plots in parts (c)-(e), the points fall on a well-
structured plot referred to as a Poincaré section (also called a strange
attractor). Plot the Poincaré sections for parts (c)-(e). Simulate the
system using the initial conditions x(0) = −1 and ẋ(0) = 1 for
t = 10, 000 sec in order to plot the Poincaré sections.

(g) What can you conclude about the nature of the solution of the
Duffing equation from the results of the previous parts?

(h) Characterize the system behavior in terms of the ranges of the system
parameters k, ε, and A.
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Principles and Case
Studies

A Perspective on Design Principles
In Chapters 5, 6, and 7, we presented techniques for analyzing
and designing feedback systems based on the root-locus, frequency-
response, and state-variable methods. Thus far, we have had to
consider somewhat isolated, idealized aspects of larger systems and
to focus on applying one analysis method at a time. In this chap-
ter, we return to the theme of Chapter 4—the advantages of feedback
control—to reconsider the overall problem of control systems design
with the sophisticated tools developed in Chapters 5 to 7 and 9
in hand. We will apply these tools to several complex, real-world
applications in a case study-type format.

Having an overarching, step-by-step design approach serves
two purposes: It provides a useful starting point for any real-world
controls problem, and it provides meaningful checkpoints once the
design process is underway. This chapter develops just such a general
approach, which will be applied in the case studies.

Chapter Overview
Section 10.1 opens the chapter with a step-by-step design process
that is sufficiently general to apply to any control design process,

751

Control System Design:
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but which also provides useful definitions and directions. We will
then apply the design process to four practical, complex applications:
design of an attitude control system for a satellite (Section 10.2),
lateral and longitudinal control of a Boeing 747 (Section 10.3), and
control of the fuel–air ratio in an automotive engine (Section 10.4),
control of a quadrotor drone (Section 10.5), and control of a rapid
thermal processing (RTP) system (Section 10.6). The satellite case
study is representative of the control of geosynchronous communi-
cations satellite systems. The study addresses the design of robust
control systems in which the physical parameters are known to vary
within a given range. In this system, the control system needs tomeet
specifications from the “beginning-of-life” (BOL) to the “end-of-life”
(EOL) that spans a period of 12–15 years. The satellite’s moment of
inertia and mass will vary as fuel is expended for attitude control, and
by deployment and re-orientation of satellite antennas.

The satellite case study illustrates the use of notch compensation
for a system with lightly damped resonances. We will see from this
case study that collocated actuator and sensor systems are much eas-
ier to control than noncollocated systems. The Boeing 747 case study
addresses the familiar flight control system of commercial passenger
aircraft. The nonlinear equations of motion are given and are lin-
earized about a particular flight condition. The rigid body dynamics,
longitudinal and lateral-directional, are each fourth order. Of course,
the flexiblemodes need also be considered for amore accuratemodel.
The Boeing 747 lateral-stabilization case study will illustrate the use
of feedback as an inner-loop designed to aid the pilot, who will pro-
vide the primary outer-loop control. The altitude control study will
show how to combine inner-loop feedback with outer-loop compen-
sation to design a complete control system. The air-to-fuel ratio
automotive case study is a real-world example that includes a nonlin-
ear, sensor and a pure time delay. We will use the describing function
method of Chapter 9 to analyze the behavior of this system. Another
familiar example to most airplane enthusiasts is the quadrotor drone.
This case study from an emerging field demonstrates how the four
control axes can be designed independently by proper commands to
the four rotors. The RTP case study from semiconductor wafer fabri-
cation is remarkably close to an industrial application. The problem
concerns temperature tracking and disturbance rejection for a highly
nonlinear thermal system. The actuator (lamp) is also nonlinear and
we will use the technique from Chapter 9 to try to cancel the effect of
this nonlinearity. Another key aspect of this system is actuator sat-
uration and the fact that the control signal cannot go negative. In
all these case studies, the designer needs to be able to use multiple
tools from previous chapters, including the root locus, the frequency
response, pole placement by state feedback, and (nonlinear) simula-
tion of time responses to obtain a satisfactory design. In Section 10.7,
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we will present a case study from the emerging field of systems biol-
ogy and describe chemotaxis or how Escherichia coli (E. coli) swims
away from trouble. Section 10.7 will provide a historical perspective
on applications of feedback control.

10.1 An Outline of Control Systems Design
Control engineering is an important part of the design process of many
dynamic systems. As suggested in Chapter 4, the deliberate use of feed-
back can stabilize an otherwise unstable system, reduce the error due
to disturbance inputs, reduce the tracking error while following a com-
mand input, and reduce the sensitivity of a closed-loop transfer function
to small variations in internal system parameters. In those situations for
which feedback control is required, it is possible to outline an approach
to control systems design that often leads to a satisfactory solution.

Before describing this approach, we wish to emphasize that the
purpose of control is to aid the product or process—the mechanism,
the robot, the chemical plant, the aircraft, or whatever—to do its job.
Engineers engaged in other areas of the design process are increasingly
taking the contribution of control into account early in their plans. As
a result, more and more systems have been designed so they will not
work at all without feedback. This is especially significant in the design
of high-performance aircraft, where control has taken its place along
with structures and aerodynamics as essential to assure that the craft
will even fly at all. It is impossible to give a description of such overall
design in this book, but recognizing the existence of such cases places in
perspective not only the specific task of control system design, but also
the central role this task can play in an enterprise.

Control system design begins with a proposed product or process
whose satisfactory dynamic performance depends on feedback for sta-
bility, disturbance regulation, tracking accuracy, or reduction of the
effects of parameter variations. We will give an outline of the design
process that is general enough to be useful whether the product is an
electronic amplifier or a large structure to be placed in earth orbit.
Obviously, to be so widely applicable, our outline has to be vague with
respect to physical details and specific only with respect to the feedback-
control problem. To present our results, we will divide the control design
problem into a sequence of characteristic steps.

STEP 1. Understand the process and translate dynamic performance
requirements into time, frequency, or pole–zero specifications. The impor-Specifications
tance of understanding the process, what it is intended to do, how much
system error is permissible, how to describe the class of command and
disturbance signals to be expected, and what the physical capabilities
and limitations are can hardly be overemphasized. Regrettably, in a
book such as this, it is easy to view the process as a linear, time-invariant
transfer function capable of responding to inputs of arbitrary size, and
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we tend to overlook the fact that the linear model is a very limited rep-
resentation of the real system, valid only for small signals, short times,
and particular environmental conditions. Do not confuse the approx-
imation with reality. You must be able to use the simplified model for
its intended purpose, and to return to an accurate model or the actual
physical system to really verify the design performance.

Typical results of this step are specifications that the system have
a step response inside some constraint boundaries (as shown in Fig.
10.1a), an open-loop frequency response satisfying certain constraints
(Fig. 10.1b), or closed-loop poles to the left of some constraint bound-
ary (Fig. 10.1c).

STEP 2. Select sensors. In sensor selection, consider which variables areSensors
important to control and which variables can physically be measured.
For example, in a jet engine, there are critical internal temperatures that
must be controlled, but that cannot be measured directly in an opera-
tional engine. Select sensors that indirectly allow a good estimate to be
made of these critical variables. It is important to consider sensors for
the disturbance. Sometimes, especially in chemical processes, it is benefi-
cial to sense a load disturbance directly, because improved performance
can be obtained if this information is fed forward to the controller.

Following are some factors that influence sensor selection:

Number of sensors and
locations:

Select minimum required number of sensors and their optimal
locations

Technology: Electric or magnetic, mechanical, electromechanical, electro-
optical, piezoelectric

Functional
performance:

Linearity, bias, accuracy, bandwidth, resolution, dynamic
range, noise

Physical properties: Weight, size, strength
Quality factors: Reliability, durability, maintainability
Cost: Expense, availability, facilities for testing and maintenance

y(t)

t

lo
g
 ƒG

ƒ

log v
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Figure 10.1
Examples of: (a) time-response; (b) frequency-response; and (c) pole–zero specifications resulting from
Step 1
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STEP 3. Select actuators. In order to control a dynamic system, obvi-
ously you must be able to influence the response. The device that does
this is the actuator. Before choosing a specific actuator, consider whichActuators
variables can be influenced. For example, in a flight vehicle, many con-
figurations of movable surfaces are possible, and the influence these have
on the performance and controllability of the craft can be profound.
The locations of jets or other torque devices are also a major part of the
control design of spacecraft.

Having selected a particular variable to control, you may need to
consider other factors:

Number of actuators
and locations:

Select minimum required actuators and their optimal locations

Technology: Electric, hydraulic, pneumatic, thermal, other
Functional
performance:

Maximum force possible, extent of the linear range, maximum
speed possible, power, efficiency, etc.

Physical properties: Weight, size, strength
Quality factors: Reliability, durability, maintainability
Cost: Expense, availability, facilities for testing and maintenance

STEP 4. Construct a linear model. Here you take the best choice forLinearization
process, actuator, and sensor; identify the equilibrium point of inter-
est; and construct a small-signal dynamic model valid over the range
of frequencies included in the specifications of Step 1. You should also
validate the model with experimental data where possible. To be able to
make use of all the available tools, express the model in state-variable
and pole–zero form as well as in frequency-response form. As we have
seen, Matlab and other computer-aided control systems design software
packages have the means to perform the transformations among these
forms. Simplify and reduce the order of the model if necessary. Quantify
model uncertainty.

STEP 5. Try a simple proportional–integral–derivative (PID) or lead–
lag design. To form an initial estimate of the complexity of the design

Simple compensation
PID/lead–lag design

problem, sketch a frequency response (Bode plot) and a root locus with
respect to plant gain. If the plant–actuator–sensor model is stable and
minimum-phase, the Bode plot will probably be the most useful; oth-
erwise, the root locus shows very important information with respect
to behavior in the right half-plane (RHP). In any case, try to meet the
specifications with a simple controller of the lead–lag variety, including
integral control if steady-state error response requires it. Do not over-
look feedforward of the disturbances if the necessary sensor informa-
tion is available. Consider the effect of sensor noise, and compare a lead
network to a direct sensor of velocity to see which gives a better design.

STEP 6. Evaluate/modify plant. Based on the simple control design,
evaluate the source of the undesirable characteristics of the system per-
formance. Reevaluate the specifications, the physical configuration of
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the process, and the actuator and sensor selections in light of the pre-
liminary design, and return to Step 1 if improvement seems necessary
or feasible. For example, in many motion-control problems, after test-
ing the first-pass design, you might find vibrational modes that prevent
the design from meeting the initial specifications of the problem. It may
be much easier to meet the specifications by altering the structure of
the plant through the addition of stiffening members, or by passive
damping than to meet them by control strategies alone. An alternative
solution may be to move a sensor so it is at a node of a vibration mode,
thus providing no feedback of the motion. Also, some actuator tech-
nologies (such as hydraulic) have many more low-frequency vibrations
than others (such as electric) do and changing the actuator technology
may be indicated. In a digital implementation, it may be possible to
revise the sensor–controller–actuator system structure so as to reduce
time delay, which is always a destabilizing element. In thermal systems,
it is often possible to change heat capacity or conductivities by mate-
rial substitution that will enhance the control design. It is important
to consider all parts of the design, not only the control logic, to meet
the specifications in the most cost-effective way. If the plant is modified,
go back to Step 1. If the design now seems satisfactory, go to Step 8;
otherwise, try Step 7.

STEP 7. Try an optimal design. If the trial-and-error compensators doOptimal design
not give entirely satisfactory performance, consider a design based on
optimal control. The symmetric root locus (SRL) will show possible
root locations from which to select locations for the control poles that
meet the response specifications; you can select locations for the esti-
mator poles that represent a compromise between sensor and process
noise. Plot the corresponding open-loop frequency response and the
root locus to evaluate the stability margins of this design and its robust-
ness to parameter changes. You can modify the pole locations until a
best compromise results. Returning to the SRL with different cost mea-
sures is often a part of this step, or computations via the direct functions
lqr and lqe can be used. Another variation of optimal control is to pro-
pose a fixed structure controller with unknown parameters, formulate
a performance cost function, and use parameter optimization to find a
good set of parameter values.

Compare the optimal design yielding the most satisfactory fre-
quency response with the transform-method design you derived in
Step 5. Select the better of the two before proceeding to Step 8.

STEP 8. Build a computer model, and compute (simulate) the per-
formance of the design. After reaching the best compromise among
process modification, actuator and sensor selection, and controller
design choice, run a computer model of the system. This model should
include important nonlinearities, such as actuator saturation, realistic
noise sources, and parameter variations you expect to find during oper-
ation of the system. The simulation will often identify sensitivities that
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may lead to going back to Step 5 or even to Step 2. Design iterations
should continue until the simulation confirms acceptable stability and
robustness. As part of this simulation, you can often include parame-
ter optimization, in which the computer tunes the free parameters for
best performance. In the early stages of design, the model you simulate
will be relatively simple; as the design progresses, you will study more
complete and detailed models. At this step it is also possible to compute
a digital equivalent of the analog controller as described in Chapters 4
and 8. Some refinement of the controller parameters may be required to
account for the effects of digitization. This allows the final design to be
implemented with digital processor logic.

If the results of the simulation prove the design satisfactory, go to
Step 9; otherwise return to Step 1.

STEP 9. Build a prototype. As the final test before production, it isPrototype
common to build and test a prototype. At this point, you verify thePrototype testing
quality of the model, discover unsuspected unmodelled dynamics such
as vibration and other modes, and consider ways to improve the design.
Implement the controller using embedded software/hardware. Tune the
controller if necessary. After these tests, you may want to reconsider
the sensors, actuators, and process and return to Step 1—unless time,
money, or ideas have run out.

This outline is an approximation of good practice; other engineers
will have variations on these themes. In some cases, you may wish to
carry out the steps in a different order, to omit a step, or to add one. The
stages of simulation and prototype construction vary widely, depending
on the nature of the system. For systems for which a prototype is dif-
ficult to test and rework (for example, a satellite) or where a failure is
dangerous (for example, active stabilization of a high-speed centrifuge
or landing a human on the moon), most of the design verification is
done through simulation of some sort. It may take the form of a digital
numerical simulation, a laboratory scale model, or a full-size labora-
tory model with a simulated environment. For systems that are easy
to build and modify (for example, feedback control for an automo-
tive fuel system), the simulation step is often skipped entirely; design
verification and refinement are instead accomplished by working with
prototypes.

One of the issues raised in the preceding discussion (see Step 6) was
the important consideration for changing the plant itself. In many cases,
proper plant modifications can provide additional damping or increase
in stiffness, change in mode shapes, reduction of system response to dis-
turbances, reduction of Coulomb friction, change in thermal capacity
or conductivity, etc. It is worth elaborating on this by way of specific
examples from the authors’ experiences. In a semiconductor wafer-
processing example, the edge ring holding the wafer was identified as
a limiting factor in closed-loop control. Modifying the thickness of
the edge ring and using a different coating material reduced the heat
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losses and, together with relocating one of the temperature sensors
closer to the edge ring, resulted in significant improvement in con-
trol performance. In another application, thin film processing, simply
changing the order of the two incoming flows resulted in significant
improvement in the mixing of the precursor and oxidizer materials,
and led to improvement in uniformity of the film. In an application
on physical vapor deposition using RF-plasma, the shape of the tar-
get was modified to be curved to counter the geometry effects of the
chamber, and yielded substantial improvements in deposition unifor-
mity. As the last example, in a hydraulic spindle control problem,
adding oil temperature control with ceramic insulation and a temper-
ature sink for the bell housing resulted in several orders of magnitude
reduction in disturbances not achievable by feedback control alone.1

One can also mention aerospace applications for which the control was
an afterthought, and the feedback control problem became exceedingly
difficult and resulted in poor closed-loop performance. The moral of
this discussion is that one must not forget the option of modifying the
plant itself to make the control problem easier and provide maximum
closed-loop performance.

The usual approach of designing the system and “throwing it over
the fence” to the control group has proved to be inefficient and flawed.
A better approach that is gaining momentum is to get the control engi-
neer involved from the onset of a project to provide early feedback on
whether or not it is difficult to control the system. The control engineer
can provide valuable feedback on the choice of actuators and sensors
and can even suggest modifications to the plant. It is often much more
efficient to change the plant design while it is on the drawing board
before “any metal has been bent.” Closed-loop performance studies can
then be performed on a simple model of the system early on.

Implicit in the process of design is the well-known fact that designs
within a given category often draw on experience gained from earlier
models. Thus, good designs evolve rather than appear in their best form
after the first pass. We will illustrate the method with several cases (see
Sections 10.2 to 10.6). For easy reference, we summarize the steps here.

Summary of Control Design Steps

1. Understand the process and its performance requirements.
2. Select the types and number of sensors considering location, tech-

nology, and noise.
3. Select the types and number of actuators considering location,

technology, noise, and power.
4. Construct a linear model of the process, actuator, and sensor.
5. Try a simple trial design based on the concepts of lead–lag compen-

sation or PID control. If satisfied, go to Step 8.

1Our colleague Prof. Daniel DeBra strongly believes in considering modifying the plant
itself as an option for improved control. He cites this particular application to make the
point. Of course, we agree with him!
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6. Consider modifying the plant itself for improved closed-loop
control.

7. If the performance from the simple compensator in Step 5 is not
adequate, perform a trial pole-placement design based on optimal
control or other criteria.

8. Simulate the design, including the effects of nonlinearities, noise,
and parameter variations. If the performance is not satisfactory,
return to Step 1 and repeat. Consider modifying the plant itself for
improved closed-loop control.

9. Build a prototype and test it. If not satisfied, return to Step 1 and
repeat.

10.2 Design of a Satellite’s Attitude Control
Our first example, taken from the space program, is suggested by the
need to control the pointing direction, or attitude, of a satellite in orbit
about the earth. Figure 2.7 shows a picture of a geosynchronous com-
munications satellite. We will go through each step in our design outline
and touch on some of the factors that might be considered for the
control of such a system.

STEP 1. Understand the process and its performance specifications. A
satellite is sketched in Fig. 10.2. We imagine the vehicle has an astro-
nomical survey mission requiring accurate pointing of a scientific sensor
package. This package must be maintained in the quietest possible envi-
ronment, which entails isolating it from the vibrations and electrical
noise of the main service body and from its power supplies, thrusters,
and communication gear. We model the resulting structure as two
masses connected by a flexible boom. In Fig. 10.2, the satellite attitude
θ2 is the angle between the star sensor and the instrument package, and
θ1 is the angle of the main satellite with respect to the star. Figure 10.2
shows the equivalent mechanical system diagram for the satellite, where
the sensor is mounted to the disk associated with θ2. Disturbance
torques due to solar pressure, micrometeorites, and orbit perturbations
are computed to be negligible. The pointing requirement arises when
it is necessary to point the unit in another direction. It can be met by
dynamics with a transient settling time of 20 sec and an overshoot of no

Figure 10.2
Diagram of a satellite
and its two-body model
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more than 15%. The dynamics of the satellite include parameters that
can vary. The control must be satisfactory for any parameter values in a
prespecified range to be given when the equations are written.

STEP 2. Select sensors. In order to orient the scientific package, it is
necessary to measure the attitude angles of the package. For this pur-
pose, we propose to use a star tracker, a system based on gathering an
image of a specific star and keeping it centered on the focal plane of
a telescope. This sensor gives a relatively noisy but very accurate (on
the average) reading proportional to θ2, the angle of deviation of the
instrument package from the desired angle. To stabilize the control, we
include a rate gyro to give a clean reading of θ̇2, because a lead network
on the star-tracker signal would amplify the noise too much. Further-
more, the rate gyro can stabilize large motions before the star tracker
has acquired the target star image.

STEP 3. Select actuators. Major considerations in selecting the actua-
tor are precision, reliability, weight, power requirements, and lifetime.
Alternatives for applying torque are cold-gas jets, reaction wheels or
gyros, magnetic torquers, and a gravity gradient. The jets have the most
power and are the least accurate. Reaction wheels are precise but can
transfer only momentum, so jets or magnetic torquers are required to
“dump” momentum from time to time. Magnetic torquers provide rel-
atively low levels of torque and are suitable only for some low-altitude
satellite missions. A gravity gradient also provides a very small torque
that limits the speed of response and places severe restrictions on the
shape of the satellite. For purposes of this mission, we select cold-gas
jets as being fast and adequately accurate.

STEP 4. Make a linear model. For the satellite, we assume two masses
connected by a spring with torque constant k and viscous-damping
constant b as shown in Fig. 10.2. The equations of motion are

J1θ̈1 + b(θ̇1 − θ̇2)+ k(θ1 − θ2) = Tc, (10.1a)

J2θ̈2 + b(θ̇2 − θ̇1)+ k(θ2 − θ1) = 0, (10.1b)

where Tc is the control torque on the main body. With inertias J1 = 1
and J2 = 0.1, the transfer function is

G(s) = 10bs+ 10k
s2(s2 + 11bs+ 11k)

. (10.2)

If we choose

x = [ θ2 θ̇2 θ1 θ̇1 ]T ,
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as the state vector, then, using Eq. (10.1a) and assuming Tc ≡ u, we find
that the equations of motion in state-variable form are

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

− k
J2
− b

J2

k
J2

b
J2

0 0 0 1
k
J1

b
J1

− k
J1
− b

J1

⎤
⎥⎥⎥⎥⎥⎦

x+

⎡
⎢⎢⎢⎢⎣

0
0

0
1
J1

⎤
⎥⎥⎥⎥⎦

u, (10.3a)

y = [ 1 0 0 0
]

x. (10.3b)

Physical analysis of the boom leads us to assume that the parame-
ters k and b vary as a result of temperature fluctuations but are bounded
by

0.09 ≤ k ≤ 0.4, (10.4a)

0.038

√
k
10
≤ b ≤ 0.2

√
k
10

. (10.4b)

As a result, the vehicle’s natural resonance frequency ωn can vary
between 1 and 2 rad/sec, and the damping ratio ζ varies between 0.02
and 0.1.

One approach to control design when parameters are subject toSelecting nominal values
for varying parameters variation is to select nominal values for the parameters, construct the

design for this model, and then test the controller performance with
other parameter values. In the present case, we choose nominal values
of ωn = 1 and ζ = 0.02. The choice is somewhat arbitrary, being based
on experience and heuristic analysis. However, note these are the low-
est values in their respective ranges and thus correspond to the plant
that is probably the most difficult to control so as to meet the specifi-
cations. We assume a design for this model has a good chance to meet
the specifications for other parameter values as well. (Another choice
would be to select a model with average values for each parameter.) The
selected parameter values are k = 0.091 and b = 0.0036; with J1 = 1
and J2 = 0.1, the nominal equations become

ẋ =

⎡
⎢⎢⎣

0 1 0 0
−0.91 −0.036 0.91 0.036

0 0 0 1
0.091 0.0036 −0.091 −0.0036

⎤
⎥⎥⎦ x+

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ u, (10.5a)

y = [ 1 0 0 0 ]x. (10.5b)

The corresponding transfer function, using the Matlab ss2tf function, is
then
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G(s) = 0.036(s+ 25)
s2(s2 + 0.04s+ 1)

. (10.6)

When a trial design is completed, the computer simulation should
be run with a range of possible parameter values to ensure that
the design has adequate robustness to tolerate these changes. Equa-
tions (3.74) to (3.76) tell us that the dynamic performance specifica-
tions will be met if the closed-loop poles have a natural frequency of
0.5 rad/sec and a closed-loop damping ratio of 0.5; these correspond
to an open-loop crossover frequency of ωc ∼= 0.5 rad/sec and a phase
margin of about PM = 50◦. We will try to meet these design criteria.

STEP 5. Try a lead–lag or PID controller. The proportional-gain root
locus for the nominal plant is drawn in Fig. 10.3, and the Bode plot is
given in Fig. 10.4. We can see from Fig. 10.4 that this may be a difficult
design problem because the frequency of the lightly damped resonance
is greater than the crossover-frequency design point by only a factor of
2. This situation will require that the compensation can correct for the
phase lag of the plant at the resonance frequency. Such a correction is
very dependent on knowing the resonance frequency, which is subject
to change in this case. There may be trouble ahead.

In order to illustrate some important aspects of compensation
design, we will at first ignore the resonance and generate a design that
would be acceptable for the rigid body alone. We take the process trans-
fer function to be 1/s2, the feedback to be position plus derivative
(star tracker plus rate gyro) or PD control with the transfer function
Dc(s) = K(sTD + 1), and the response objective to be ωn = 0.5 rad/sec
and ζ = 0.5. A suitable controller would be

Dc1(s) = 0.25(2s+ 1). (10.7)

The root locus for the actual plant with Dc1 is shown in Fig. 10.5, and
the Bode plot in Fig. 10.6. From these plots, we can see that the low-
frequency poles are reasonable, but that the system will be unstable

Figure 10.3
Root locus of KG(s)
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Figure 10.4
Open-loop Bode plot of
G(s)
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Figure 10.5
Root locus of Dc1(s)G(s)
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because of the resonance.2 At this point, we take the simple action of
reducing our expectation with respect to bandwidth, and we slow the

2If this system were built, the actuator jets would saturate as the response grew. We could
analyze the response using the method described in Section 9.3 for nonlinear systems.
From the analysis, we would expect the signal to grow and the equivalent gain of the
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Figure 10.6
Bode plot of Dc1(s)G(s)
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system down by lowering the gain until the system is stable. With so
little damping, we must really go slowly. A bit of experimentation leads
to

Dc2(s) = 0.001(30s+ 1), (10.8)

for which the root locus is drawn in Fig. 10.7 and the Bode plot given
in Fig. 10.8. The Bode plot shows that we have a phase margin of 50◦
but a crossover frequency of only ωc = 0.04 rad/sec. While this is too
low to meet the settling-time specification, a low crossover frequency is
unavoidable if we expect to keep the gain at the resonance frequency
below unity so that it is gain stabilized.

An alternative approach to the problem is to place zeros near the
lightly damped poles and use them to hold these poles back from
the RHP. Such a compensation has a frequency response with a very
low gain near the frequency of the offending poles and a reason-
able gain elsewhere. Because the frequency response seems to have
a dent or notch in it, this compensation is called a notch filter. (ItNotch filter
is also called a band reject filter in electric network theory.) An RC

actuator to fall until the roots return to the imaginary axis near ωn. The resulting limit
cycle would rapidly deplete the control gas supply.
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Figure 10.7
Root locus of Dc2(s)G(s)
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Figure 10.9
Twin-tee realization
of a notch filter
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circuit with a notch characteristic is shown in Fig. 10.9, its pole–
zero pattern in Fig. 10.10, and its frequency response in Fig. 10.11.
The +180◦ phase lead of the notch can be used to correct for the 180◦
phase lag of the resonance; if the notch frequency is lower than the
plant’s resonance frequency, the system phase is kept above 180◦ near
resonance.

With this idea, we return to the compensation given by Eq. (10.7)
and add the notch, producing the revised compensator transfer function

Dc3(s) = 0.25(2s+ 1)
(s/0.9)2 + 1
[(s/25)+ 1]2

. (10.9)

The Bode plot for this case is shown in Fig. 10.12, the root locus in
Fig. 10.13, and the unit step response in Fig. 10.14. The settling time
of the design is too long for the specification and the overshoot is too
large, but this design approach seems promising; with iteration it could
lead to a satisfactory compensator.

We now recall that the compensator is expected to provide ade-
quate performance as the parameters vary over the ranges given by
Eq. (10.3a). An examination of the robustness of the design can be made
by looking at the root locus shown in Fig. 10.15, which is drawn using
the compensator of Eq. (10.9) and the plant with ωn = 2, rather than 1,
such that

Ĝ(s) = (s/50+ 1)
s2(s2/4+ 0.02s+ 1)

. (10.10)

This assumes the boom is as stiff as possible. Notice now the low-
frequency poles have a damping ratio of only 0.02. Combining the
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Figure 10.11
Bode plot of a notch
filter
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various parameter values, we get the frequency response and transient
response shown in Figs. 10.16 and 10.17. We could make a few more
trial-and-error iterations with the notch filter and rate feedback, but the
system is complex enough that a look at state-space designs now seems
reasonable. We go to Step 7.

STEP 6. Evaluate/modify plant. Refer to the collocated control discus-
sion after Step 8.

STEP 7. Try an optimal design using pole placement. Using the state-
variable formulation of the equations of motion in Eq. (10.4a), we
devise a controller that will place the closed-loop poles in arbitrary
locations. Of course, used without thought, the method of pole place-
ment can also result in a design that requires unreasonable levels of
control effort or is very sensitive to changes in the plant transfer func-
tion. Guidelines for pole placement were given in Chapter 7; an often
successful approach is to derive optimal pole locations using the SRL.
Figure 10.18 shows the SRL for the problem at hand. To obtain a band-
width of about 0.5 rad/sec, we select closed-loop control poles from this
locus at −0.45± 0.34j and −0.15± 1.05j.
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Figure 10.12
Bode plot of Dc3(s)G(s)
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Figure 10.13
Root locus of Dc3(s)G(s)
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If we select αc(s), as discussed earlier, from the SRL, the control
gain using the Matlab function place is

K = [ −0.2788 0.0546 0.6814 1.1655
]

. (10.11)

Figure 10.19 shows the step responses for the nominal plant parame-
ters and stiff-spring plant models. The Bode plot of the SRL controller
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Figure 10.14
Closed-loop step
response of Dc3(s)G(s)
where θ2(0) = 0.2 rad
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Figure 10.15
Root locus of Dc3(s)Ĝ(s)
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design with the nominal plant parameters can be computed from the
loop transfer function (by breaking the loop at u)

KX(s)
U(s)

= K(sI− A)−1B,

and results in a phase margin of about 60◦, as shown in Fig. 10.20.
While the speed of response of the design meets the specifications with
the nominal plant, the settling time when the plant has the stiff spring
is a bit longer than the specifications call for. We might be able to get a
better compromise between the nominal and the stiff-spring cases by
selecting another point on the SRL; at this point, we do not know.
The designer must face alternatives such as these and select the best
compromise for the problem at hand.

The design of Fig. 10.19 is based on full-state feedback. To com-
plete the optimal design, we need an estimator. We select the closed-loop
estimator error poles to be about eight times faster than the control
poles. The reason for this is to keep the error poles from reducing the
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Figure 10.16
Bode plot of Dc3(s)Ĝ(s)
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Figure 10.17
Closed-loop step
response of Dc3(s)G(s)
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robustness of the design; a fast estimator will have almost the same
effect on the response as no estimator at all. We choose the error poles
from the SRL at −7.7 ± 3.12j and −3.32 ± 7.85j. Pole placement with
these values leads to an estimator (filter) gain, using the Matlab function
place:
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Figure 10.18
Symmetric root locus of
the satellite system
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Figure 10.19
Closed-loop step
response of the SRL
design
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⎡
⎢⎢⎣

22
242.3

1515.4
5503.9

⎤
⎥⎥⎦. (10.12)

After we combine the control gain and estimator, as described in
Section 7.8, the compensator transfer function that results from
Eq. (7.174) is

Dc4(s) = −745(s+ 0.3217)(s+ 0.0996± 0.9137 j)
(s+ 3.1195± 8.3438 j)(s+ 8.4905± 3.6333 j)

. (10.13)

The frequency response of this compensator (see Fig. 10.21) shows
that pole placement has introduced a notch implicitly. The frequency
response and the root locus of the combined system Dc4(s)G(s) are
given in Figs. 10.22 and 10.23, while Fig. 10.24 shows the step response
for both the nominal and the stiff-spring plants. Notice the design
almost meets the specifications.

STEP 8. Simulate the design, and compare the alternatives. At this
point we have two designs, with differing complexities and different
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Figure 10.20
Frequency response
of the SRL design from
u to KX
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robustness properties. The notch-filter design might be improved with
further iterations or by starting with a different nominal case. The SRL
design meets the specifications for the nominal plant but is too slow for
the stiff-spring case, although alternative selections for the pole loca-
tions might lead to a better design. In either case, much more extensive
studies need to be made to explore the robustness and noise-response
properties. Rather than follow any of these paths, we consider some
aspects of the physical system.

Both designs are strongly influenced by the presence of the lightly
damped resonant mode caused by the coupled masses. However, the
transfer function of this system is strongly dependent on the fact that
the actuator is on one body and the sensor is on the other (that is, not
collocated). Suppose, rather than considering pointing the star tracker
on the small mass, we have the mission of pointing the main mass,
perhaps toward an Earth station for communications purposes. For
this purpose, we can put the sensor on the same mass that holds the
actuator—to give control with a collocated actuator and sensor. DueCollocated actuator and

sensor to the physics of the situation, the system’s transfer function now has
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Figure 10.21
Bode plot of the optimal
compensator Dc4(s)
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zeros close to the flexible modes, so control can be achieved using PD
feedback alone, because the plant already has the effect of a notch com-
pensator. Consider the transfer function of the satellite with collocated
actuator and sensor (to measure θ1) for which the state matrices are

A =

⎡
⎢⎢⎣

0 1 0 0
−0.91 −0.036 0.91 0.036

0 0 0 1
0.091 0.0036 −0.091 −0.0036

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ ,

C = [ 0 0 1 0 ].

The transfer function of the system using the Matlab ss2tf function is

Gco(s) = C(sI− A)−1B = (s+ 0.018± 0.954j)
s2(s+ 0.02± j)

. (10.14)

Notice the presence of the zeros in the vicinity of the complex conjugate
poles. If we now use the same PD feedback as before, namely,

Dc5(s) = 0.25(2s+ 1), (10.15)
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Figure 10.22
Bode plot of the
compensated system
Dc4(s)G(s)
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Figure 10.23
Root locus of Dc4(s)G(s)
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Figure 10.24
Closed-loop step
response of Dc4(s)G(s)
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then the system will not only be stabilized, but will also have a satis-
factory response (if we consider θ1 as the output), because the resonant
poles tend to be cancelled by the complex conjugate zeros.

Figures 10.25 to 10.27 show the frequency response, the root locus,
and the step response, respectively, for this system. Note from Fig. 10.27

Figure 10.25
Bode plot of
Dc5(s)Gco(s)
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Figure 10.26
Root locus for
Dc5(s)Gco(s)
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Figure 10.27
Closed-loop step
response of the system
with collocated control,
Dc5(s)Gco(s) and
Dc5(s)Ĝco(s)
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the step response has the excess overshoot associated with the zero of
the compensator in the forward path of the transfer function.

The result is a very simple robust design achieved by moving the
sensor from a noncollocated position to one collocated with the actu-
ator. The result illustrates that, to achieve good feedback control, it
is very important to consider sensor location and other features of
the physical problem. However, this last control design will not do for
pointing the star tracker. This is evident from plotting the output θ2 cor-
responding to the nice step response of Fig. 10.27. The result is shown
in Fig. 10.28.

An architecture suggested by these results is to place a coarse star
tracker on the satellite body to be used for search and initial settling.
Then switch to a star tracker on the instrument package with longer
settling time for fine control.
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Figure 10.28
Response at θ2 of the
collocated design
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10.3 Lateral and Longitudinal Control
of a Boeing 747

The Boeing 747 (see Fig. 10.29) is a large wide-body transport jet. A
schematic with the relevant coordinates that move with the airplane is
shown in Fig. 10.30. The linearized equations of (rigid-body) motion3

for the Boeing 747 are of eighth order, but are separated into two fourth-
order sets representing the perturbations in longitudinal (U , W , θ ,
and q in Fig. 10.30) and lateral (φ, β, r, and p) motion. The longi-
tudinal motion consists of axial (X ), vertical (Z), and pitching (θ , q)
motion, while the lateral motion consists of rolling (φ, p) and yawing
(r,β) movement. The side-slip angle β is a measure of the direction of
forward velocity relative to the direction of the nose of the airplane.
The elevator control surfaces and the throttle affect the longitudinal
motion, whereas the aileron and rudder primarily affect lateral motion.
Although there is a small amount of coupling of lateral motion into
longitudinal motion, this is usually ignored, so the equations of motion

Figure 10.29
Boeing 747
Source: ClassicStock/Alamy
Stock Photo

3For derivation of equations of motion for an aircraft, refer to Bryson (1994), Etkin and
Reid (1996), and McRuer et al. (1973).
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Figure 10.30
Definition of aircraft
coordinates
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x, y, z = position coordinates

u, y, w = velocity coordinates

p = roll rate

q = pitch rate

r = yaw rate

f = roll angle

u =  pitch angle

c =  yaw angle

b = side-slip angle

a = angle of attack

are treated as two decoupled fourth-order sets for designing the control,
or stability augmentation, for the aircraft.

The nonlinear rigid body equations of motion in body-axis coordi-
nates, under proper assumptions,4 can be derived as (Bryson, 1994)

m(U̇ + qW − rV) = X −mg sin θ + κT cos θ , (10.16)

m(V̇ + rU − pW) = Y +mg cos θ sinφ,

m(Ẇ + pV − qU) = Z +mg cos θ cosφ − κT sin θ ,

Ixṗ+ Ixzṙ+ (Iz − Iy)qr+ Ixzqp = L, (10.17)

Iyq̇+ (Ix − Iz)pr+ Ixz(r2 − p2) =M,

Izṙ+ Ixzṗ+ (Iy − Ix)qp− Ixzqr = N,

where

m = mass of the aircraft,

[U , V , W ] = body-axis components of the velocity of the center
of mass (c.m.),

β = tan−1
(

V
U

)
,

[Uo, Vo, Wo] = reference velocities,

[p, q, r] = the body-axis components of the angular velocity of the
aircraft,

[X , Y , Z] = the body-axis aerodynamic forces about the c.m.,

[L, M, N] = the body-axis aerodynamic torques about the c.m.,

4x–z is the body-axis plane of mass symmetry.
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go = the gravitational force per unit mass,

Ii = the inertias in body axes,

(θ ,φ) = the Euler pitch and roll angles of the aircraft body,

Vref = reference flight speed,

T = the propulsive thrust resultant, and

κ = the angle between thrust and body x-axis.

The linearization of these equations can be carried out as follows: In
the steady-state straight, level, and constant speed flight condition, U̇ =
V̇ = Ẇ = ṗ = q̇ = ṙ = 0. Furthermore, there is no turning in any axis
so that po = qo = ro = 0, and the wings will be level so that φ = 0.
However, there will be an angle of attack in order to provide some lift
from the wings to counteract the aircraft’s weight, so θo and Wo �= 0,
where

U = Uo + u, (10.18)

V = Vo + v,

W =Wo + w.

The steady-state velocity body axis components will be

Uo = Vref cos(θo), (10.19)

Vo = 0 (βo = 0),

Wo = Vref sin(θo),

as depicted in Fig. 10.31. With these conditions, the equilibrium (see
Chapter 9) equations are

0 = X0 −mgo sin θ0 + κT cos θ0, (10.20)

0 = Y0,

0 = Z0 +mgo cos θ0 − κT sin θ0,

0 = L0,

0 =M0,

0 = N0.

With the assumptions (Bryson, 1994)

(v2, w2)� u2, (10.21)

(φ2, θ2)� 1,

(p2, q2, r2)� u2

b2 ,

where b denotes the wingspan, many of the nonlinear terms in
Eqs. (10.16) and (10.17) can be neglected. Substitution of Eq. (10.20) in
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Figure 10.31
Steady-state flight
condition
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the nonlinear equations of motion leads to a set of linear perturbational
equations that describe small deviations from constant speed, straight
and level flight. The equations of motion then divide into two uncoupled
sets of longitudinal and lateral equations of motion.

For linearized longitudinal motion, the results are⎡
⎢⎢⎣

u̇
ẇ
q̇
θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Xu Xw −Wo −go cos θo
Zu Zw Uo −go sin θo
Mu Mw Mq 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

Xδe
Zδe
Mδe

0

⎤
⎥⎥⎦ δe,

(10.22)

where

u = forward velocity perturbation in the aircraft in x direction
(see Fig. 10.30),

w = velocity perturbation in the z direction (also proportional
to perturbations in the angle of attack, α = w

U0
),
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q = angular rate about the positive y-axis, or pitch rate,

θ = pitch-angle perturbation from the reference θo value,

Xu,w,δe = partial derivative of the aerodynamic force in x direction
with respect to perturbations in u, w, and δe,5

Zu,w,δe = partial derivative of the aerodynamic force in z direction
with respect to perturbations in u, w, and δe,

Mu,w,q,δe = partial derivative of the aerodynamic (pitching) moment
with respect to perturbations in u, w, q, and δe,

δe = movable tail-section, or “elevator,” angle for pitch control.

Woq, Uoq terms in the equations are due to the angular velocity
of the body fixed (rotating) reference frame and arise directly from the
left-hand side of Eq. (10.16).

To determine altitude changes, we need to add the following equa-
tion to the longitudinal equations of motion:

ḣ = Vref sin θ − w cos θ . (10.23)

This equation will result in the linearized altitude equation

ḣ = Vref θ − w, (10.24)

which is to be augmented with Eq. (10.22).
For linearized lateral motion, the results are

⎡
⎢⎢⎣
β̇

ṙ
ṗ
φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Yv −Uo Vo go cos θo
Nv Nr Np 0
Lv Lr Lp 0
0 tan θo 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
β

r
p
φ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

Yδr Yδa
Nδr Nδa
Lδr Lδa
0 0

⎤
⎥⎥⎦
[
δr
δa

]
,

(10.25)

where

β = side-slip angle, defined to be
v

Uo
,

r = yaw rate,

p = roll rate,

φ = roll angle,

Yv,δr,δa = partial derivative of the aerodynamic force in the y direc-
tion with respect to perturbations in β, δr, and δa,

Nv,r,p,δr,δa = aerodynamic (yawing) moment stability derivatives,

Lv,r,p,δr,δa = aerodynamic (rolling) moment stability derivatives,

δr = rudder deflection,

δa = aileron deflection.

5X, Z, and M are stability derivatives and are identified from wind tunnel and flight tests.
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We will next discuss the design of a stability-augmentation sys-
tem for the lateral dynamics, called a yaw damper, and the autopilot
affecting the longitudinal behavior.

10.3.1 Yaw Damper

STEP 1. Understand the process and its performance specifications.
Swept-wing aircraft have a natural tendency to be lightly damped in the
lateral modes of motion. At typical commercial-aircraft cruising speeds
and altitudes, this dynamic mode is sufficiently difficult to control that
virtually every swept-wing aircraft has a feedback system to help the
pilot. Therefore, the goal of our control system is to modify the natural
dynamics so the plane is acceptable for the pilot to fly.6 Studies have
shown that pilots like natural frequencies in the range of ωn � 0.5 and
damping ratio of ζ ≥ 0.5. Aircraft with dynamics that violate these
guidelines are generally considered fatiguing to fly and highly undesir-
able. With the pilot being a key part of the closed-loop system, we want
to make his or her job as easy as possible. Thus our system specifications
are to achieve lateral dynamics that meet these constraints.

STEP 2. Select sensors. The easiest measurement of aircraft motion
to take is the angular rate. The side-slip angle can be measured with
a wind-vane device, but it is noisier and less reliable for stabilization.
Two angular rates—roll and yaw—partake in the lateral motion. Study
of the lightly damped lateral mode indicates that it is primarily a yaw-
ing phenomenon, so measurement of the yaw rate is a logical starting
point for the design. Until the early 1980s the measurement was made
with a gyroscope with a small, fast-spinning rotor that can yield an
electric output proportional to the angular yaw rate of the aircraft.
Since the early 1980s, most new aircraft systems have relied on a laser
device (called a ring-laser gyroscope) for the measurement. Here, two
laser beams traverse a closed path (often a triangle) in opposite direc-
tions. As the triangular device rotates, the detected frequencies of the
two beams appear to shift, and this frequency shift is measured, pro-
ducing a measure of rotational rate. These devices have fewer moving
parts and are more reliable at less cost than the spinning-rotor variety of
gyroscopes.

STEP 3. Select actuators. Two aerodynamic surfaces typically influence
the lateral aircraft motion: the rudder and the ailerons (see Fig. 10.30).
The lightly damped yaw mode that will be stabilized by the yaw damper
is most affected by the rudder. Therefore, use of that single control input
is a logical starting point for the design. Hence, it is best to choose the
rudder as our actuator. Hydraulic devices are universally employed in

6The mode is sufficiently difficult to control manually that, if the yaw damper fails
in cruise, the pilot is instructed to descend and slow down where the mode is more
manageable.
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large aircraft to provide the force that moves the aerodynamic surfaces.
No other kind of device has been developed to provide the combination
of high force, high speed, and light weight desirable for the actuation
of the controlling aerodynamic surfaces. On the other hand, the low-
speed flaps, which are extended slowly prior to landing, are typically
actuated by an electric motor with a worm gear. For small aircraft with
no autopilot, no actuator is required at all; the pilot yoke is directly
connected to the aerodynamic surface by means of wire cables, and all
the force required to move the surfaces is provided by the pilot.

STEP 4. Make a linear model. The lateral-perturbation equations of
motion for a Boeing 747 in horizontal flight at 40,000 ft and nominal
forward speed U0 = 774 ft/sec (Mach 0.8) (Heffley and Jewell, 1972),
with the rudder chosen as the actuator (Step 3), are

⎡
⎢⎢⎣
β̇

ṙ
ṗ
φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−0.0558 −0.9968 0.0802 0.0415

0.598 −0.115 −0.0318 0
−3.05 0.388 −0.4650 0

0 0.0805 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
β

r
p
φ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0.00729
−0.475
0.153

0

⎤
⎥⎥⎦ δr,

y = [ 0 1 0 0 ]

⎡
⎢⎢⎣
β

r
p
φ

⎤
⎥⎥⎦ ,

where β and φ are in radians, and r and p are in radians per second. The
transfer function, using the Matlab ss2tf function, is

G(s) = r(s)
δr(s)

= −0.475(s+ 0.498)(s+ 0.012± 0.488j)
(s+ 0.0073)(s+ 0.563)(s+ 0.033± 0.947j)

, (10.26)

so the system has two stable real poles and a pair of stable complex
poles. Notice first the low-frequency gain is negative, corresponding
to the simple physical fact that a positive or clockwise rudder motion
causes a negative or counter-clockwise yaw rate. In other words, turn-
ing the rudder left (clockwise) causes the front of the aircraft to rotate
left (counter-clockwise). The natural motion corresponding to the com-
plex poles is referred to as the Dutch roll; the name comes from theDutch roll
motions of a person skating on the frozen canals of the Netherlands.
The motion corresponding to the stable real poles is referred to as theSpiral mode
spiral mode (s1 = −0.0073) and the roll mode (s2 = −0.563). FromRoll mode
looking at the system poles, we see the offending mode that needs
repair for good pilot handling is the Dutch roll, with the poles at
s = −0.033 ± 0.95j. The roots have an acceptable frequency, but their
damping ratio ζ ∼= 0.03 is far short of the desired value ζ ∼= 0.5.
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Figure 10.32
Root locus for yaw
damper with
proportional feedback
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STEP 5. Try a lead–lag or PID design. As a first try at the design,
we will consider proportional feedback of the yaw rate to the rudder.
The root locus with respect to the gain of this feedback is shown in
Fig. 10.32, and its frequency response is shown in Fig. 10.33. The figures
show that ζ ∼= 0.45 is achievable and can be computed to occur at a gain
of about 3.0.

This feedback, however, creates an objectionable situation during
a steady turn when the yaw rate is constant: Because the feedback
produces a steady rudder input opposite the yaw rate, the pilot must
introduce a much larger steady command for the same yaw rate than
is necessary in the open-loop case. This dilemma is solved by attenuat-
ing the feedback at DC (that is, “washing out” the feedback). This isWashout
accomplished by inserting

H(s) = s
s+ 1/τ

,

in the feedback, which passes the yaw-rate feedback at frequencies
above 1/τ and provides no feedback at DC. Therefore, in a steady
turn, the damper will provide no correction. Figure 10.34 shows a block
diagram of the yaw damper with the washout.

For a more complete model, we include the rudder servo, which
represents the actuator dynamics and has the transfer function

A(s) = δr(s)
eδr(s)

= 10
s+ 10

,

which is fast compared with the dynamics of the rest of the system and is
not expected to change the response very much. The root locus, includ-
ing actuator dynamics and a washout circuit with τ = 3, is shown
in Fig. 10.35. As seen from the root locus, the addition of the yaw-
rate feedback, including the washout, allows the damping ratio to be
increased from 0.03 to about 0.35. The associated frequency response
of the system is shown in Fig. 10.36. The response of the closed-loop
system to an initial condition of β0 = 1◦ is shown in Fig. 10.37 for
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Figure 10.33
Bode plot of yaw
damper with
proportional feedback

M
ag

n
it

u
d
e,

 ƒG
ƒ

10
0.01

10.1

v (rad/sec)

d
b

(a)

-40

0

20

0.1

1

10

-20

1005

P
h
as

e

-1805
1010.1

v (rad/sec)

(b)

-1505

-1005

-505

05

505

Figure 10.34
Yaw damper:
(a) functional block
diagram; (b) block
diagram for analysis
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Figure 10.35
Root locus with washout
circuit, τ = 3
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Figure 10.36
Bode plot of yaw
damper, including
washout and actuator
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a root-locus gain of 2.6. For reference, the response of yaw rate with-
out feedback is also given. Although feedback of yaw rate through the
washout circuit results in a considerable improvement over the original
aircraft control, the response is not as good as originally specified. Fur-
ther iterations (not included here) could include other gain values or
more complex compensations.
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Figure 10.37
Initial-condition
response with yaw
damper and washout,
and SRL design, for
β(0) = 1◦
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STEP 6. Evaluate/modify plant. The solution would be to unsweep the
wings, which would cause a large drag penalty.

STEP 7. Try an optimal design using pole placement. If we augment the
dynamic model of the system by adding the actuator and washout, we
obtain the state-variable model

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋA
β̇

ṙ
ṗ
φ̇

ẋwo

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−10 0 0 0 0 0
0.0729 −0.0558 −0.997 0.0802 0.0415 0
−4.75 0.598 −0.1150 −0.0318 0 0

1.53 −3.05 0.388 −0.465 0 0
0 0 0.0805 1 0 0
0 0 1 0 0 −0.333

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

xA
β

r
p
φ

ẋwo

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

10
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

eδr,

e = [ 0 0 1 0 0 −0.333 ]

⎡
⎢⎢⎢⎢⎢⎢⎣

xA
β

r
p
φ

xwo

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where eδr is the input to the actuator and e is the output of the washout.
The SRL for the augmented system is as shown in Fig. 10.38. If we
select the state-feedback poles from the SRL so that the complex roots
have maximum damping (ζ = 0.4), we find that

pc = [−0.0051;−0.468; 0.279+0.628 ∗ j; 0.279−0.628 ∗ j;−1.106;−9.89].
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Figure 10.38
SRL of lateral dynamics,
including washout filter
and actuator
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Then we can compute the state-feedback gain, using the Matlab
function place, to be

K = [ 1.059 −0.191 −2.32 0.0992 0.0370 0.486 ].

Note that the third entry in K is larger than the others, so the feedback
of all six state variables is essentially the same as proportional feed-
back of r. This is also evident from the similarity of the root locus in
Fig. 10.32 and the SRL of Fig. 10.38. If we select the estimator poles to
be five times faster than the controller poles, then

pe = [−0.0253;−2.34;−1.39+3.14∗ j;−1.39−3.14∗ j;−5.53;−49.5]
and the estimator gain, again using the Matlab function place, is found
to be

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

25.0
−2,044
−5,158
−24,843
−40,113
−15,624

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The compensator transfer function from Eq. (7.177) is

Dc(s) = −844(s+ 10.0)(s− 1.04)(s+ 0.974± 0.559j)(s+ 0.0230)
(s+ 0.0272)(s+ 0.837± 0.671j)(s+ 4.07± 10.1j)(s+ 51.3)

.

(10.27)

Figure 10.37 also shows the response of the yaw rate to an initial con-
dition of β0 = 1◦. It is clear from the root locus that the damping
can be improved by the SRL approach, and this is borne out by the
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reduced oscillatory behavior in the transient response of the system.
However, this improvement has come at a considerable price. Note the
order of the compensator has increased from one in the original design
(see Fig. 10.33) to six and washout in the design obtained using the
controller-estimator-SRL approach.

Aircraft yaw dampers in use today generally employ a proportionalDesign trade-off: system
response vs. system
complexity

feedback of yaw rate to rudder through a washout or through minor
modifications to this design. The improved performance achievable with
an optimal design approach utilizing full-state feedback and estimation
is not judged to be worth the increase in complexity.

Perhaps a more fruitful approach to improving the design would be
to add the aileron surface as a control variable along with the rudder.

STEPS 8 and 9. Verify the design. Linear models of aircraft motion
are reasonably accurate as long as the motion is small enough that the
actuators and surfaces do not saturate. Because actuators are sized for
safety in order to handle large transients, such saturation is very rare.
Therefore, the linear-analysis-based design is reasonably accurate, and
we will not pursue a nonlinear simulation or further design verifica-
tion. However, aircraft manufacturers do carry out extensive nonlinear
simulations and flight testing under all possible flight conditions before
obtaining Federal Aviation Administration (FAA) certification to carry
passengers.

10.3.2 Altitude-Hold Autopilot

STEP 1. Understand the process and its performance specifications. One
of the pilot’s many tasks is to hold a specific altitude. As an aid to keep-
ing aircraft from colliding, those craft on an easterly path are required
to be on an odd multiple of 1000 ft, and those on a westerly path on an
even multiple of 1000 ft. Therefore, the pilot needs to be able to hold the
altitude to less than a hundred feet. A well-trained, attentive pilot can
easily accomplish this task manually to within ±50 ft, and air-traffic
controllers expect pilots to maintain this kind of tolerance. However,
since this task requires the pilot to be fairly diligent, sophisticated air-
craft often have an altitude-hold autopilot to lessen the pilot’s work.
This system differs fundamentally from the yaw damper because its role
is to replace the pilot for a certain period, while the yaw damper’s role is
to help the pilot fly. Dynamic specifications, therefore, need not require
that pilots like the craft’s “feel” (how it responds to their handling of the
controls); instead, the design should provide the kind of ride that pilots
and passengers like. The damping ratio should still be in the vicinity of
ζ ∼= 0.5, but for a smooth ride, the natural frequency should be much
slower than ωn = 1 rad/sec.

STEP 2. Select sensors. Clearly needed is a device to measure altitude,
a task most easily done by measuring the atmospheric pressure. Almost
from the time of the first Wright brothers’ flight, this basic idea has been
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used in a device called a barometric altimeter. Before autopilots, the
device consisted of a bellows whose free end was connected to a needle
that directly indicated altitude on a dial. The same bellows concept is
used today for the altitude display, but the pressure is sensed electrically
for the autopilot.

Because the transfer function from the controlling elevator input to
the altitude control consists of five poles [see Eq. (10.30)], stabilization
of the feedback loop cannot be accomplished by simple proportional
feedback. Therefore the pitch rate q is also used as a stabilizing feed-
back; it is measured by a gyroscope or ring-laser gyro identical to that
used for yaw-rate measurement. Further stabilization using pitch-angle
feedback is also helpful. It is obtained either from an inertial reference
system based on a ring-laser gyro or from a rate-integrating gyro. The
latter is a device similar to the rate gyro, but structured differently so
its outputs are proportional to the angles of the aircraft’s pitch θ and
roll φ.

STEP 3. Select actuators. The only aerodynamic surface typically used
for pitch control on most aircraft is the elevator δe. It is located on the
horizontal tail, well removed from the aircraft’s center of gravity, so its
force produces an angular pitch rate and thus a pitch angle, which acts
to change the lift from the wing. In some high-performance aircraft,
there are direct-lift control devices on the wing or perhaps small canard
surfaces, which are like tiny wings forward of the main wing, which pro-
duce vertical forces on the aircraft that are much faster than elevators
on the tail are able to generate. However, for purposes of our altitude
hold, we will consider only the typical case of an elevator surface on
the tail.

As for the rudder, hydraulic actuators are the preferred devices to
move the elevator surface, mainly because of their favorable force-to-
weight ratio.

STEP 4. Make a linear model. The longitudinal perturbation equations
of motion for the Boeing 747 in horizontal flight at a nominal speed
U0 = 830 ft/sec at 20,000 ft (Mach 0.8) with a weight of 637,000 lb are

ẋ = Ax+ Bδe, (10.28)⎡
⎢⎢⎢⎢⎣

u̇
ẇ
q̇
θ̇

ḣ

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

−0.00643 0.0263 0 −32.2 0
−0.0941 −0.624 820 0 0
−0.000222 −0.00153 −0.668 0 0

0 0 1 0 0
0 −1 0 830 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u
w
q
θ

h

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
−32.7
−2.08

0
0

⎤
⎥⎥⎥⎥⎦
δe,
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where the desired output for an altitude-hold autopilot is

h = Cx,

h = [ 0 0 0 0 1 ]

⎡
⎢⎢⎢⎢⎣

u
w
q
θ

h

⎤
⎥⎥⎥⎥⎦

, (10.29)

and
h(s)
δe(s)

= 32.7(s+ 0.0045)(s+ 5.645)(s− 5.61)
s(s+ 0.003± 0.0098j)(s+ 0.6463± 1.1211j)

. (10.30)

The system has two pairs of stable complex poles and a pole at s = 0.
The complex pair at −0.003 ± 0.0098j are referred to as the phugoidPhugoid mode
mode,7 and the poles at−0.6463± 1.1211 are the short-period modes, asShort-period modes
computed using the Matlab eig command.

STEP 5. Try a lead–lag or PID controller. As a first step in the design,
it is typically helpful to use an inner-loop feedback of pitch rate q to δeInner-loop design
so as to improve the damping of the short-period mode of the aircraft
(see Fig. 10.39). The transfer function from δe to q, using the Matlab
ss2tf function, is

q(s)
δe(s)

= − 2.08s(s+ 0.0105)(s+ 0.596)
(s+ 0.003± 0.0098j)(s+ 0.646± 1.21j)

. (10.31)

The inner loop root locus for q feedback using Eq. (10.31) is as shown
in Fig. 10.40. Because kq is the root-locus parameter, the system matrix
[Eq. (10.28)] is now modified to

Aq = A+ kqBCq, (10.32)

where A and B are defined in Eq. (10.28) and Cq = [ 0 0 1 0 0 ].
The process of picking a suitable gain kq is an iterative one. The

Figure 10.39
Altitude-hold feedback
system ©
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href h

Compensation Aircraft

de
Dc(s) ©
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+ +

ku

kq

q

u

Inner loop

7The name was adopted by F. W. Lanchester (1908), who was the first to study the
dynamic stability of aircraft analytically. It is apparently an incorrect version of a Greek
word.
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Figure 10.40
Inner-loop root locus
for altitude-hold
dynamics with q
feedback
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selection procedure is the same as discussed in Chapter 5. (Recall the
tachometer feedback example in Section 5.6.2.) If we choose kq = 1,
then the closed-loop poles will be located at −0.0039± 0.0067j, −1.683
± 0.277j on the root locus, and

Aq =

⎡
⎢⎢⎢⎢⎣

−0.00643 0.0263 0 −32.2 0
−0.0941 −0.624 787.3 0 0
−0.000222 −0.00153 −2.75 0 0

0 0 1 0 0
0 −1 0 830 0

⎤
⎥⎥⎥⎥⎦

. (10.33)

Note only the third column of Aq is different from A. To further improve
the damping, it is useful to feed back the pitch angle of the aircraft. By
trial and error, we select

Kθq = [ 0 0 −0.8 −6 0 ],

in order to feed back θ and q, and the system matrix becomes

Aθq = Aq − BKθq,

=

⎡
⎢⎢⎢⎢⎣

−0.0064 0.0263 0 −32.2 0
−0.0941 −0.624 761 −196.2 0
−0.0002 −0.0015 −4.41 −12.48 0

0 0 1 0 0
0 −1 0 830 0

⎤
⎥⎥⎥⎥⎦

,

with poles at s = 0, −2.25± 2.99j, −0.531, −0.0105.
So far, the inner loop of the aircraft has been stabilized significantly.

The uncontrolled aircraft has a natural tendency to return to equilib-
rium in level flight, as evidenced by the open-loop roots in the LHP.
The inner-loop stabilization is necessary to enable an outer-loop feed-
back of h and ḣ to be successful; furthermore, the feedbacks of θ and
q can be used by themselves in an attitude-hold mode of the autopilot,
when a pilot wishes to control θ directly through an input command.
Figure 10.41 shows the response of the inner loop to a 2◦ (0.035-rad)
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Figure 10.41
Response of
altitude-hold autopilot
to a command in θ
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Figure 10.42
0◦ root locus with
feedback of h only
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step command in θ . With the inner loop in place, the transfer function
of the system from elevator angle to altitude is now

h(s)
δe(s)

= 32.7(s+ 0.0045)(s+ 5.645)(s− 5.61)
s(s+ 2.25± 2.99j)(s+ 0.0105)(s+ 0.0531)

. (10.34)

The root locus for this system, given in Fig. 10.42, shows that propor-
tional feedback of altitude by itself does not yield an acceptable design.
For stabilization, we may also feed back the rate of change in the alti-
tude in a PD controller. The root locus of the system with feedback of
both h and ḣ is shown in Fig. 10.43. After some iteration we find that
the best ratio of ḣ to h is 10:1, that is,

Dce(s) = Kh(s+ 0.1).

The final design is the result of iterations between the q, θ , ḣ,
and h feedback gains, obviously a lengthy process. Although this trial
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Figure 10.43
SRL for altitude-hold
design
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Step response of
altitude-hold autopilot
to a 100-ft step
command
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design was successful, use of the SRL approach promises to expedite
the process.

STEP 6. Evaluate/modify plant. Not applicable here.

STEP 7. Do an optimal design. The SRL of the system is shown in
Fig. 10.43. If we choose the closed-loop poles at

pc = [−0.0045;−0.145;−0.513;−2.25−2.98 ∗ j;−2.25+ 2.98∗ j],
then the required feedback gain, using the Matlab function place, is

K = [ −0.0009 0.0016 −1.883 −7.603 −0.001 ].
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Figure 10.45
Control effort for 100-ft
step command in
altitude
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The step response of the system to a 100-ft step command in h is shown
in Fig. 10.44, and the associated control effort is shown in Fig. 10.45.

This design has been carried out with the assumption that the linear
model is valid for the altitude changes under consideration. We should
perform simulations to verify this or to determine the range of validity
of the linear model.

STEPS 8 and 9. Verify the design. The comments in Steps 7 and 8 of
Section 10.3.1 apply to this design as well.

For small-airplane autopilots now in production, such as the one
described in Chapter 5, it is interesting to note, for the inner loop, some
manufacturers employ only θ feedback while others use q feedback. The
use of θ enables faster response, but use of q is less costly. Both, of
course, use the altimeter for h feedback.

10.4 Control of the Fuel–Air Ratio
in an Automotive Engine

Until the 1980s, most automobile engines had a carburetor to meter the
fuel so the ratio of the gasoline-mass flow to air-mass flow, or fuel-to-
air ratio (F/A), remained in the vicinity of 1:15. This device metered the
fuel by relying on a pressure drop produced by the air flowing through a
venturi. The device performed adequately in terms of keeping the engine
running satisfactorily, but it historically allowed excursions of up to 20%
in the F/A. After the implementation of federal exhaust-pollution reg-
ulations, this level of inaccuracy in the F/A was unacceptable because
neither excess hydrocarbons (HCs) nor excess carbon monoxide (CO)
could be accepted. During the 1970s, automobile companies improved
the design and manufacturing process of the carburetors so they became
more accurate and delivered a F/A accuracy in the vicinity of 3% to 5%.
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Through a combination of factors, this improved F/A accuracy helped
lower the exhaust pollution levels. However, the carburetors were still
open-loop devices because the system did not measure the F/A of the
mixture entering the engine for subsequent feedback into the carbu-
retor. During the 1980s, almost all manufacturers turned to feedback
control systems to provide a much-improved level of F/A accuracy, an
action made necessary by the decreasing levels of allowable exhaust
pollutants. In essence, the same scheme is used currently (2018) so
the catalytic converters attached to the exhaust system can remove the
pollutants from the exhaust and meet the federal standards.

We now turn to the design of a typical feedback system for
engine control, again using the step-by-step design outline given in
Section 10.1.

STEP 1. Understand the process and its performance. The method cho-
sen to meet the exhaust-pollution standards has been to use a catalytic
converter that simultaneously oxidizes excess levels of exhaust carbon
monoxide (CO) and unburned HCs and reduces excess levels of the
oxides of nitrogen (NO and NO2, or NOx). This device is usually
referred to as a three-way catalyst because of its effect on all three pol-
lutants. This catalyst is ineffective when the F/A is much different from
the stoichiometric level of 1:14.7; therefore, a feedback control system
is required to maintain the F/A within ±1% of that desired level. The
system is depicted in Fig. 10.46.

The dynamic phenomena that affect the relationship between the
sensed F/A output from the exhaust and the fuel-metering command in
the intake manifold are (1) intake fuel and air mixing, (2) cycle delays
due to the piston strokes in the engine, and (3) the time required for
the exhaust to travel from the engine to the sensor. All these effects
are strongly dependent on the speed and load of the engine. For exam-
ple, engine speeds typically vary from 600 to 6000 rpm. The result of
these variations is that the time delays in the system that will affect the
feedback control-system behavior will also vary by at least 10:1, depend-
ing on the operating condition. The system undergoes transients as the

Engine
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converter

Sensor

Air

Intake

manifold

Exhaust

Fuel

Actuator

Figure 10.46
F/A feedback control system
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Figure 10.47
Exhaust sensor output
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driver demands more or less power through changes in the accelera-
tor pedal, with the changes taking place over fractions of a second.
Ideally, the feedback control system should be able to keep up with
these transients.

STEP 2. Select sensors. The discovery and development of the exhaust
sensor was the key technological step that made possible this concept
of exhaust-emission reduction by feedback control. The active element
in the device, zirconium oxide, is placed in the exhaust stream, where
it yields a voltage that is a monotonic function of the oxygen content
of the exhaust gas. The F/A is uniquely related to the oxygen level.
The voltage of the sensor is highly nonlinear with respect to F/A (see
Fig. 10.47); almost all the change in voltage occurs precisely at the F/A
value at which the feedback system must operate for effective perfor-
mance of the catalyst. Therefore, the gain of the sensor will be veryNonlinear sensor
high when the F/A is at the desired point (1:14.7), but will fall off
considerably for F/A excursions away from 1:14.7.

Although other sensors have been under development for possible
use in F/A feedback control, no other cost-effective sensor has so far
demonstrated the capability to perform adequately. All manufacturers
of production-line automobiles currently use zirconium oxide sensors
in their feedback control systems.

STEP 3. Select actuators. Fuel metering is accomplished by fuel injec-
tors in current day automobiles. The fuel injectors are either placed in
the inlet port near the entrance to each cylinder or the injectors spray
the fuel at high pressures directly into the combustion chamber after the
inlet valve is closed. These arrangements drastically improve the accu-
racy of the fuel control to each cylinder compared to the throttle body
injection used when feedback control was first introduced in the 1980s.
Direct injection into the combustion chambers has always been used
for diesel engines, but started to be used for gasoline engines about 5
years ago. It has now become quite common due to its ability to care-
fully shape the fuel spray and timing of the fuel injection pattern, thus
allowing higher compression ratios which lead to significant improve-
ments in fuel economy along with reductions in particulates and the
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Figure 10.48
Block diagram of an F/A control system

other exhaust emissions. Direct injection also minimizes the time delay
thus providing better engine response and more accurate fuel control,
which also helps economy and emissions.

STEP 4. Make a linear model. The sensor nonlinearity shown in
Fig. 10.47 is severe enough that any design effort based on a linearized
model of it should be used with caution. Figure 10.48 shows a block
diagram of the system, with the sensor shown to have a gain Ks. The
time constants τ1 and τ2 indicated for the inlet-manifold dynamics rep-
resent, respectively, fast-fuel flow in the form of vapor or droplets and
slow-fuel flow in the form of a liquid film on the manifold walls. The
time delay is the sum of (1) the time it takes the pistons to move through
the four strokes from the intake process until the exhaust process and
(2) the time required for the exhaust to travel from the engine to the
sensor located roughly 1 ft away. A sensor lag with time constant τ is
also included in the process to account for the mixing that occurs in
the exhaust manifold. Although the time constants and the delay time
change considerably, primarily as a function of engine load and speed,
we will examine the design at a specific point where the values are

τ1 = 0.02 sec, Td = 0.2 sec,

τ2 = 1 sec, τ = 0.1 sec .

In an actual engine, designs would be carried out for all speed loads.

STEP 5. Try a lead–lag or PID controller. Given the tight error spec-
ifications and the wide variations in the required fuel command uf
due to varying engine-operating conditions, an integral-control term is
mandatory. With integral control, any required steady-state uf can be
provided when the error signal e = 0. The addition of a proportional
term, although not often used, allows for an increase (doubling) in the
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bandwidth without degrading steady-state characteristics. In this exam-
ple, we use a control law that is proportional plus integral (PI). The
output from the control law is a voltage that drives the injector’s pulse
former to give a fuel pulse whose duration is proportional to the voltage.
The controller transfer function can be written as

Dc(s) = Kp + KI

s
= Kp

s
(s+ z), (10.35)

where

z = KI

Kp
,

and z can be chosen as desired.
First, let us assume the sensor is linear and can be represented by

a gain Ks. Then, we can choose z for good stability and good response
of the system. Figure 10.49 shows the frequency response of the sys-
tem for KsKp = 1.0 and z = 0.3, while Fig. 10.50 shows a root locus

Figure 10.49
Bode plot of a PI F/A
controller
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Figure 10.50
Root locus of a PI F/A
controller
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of the system with respect to KsKp with z = 0.3. Both analyses show
the system becomes unstable for KsKp ∼= 2.8. Figure 10.49 shows to
achieve a phase margin of approximately 60◦, the gain KsKp should be
∼2.2. Figure 10.49 also shows this produces a crossover frequency of
6.0 rad/sec (∼1 Hz). The root locus in Fig. 10.50 verifies this candidate
design will achieve acceptable damping (ζ ∼= 0.5).

Although this linear analysis shows that acceptable stability at a
reasonable bandwidth (∼1 Hz) can be achieved with a PI controller, a
look at the nonlinear sensor characteristics (see Fig. 10.47) shows thatComplications of

nonlinearity this indeed may not be achievable. Note the slope of the sensor output
is extremely high near the desired setpoint, thus producing a very high
value of Ks. Therefore, lower values of the controller gain Kp need to be
used to maintain the overall KsKp value of 2.2 when including the effect
of the high sensor gain. On the other hand, a value of Kp low enough
to yield a stable system at F/A = 1 : 14.7 (= 0.068) will yield a very
sluggish response to transient errors that deviate much from the set-
point, because the effective sensor gain will be reduced substantially. It
is therefore necessary to account for the sensor nonlinearity in order to
obtain satisfactory response characteristics of the system for anything
other than minute disturbances about the setpoint. A first approxima-
tion to the sensor is shown in Fig. 10.51. Because the actual sensor gain
at the setpoint is still quite different from its approximation, this approx-
imation will yield erroneous conclusions regarding stability about the
setpoint; however, it will be useful in a simulation to determine the
response to initial conditions.

STEP 6. Evaluate/modify plant. The nonlinear sensor is undesirable;
however, no suitable linear sensor has been found.

STEP 7. Try an optimal controller. The response of this system is dom-
inated by the sensor nonlinearity, and any fine tuning of the control
needs to account for that feature. Furthermore, the system dynamics
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Figure 10.51
Sensor approximation

Fuel–air ratio, F/A

1:18 1:14.7 1:12

0.9

0.5

0.1

S
en

so
r 

o
u
tp

u
t,

 V

Setpoint

Approximation

Actual sensor

e

Desired

F/A

Exhaust

F/A

-
+

Step

++

Time

delay

Scope1

Scope

s
0.1s + 0.03

Control law

0.5

Gain

0.5

Gain1

0.02s + 1

1

Fast fuel

s + 1

1

Slow fuel

0.1s + 1

1

Sensor lagSensor nonlinearity

Matlab

Function

Figure 10.52
Closed-loop nonlinear simulation implemented in Simulink
Source: Reprinted with permission of The MathWorks, Inc.

are relatively simple, and it is unlikely that an optimal design approach
will yield any improvement over the PI controller used. We will thus
omit this step.

STEP 8. Simulate design with nonlinearities. The nonlinear closed-Simulink nonlinear
simulation loop simulation of the system implemented in Simulink is shown in

Fig. 10.52. The Matlab function fas implements the approximate non-
linear sensor characteristics of Fig. 10.51,

function y = fas(u)
if u < 0.0606,
y = 0.1 ;

elseif u < 0.0741,
y = 0.1 + (u− 0.0606) *20;

else y = 0.9;
end

Figure 10.53(a) is a plot of the system error using the approximate
sensor of Fig. 10.51 and KpKs = 2.0. The slow response is apparent with
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Figure 10.53
System response with
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12.5 sec before the error comes out of saturation and a time constant of
almost 5 sec once the linear region is reached. In real automobiles, these
systems are operated with much higher gains. To show these effects, a
simulation with KpKs = 6.0 is plotted in Fig. 10.53(b, c). At this gain the
linear system is unstable, and up until about 5 sec, the signals grow. The
growth halts after 5 sec due to the fact that, as the input to the sensor
nonlinearity gets large, the effective gain of the sensor decreases due to
the saturation, and eventually, a limit cycle is reached. The frequency of
this limit cycle corresponds to the point at which the root locus crosses
the imaginary axis and has an amplitude such that the total effective
gain of KpKs,eq = 2.8. As described in Section 9.3, the effective gain of
a saturation for moderately large inputs can be computed and is given
by the describing function to be approximately 4N/πa, where N is the
saturation level and a is the amplitude of the input signal. Here N = 0.4,
and if Kp = 0.1, then Ks,eq = 28. Thus, we predict an input signal
amplitude of a = 4(0.4)/28π = 0.018. This value is closely verified by
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the plot of Fig. 10.53(c), the input to the nonlinearity in this case. The
frequency of oscillation is also nearly 10.1 rad/sec, as predicted by the
root locus in Fig. 10.50.

In the actual implementation of F/A feedback controllers in auto-
mobile engines, sensor degradation over thousands of miles of use is
of primary concern, because the federal government mandates that the
engines meet the exhaust-pollution standards for the first 50,000 mi.
In order to reduce the sensitivity of the average setpoint to changes in
the sensor output characteristics, manufacturers typically modify the
design discussed here. One approach is to feed the sensor output into a
relay function [see Fig. 9.6(b)], thus completely eliminating any depen-
dency on the sensor gain at the setpoint. The frequency of the limit
cycle is then solely determined by controller constants and engine char-
acteristics. Average steady-state F/A accuracy is also improved. The
oscillations in the F/A are acceptable because they are not noticeable
to the car’s occupants. In fact, the F/A excursions are beneficial to the
catalyst operation in reducing pollutants.

Feedback systems have also been used in many other areas of
modern automobiles. A car’s desired inside temperature is set by the
passengers and a feedback system maintains that temperature. Cruise
control systems have been augmented with radar so the cruise con-
trol will maintain a certain distance behind the car ahead by feedback
of that distance to the cruise control. Systems are being developed
whereby traffic lane marking sensors are being fed back to the steering
to maintain a car in the correct lane. Stability augmentation sys-
tems use differential braking based on accelerometer measurements
to keep a car upright in violent maneuvers. The list goes on and
on, many of which are described in a book by Ulsoy, Peng, and
Cakmakci (2012). It is possible that platoons of cars on a freeway will be
tightly controlled with small distances between them in order to increase
the capacity of freeways in the future. Such a scheme will be a victory
for feedback control, but could put a tough test on our legal system if
there are serious accidents.

10.5 Control of a Quadrotor Drone
Drones, or Unmanned Aerial Vehicles (UAVs) are aircraft that are pilot-
less. They can be either controlled from the ground or are completely
autonomous and have onboard control algorithms that primarily deter-
mine their path. Some are winged aircraft, and some are helicopters that
rely on one or more rotor blades for lift. Drones are being developed for
a very large number of applications. Some of the many examples of cur-
rent use are aerial photography and video, surveillance, security/police
work, search and rescue, farming, defense, and, of course, entertain-
ment. Many other applications are being investigated from package
delivery to flying cars. More general research includes optimization of
onboard control, artificial intelligence, and swarming approaches where
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dozens of drones are in a networked communication system and are
being controlled to perform a particular task.

Helicopters with multiple rotors are a popular platform for these
vehicles due to the simplicity of the vehicle hardware and maintenance,
ability to hover, and the vertical takeoff and landing capability. As
a result, much of the sophistication is in the control and navigation
software.

STEP 1. Understand the process. The quadrotor consists of four rotors,
with one pair rotating clockwise (CW), and the other pair rotating
counter-clockwise (CCW). An example is shown in Figure 10.54. By
independently controlling each rotor’s speed, it is possible to command
the attitude of the vehicle along with the translation and altitude. By
using two CW rotors and two CCW rotors, the reaction torques on the
vehicle are canceled, thus eliminating the need for the tail rotor that
is required for the typical single-rotor helicopters and simplifying the
hardware considerably.

STEP 2. Select sensors. 3-D position and velocity sensing is readily
available via GPS (or other satellite-based navigation systems) in an
earth-fixed coordinate system. In addition, it is reasonably affordable
to have inertial sensors (aided by GPS in some cases) that provide pitch,
roll, and yaw angles, plus their angular rates. These Inertial Measure-
ment Units (IMUs) contain 3-D accelerometers and 3-D gyros at a
minimum, but sometimes contain 3-D magnetometers as well. A pack-
age with all these sensors will have the capability to supply accurate
attitudes and rates, earth-fixed position and velocity, and body-fixed
position and velocity. Having all these sensors in the unit allows the
utilization of inexpensive sensors because the redundancy in the sensed

Figure 10.54
Quadrotor drone
Source: Slavoljub
Pantelic/Shutterstock
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quantities allows for the estimation of indivicual sensor errors. Small
quadrotor drones without GPS that only include 3-axis angular rate
gyros and 3-axis accelerometers are available for less than $100; how-
ever, they require considerable practice to fly them well via remote
control. Depending upon UAV requirements and accuracy require-
ments, sensor packages can range in cost from $100 to $3000 and even
greater if very precise positioning is required. For purposes of this
example, we will assume the existence of position and velocity in both
earth- and body-frames, plus pitch, roll, and yaw angles and rates.

STEP 3. Select actuators. The actuators were discussed in STEP 1. The
quadrotor drone can be completely controlled by the individual com-
mands to the four motors driving the rotors. As will become apparent
in Steps 5 and 8, the 3-D position-time history and yaw angle are con-
trollable with these four inputs. Example 2.5 in Chapter 2 explains the
commands necessary to each rotor in order to achieve proper control of
roll, pitch, and yaw. Example 5.16 in Chapter 5 explains the use of the
actuators to control position as well.

STEP 4. Make a linear model. The coordinate system for a quadrotor
is shown in Fig. 10.55. It follows the airplane axes in Section 10.3 to
some extent; however, in this case, it is arbitrary how the x and y axes
are oriented in the plane of the rotors. Note rotors 1 and 3 are rotating
in a CW direction, while rotors 2 and 4 are rotating in a CCW direc-
tion. Selecting the x-axis to be aligned with two of the rotors simplifies
the control logic to some extent for purposes of this example; however,
most drones normally fly with the rotor arms at 45o to the direction
of flight. Quadrotor drones often have cameras installed that are not
able to swivel in the x-y plane of the drone; rather, they are only able to
swivel up and down. Furthermore, the cameras are typically aligned so
they look forward in the direction of flight. Therefore, the only way to
control the camera viewing aximuth is to yaw the drone.

The quadrotor longitudinal x-axis equations, linearized and par-
tially modified for drone use of the full nonlinear aircraft Eqs (10.16)

Figure 10.55
Definition of drone
coordinates
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and (10.17), are contained in Eqs. (10.36a). These linearized equations
assume the body-fixed coordinate system stays essentially level through
the motion and the pitch and roll angles remain small; that is, the drone
stays close to level. Also, for the linear assumptions to be valid, we
assume the angular motions are reasonably small. If that were not the
case, one would have to use the full equations as shown for the air-
plane in Eqs. (10.16) and (10.17) where there are multiple nonlinearities
involving the angular rates and angles. Another simplification below is
that the longitudinal motion (x, u, θ , and q) is uncoupled from the lat-
eral motion (y, v, φ, and p). If the vehicle is yawing (r �= 0), there will
be coupling between the longitudinal and lateral motion as can be seen
from Eqs. (10.16) and (10.17). This coupling is ignored in the equations
below, and the examples to follow will assume trajectories that do not
produce any coupling for purposes of control design. The lontitudinal
x-axis equations are:

⎡
⎢⎢⎢⎢⎣

ẋ
u̇
q̇
θ̇

Ṫθ

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 Xu 0 −go 0
0 Mu 0 0 Mθ

0 0 1 0 0
0 0 0 0 −a

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x
u
q
θ

Tθ

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

0
0
0
0
a

⎤
⎥⎥⎥⎥⎦

Tlon,

(10.36a)

[
θm
xm

]
=
[

0 0 0 1 0
1 0 0 0 0

]
⎡
⎢⎢⎢⎢⎣

x
u
q
θ

Tθ

⎤
⎥⎥⎥⎥⎦

where

x = xm = measured position in the drone frame x direction

(see Fig. 10.55),

u = velocity in the drone frame x direction (see Fig. 10.55),

q = angular rate about the positive drone frame y-axis, or pitch rate,

θ = θm = measured pitch angle from horizontal,

Xu = partial derivative of the aerodynamic force in x,

direction with respect to perturbations in u,

Mu = partial derivative of the aerodynamic (pitching) moment with

respect to perturbations in u,

Mθ = 1/Iy,

Tθ = pitching moment around +y axis from rotors 1 and 3,

Tlon = pitching torque command for rotors 1 and 3, produced by

δT1 · d and − δT3 · d, where δT is the thrust change
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commanded to the rotor and d is the moment arm,

a = lag term representing the delay in the rotors producing the

changed thrust and resulting torque,

go = gravity (assumes pitch angle is small, hence cos(θ ) 
 1).

If there are no aerodynamic terms, i.e., Mu = 0, Xu = 0, and there is
no lag from the rotor commands, this yields �m(s)/Tθ (s) = 1/Iys2 as
was the case considered in Example 2.5, Eq. (2.15). If the thrust lag is
included as shown in Eq. (10.36a), but again without aero terms, then
it produces the transfer function �m(s)/Tlon(s) = a/Iy/(s2(s+ a)) as in
Examples 5.12 and 5.16.

The lateral y-axis equations are:

⎡
⎢⎢⎢⎢⎣

ẏ
v̇
ṗ
φ̇

Ṫφ

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 Yv 0 go 0
0 Lv 0 0 Lφ
0 0 1 0 0
0 0 0 0 −a

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y
v
p
φ

Tφ

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

0
0
0
0
a

⎤
⎥⎥⎥⎥⎦

Tlat, (10.36b)

[
φm
ym

]
=
[

0 0 0 1 0
1 0 0 0 0

]
⎡
⎢⎢⎢⎢⎣

y
v
p
φ

Tφ

⎤
⎥⎥⎥⎥⎦

where

y = ym = measured position in the drone frame y direction

(see Fig. 10.55),

v = velocity in the drone frame y direction (see Fig. 10.55),

p = angular rate about the positive drone frame x-axis, or roll rate,

φ = φm = measured roll-angle from horizontal,

Yv = partial derivative of the aerodynamic force in y direction with

respect to perturbations in v,

Lv = partial derivative of the aerodynamic (rolling) moment with respect

to perturbations in v,

Lφ = 1/Ix,

Tφ = rolling moment around +x-axis from rotors 2 and 4,

Tlat = rolling torque command for rotors 2 and 4, produced by

δT2 · d and − δT4 · d, where δT is the thrust change commanded
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to the rotor and d is the moment arm,

a = lag term representing the delay in the rotors producing the

changed thrust and resulting torque,

go = gravity (assumes roll angle is small, hence cos(φ) 
 1).

The rotational - z-axis equations are:
[

ṙ
ψ̇

]
=
[

0 0
1 0

] [
r
ψ

]
+
[

1/Iz
0

]
Tψ , (10.36c)

[ψm] = [ 0 1
] [ r

ψ

]

where

r = angular rate about positive drone frame z−axis, or yaw rate,

(see Fig. 10.55),

ψ = ψm = measured azimuth angle of the drone frame x-axis with

respect to North,

Tψ = commanded yawing moment from all rotors around +

z-axis, produced by δT1, δT2, δT3 and δT4 = −Tψ .

(There is no lag here because the torque is applied directly by

the motors.)

For the final dimension, altitude, all the rotors need their speed
increased. However, because of the different rotational directions, the
torques applied to rotors 1 and 3 will be in the opposite direction com-
pared to rotors 2 and 4. Aerodynamic terms have little effect on these
dynamics; therefore, the complete equations are

⎡
⎣

ḣ
ẇ
Ḟh

⎤
⎦ =

⎡
⎣

0 1 0
0 0 Zh
0 0 −a

⎤
⎦
⎡
⎣

h
w
Fh

⎤
⎦+

⎡
⎣

0
0
a

⎤
⎦Falt, (10.36d)

hm = [1 0 0]

⎡
⎣

h
w
Fh

⎤
⎦

where

h = hm = vertical position,

w = vertical, z-axis, velocity,

Zh = 1/mo, mo = mass of the vehicle,

Fh = vertical thrust,

Falt = commanded thrust from all rotors, produced by
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δT1 = δT3 = +Falt and δT2 = δT4 = −Falt.

To determine the position in an earth-fixed frame for the case when
there is no yaw rate, r, the transformation matrix based on the rotation
of the level body-fixed frame is required, thus

[
ẋE
ẏE

]
=
[

cos(ψ) − sin(ψ)
+ sin(ψ) cos(ψ)

] [
u
v

]
, (10.37)

where

xE = position in the earth-fixed frame with the x-axis pointing north,

yE = position in the earth-fixed frame with the y-axis pointing east.

For a fixed aximuth of ψ = 0, i.e, the x-axis is pointing north, and
if there are no aero terms, xE(s)/θ(s) = −go/s2 as we assumed in Exam-
ple 5.16. As discussed above, for the case when there is a yaw rate, there
are cross-coupling terms into the longitudinal and lateral axes as can
be seen from Eqs (10.16), plus the kinematic relationships between the
body-fixed and earth-fixed frames are significantly more complex (see
Greenwood, 1988). For our ensuing example, we have chosen to select a
trajectory where the equations above [10.36 and 10.37] are satisfactory.
For arbitrary motion of a drone, substantial additional complexity is
required to accurately simulate the motion in the body and earth-fixed
frames. However, for design of feedback control laws of a drone, use
of the four independent axes represented by Eqs. (10.36) are usually
adequate.

Note, in the linear models above, the four axes are independent of
each other providing the rotor commands are implemented as shown in
the equations above, and as diagrammed in Fig. 10.56.
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Figure 10.56
Required rotor commands for each of the four axes
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STEP 5a. Try a PID controller for a single axis. For a set of aerodynamic
and inertia terms that are representative of a small drone approximately
3 ft in diameter (Berrios, 2017), the parameters used were

Mu = 1.1,
Xu = −0.25,
Mθ = 0.02,
go = 32.2,

a = 20.

These values in Eqs. (10.36a) produce the transfer functions,

θm(s)
Tlon(s)

= 0.4
(s+ 0.25)

(s− 1.6± 2.8j)(s+ 3.4)(s+ 20)
. (10.38a)

xm(s)
Tlon(s)

= −13
1

s(s− 1.6± 2.8j)(s+ 3.4)(s+ 20)
. (10.38b)

Note there are unstable open-loop poles in this loop. This is typical
of helicopters flying near hover and account for the fact that helicopters
tend to be difficult to fly near hover. The (s + 20) term is due to the
lag in the rotor coming up to the newly commanded speed and thrust;
however the remaining set of poles and zero are often referred to as the
“hovering cubic”.

The use of sisotool allows us to find the PD controller (feedback of
θ and θ̇ ),

Dc1lon(s) = 500(s+ 4) (10.39a)

that produces a damping, ζ 
 0.6, and ωn 
 10 rad/sec for the
oscillatory roots of the this inner loop, as shown by the root locus in
Fig. 10.57.

However, we see from the frequencey response in Fig. 10.58 that
the system is conditionally stable due to the RHP open-loop roots that
resulted from the aerodynamic terms.

Figure 10.57
Root locus of the inner
loop with compensation
given by Eq. 10.39a
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Figure 10.58
Open-loop frequency
response plots for the
inner θ loop
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With the compensator as designed, the PM is 40o. Lowering the gain
by a factor of 3.2 would cause an instability while there is no upper
limit of the gain before instability is reached. Some researchers have
found that additional lead in this inner loop substantially improves the
performance in the presence of gusty wind conditions.

For the outer loop, we wish to command a change in position;
therefore our measurement will be x. Using Eq. (10.36a) with the addli-
tion of the inner-loop feedback from Eq. (10.39a), we find that an
outer-loop PD controller

Dc2lon(s) = 0.4(s+ 2.2), (10.39b)

produces the root locus as shown in Fig. 10.59, where the closed-loop
roots for the selected gain are indicated. The system response to a step
command in x yields a satisfactory response as shown in Fig. 10.60.
The rise time is approximately 0.6 seconds and the settling time is
approximately 3 seconds, with an overshoot of less than 5%.

Figure 10.59
Root locus for the outer
x-loop including the PD
controller
Dc2lon(s) = 0.4(s+ 2.2)
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Figure 10.60
Step response of x with
the PD controller
Dc2lon(s) = 0.4(s+ 2.2)
for the outer loop
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Figure 10.61
(a) x response to a commanded trajectory (b) zoom in to a transition

However, a typical trajectory for a drone would involve moving
to some location, performing a function, then returing to the starting
point. As a partial test of this sort of trajectory in the x-direction only,
we enter an x-command to leave the starting point with a speed of 10
ft/sec for 10 seconds, move along at that speed for 10 seconds, stop for 10
seconds, return at -10 ft/sec and stop after 10 seconds and stay station-
ary for 10 seconds. Fig. 10.61(a) is a plot that includes the commanded
x-position, and the system’s response to that command. To exhibit the
accuracy better, a blow-up of the area near the transition from forward
flight to the position hold at 10 seconds is shown in Fig. 10.61(b).

We see that the drone follows the commanded position very well,
including the transition where a step change in velocity of 10 ft/sec is
commanded and the resulting position error is less than 0.4 ft.
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STEP 5b. Try PID controllers for 2-D motion in the horizontal plane.
Unlike an airplane, a drone is equally comfortable traveling in the
y-direction as it is traveling in the x-direction and equally comfortable
going in the positive or negative directions! However, as stated earlier,
most drones are equipped with a camera or other sensors that are point-
ing forward in a particular x-y direction fixed in the drone. So there is
a preferred direction of flight due to the placement of the observation
sensors on the drone and the preferred method of guiding the craft is to
rotate the vehicle about the z-axis so its sensors point in the direction of
flight. Continuing with the evaluation for a trajectory over a path in the
x-y plane, let’s assume the camera is oriented to point along the x-axis
and can swing down in the x-z plane. Initially, we want the drone to
start going north so that ψ = 0 for the first portion of the trajectory. At
a certain point, the camera detects something interesting, stops with
the camera pointing straight down, rotates by 180o, moves sideways
toward the east (which will be in the – y-direction due to the body-
frame rotation by 180o), then moves back to the starting place without
yaw rotation (ψ = 180o) and translation mostly in the +x-direction, but
enough in the +y-direction so it returns to the starting location. For the
y-direction flight, since the drone is not quite symmetric, the parameters
used are:

Lv = −0.5,
Yv = −0.2,
Lφ = 0.016,
go = 32.2,

a = 20.

These result in the transfer function of the inner loop

φm(s)
Tlat(s)

= 0.32
(s+ 0.2)

(s− 1.2± 2.2j)(s+ 2.6)(s+ 20)
.

The use of sisotool allows us to find the inner loop PD controller
(feedback of φ and p),

Dc1lat(s) = 500(s+ 3), (10.40a)

that gives acceptable speed of response and damping. Then closing the
outer loop with a PD controller (feedback of y and v),

Dc2lat(s) = 0.25(s+ 3), (10.40b)

completes the controller for commanding movement in the body-frame
y-direction.

Control of the yaw angle (the azimuth of the body x-frame axis) is
relatively straight forward since Eqs. (10.36c) show that

ψm(s)
Tψ(s)

= 0.005
1
s2 .

The controller,
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Figure 10.62
Block diagram of the controllers for motion in the x-y plane

Dcrot(s) = 1500(s+ 3), (10.41)

provides a fast and well damped response, so the complete controller for
motion in the x-y plane is now designed. Fig. 10.62 shows these control
loops in a block diagram.

The specific path chosen is one that goes away from the starting
point at 20 ft/sec for 10 seconds along the x-axis pointing north, then
stops and rotates for 5 seconds around the z-axis by 180◦, then slides
sideways to the east (negative y-axis) for 5 seconds at 5 ft/sec, and finally
flies for 10 seconds with a velocity along the +x-axis of 20 ft/sec (which
is now pointing south) and a velocity of 2.5 ft/sec along the +y-axis
(which is now pointing west) so that the drone will return to the start-
ing point. Fig. 10.63(a) shows the overall trajectory of the drone while
10.63(b) shows a scale change of the trajectory as it starts the trip back
to the starting point to illustrate the errors better. The figure shows that
the trajectory error never appears to exceed about a foot.

Based on the definition of the x-y plane in Fig. 10.55 with the z-axis
pointing down, and the fact that Matlab plots axes as in Figs. 10.63 as if
the z-axis was coming out of the page, the trajectories in Figs. 10.63 are
based on an observer who is looking up at the x-y plane from under-
neath. That means that, indeed, the xE-axis is pointing north and
yE-axis is pointing east as described above.)

Summarizing, we saw from this example that it is not necessary to
command changes in the azimuth angle (ψ) as it would be for an air-
plane. However, there are reasons that one would want to command
changes in the azimuth, such as orienting a camera which are typically
not gimbaled to swivel around the body-frame z-axis. In general, if
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Figure 10.63
(a) Trajectory in the earth-fixed frame, (b) blow-up of the trajectory showing errors.

there is continuous motion in the body axis x-direction and continual
changes in the direction of the body x-axis (that is, continual changes
in ψ), there will be accelerations imparted in the body frame y-axis
direction thus necessitating adding the coupling terms between the Eqs.
(10.36a, b, and c). The trajectory selected above was chosen so those
terms did not appear and, therefore, there were no errors induced by the
motion. To accurately simulate a more general motion, the nonlinear
terms and coupling need to be added; however, it is generally acceptable
to use the uncoupled equations for purposes of control system design.

STEP 6. Try an optimal design: The quadrotor longitudinal x-axis state-
space equations are given by Eq. (10.36a) and with x selected as the
system output, the resulting longitudinal transfer function is

x(s)
Tlon(s)

= −12.88
s(s− 1.6± j2.8)(s+ 3.37)(s+ 20)

.

Selecting the following LQR weighting matrices,

Q = ρCT C, R = 1, C = [ 0 0 0 1 0
]

,

the symmetric root locus (SRL) for the system is shown in Figure 10.64.
Choosing ρ = 1e11, we compute the state feedback gain matrix as

K = [ −49020 6204 126690 −316230 2.66
]

.

The feedforward gain matrices are computed as

Nx =

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦

, Nu = 0, N̄ = Nu + KNx = −3.1623e5, M = BN̄.
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Figure 10.64
Longitudinal SRL for
quadrotor
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Choosing the following estimator design weighting parameters

q = 1e7, B1 = B,

the estimator gain matrix is determined to be

L =

⎡
⎢⎢⎢⎢⎣

148
−44
−23
17
−170

⎤
⎥⎥⎥⎥⎦

,

and results in the dynamic controller transfer function for the longitu-
dinal axis given by

Dc(s) = 1.59e7(s+ 0.93± j3.1)(s+ 3.8)(s+ 20)
(s+ 36.9)(s+ 24.7± j22.2)(s+ 2.2± j24.5)

.

The overall closed-loop system equations are
[

ẋ
˙̂x
]
=
[

A −BK
LC A− BK− LC

] [
x
x̂

]
+
[

BN̄
M

]
r,

y = [ C 0
] [ x

x̂

]
.

The step response of the longitudinal control is shown in Figures 10.65.
The rise time is 0.15 sec, the settling time is 0.8 sec, and there is less than
12% overshoot.

The lateral y-axis state-space equations are as in Eq. (10.36b) and
result in the transfer function

y(s)
Tlat(s)

= 10.3
s(s− 1.2± j2.2)(s+ 2.6)(s+ 20)

.

Choosing the following LQR weighting matrices,

Q = ρCT C, R = 1, C = [ 0 0 0 1 0
]

,
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Figure 10.65
Longitudinal step
response for
state-space design
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with ρ = 1e10, the state feedback gain matrix is computed as

K = [ 51641 7147 139480 316230 2.5
]

.

The solution to the feedforward gain matrices yields

Nx =

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦

, Nu = 0, N̄ = Nu + KNx = 3.16e5, M = BN̄.

Selection of the ensuing estimator design weighting parameters

q = 1e10, B1 = B,

yields the estimator gain matrix

L =

⎡
⎢⎢⎢⎢⎣

733
1539
261
38

52342

⎤
⎥⎥⎥⎥⎦

,

and results in the lateral dynamic controller transfer function

Dc(s) = −9.76e7(s+ 2± j5.4)(s+ 5)(s+ 20)
(s+ 46)(s+ 30.6± j28.9)(s+ 0.78± j31)

.

The step response of the lateral-axis and its associated control effort
are very similar to Figures 10.65. The rise time is less than 0.15 sec, the
settling time is around 0.8 sec, and the overshoot is less than 12%. As
expected there is tremendous amount of symmetry between the longitu-
dinal and lateral axes. The rotational z-axis state-space equations are as
in Eq. (10.36c).

Selecting the ensuing LQR weighting matrices,

Q = ρCT C, R = 1, C = [0 1] ,
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with ρ = 1e10, the state feedback gain is computed to be

K = [ 11246 316227
]

.

The feedforward gain matrices are determined as

Nx =
[

0
1

]
, Nu = 0, N̄ = Nu + KNx = 3.16e5, M = BN̄.

Selecting the ensuing estimator design parameters

q = 1e10, B1 = B,

gives the estimator gain matrix

L =
[

500
31

]
,

and the dynamic controller transfer function for the rotational dynam-
ics is given by

Dc(s) = −1.56e7(s+ 10)
(s+ 43.9± j43.9)

.

The rotational step response is shown in Figure 10.66. The system
has a rise time of 0.05 sec, a settling time of 0.2 sec and less than 5%
overshoot.

Figure 10.67 shows the trajectory following response of the quadro-
tor for the same desired trajectory as before. The quadrotor can follow
the desired path very accurately and outperforms the classical design
as seen from Figure 10.67. To be fair, iterations on the classical design
could match this performance.

This example shows the essence of the control issues for the axes
involving motion in the x-y (horizontal) plane. In addition, there will
be a requirement to control the altitude as well, but unlike an airplane

Figure 10.66
Rotational axis step
response for
state-space design

Time (sec)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

c
(t)

0

0.4

0.2

0.6

0.8

1

1.2



main_1 — 2019/2/5 — 18:43 — page 819 — #69

10.6 Control of RTP Systems in Semiconductor Wafer Manufacturing 819

Figure 10.67
Trajectory-following
response for
state-space design
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that requires pitch for altitude control, this motion is uncoupled from
the other motions for normal fight.

STEP 7. As stated for STEP 5, the control laws determined by any
method should be evaluated by a complete and accurate nonlinear simu-
lation to determine the performance considering all known disturbances
and the effect of all known model approximations.

10.6 Control of RTP Systems in Semiconductor
Wafer Manufacturing

Figure 10.68 diagrams the major steps in the manufacture of an ultra-
large-scale integrated (ULSI) circuit such as a microprocessor and some
of the associated control aspects. Many of the steps described in this
process, such as chemical vapor deposition or etching, must be done at
closely controlled and timed temperature sequences (Sze, 1988). The
standard practice for many years has been to perform these steps
in batches on many wafers (silicon disks that contain many chips)
at a time to produce large numbers of identical chips. In response
to the demand for ever smaller critical dimensions of the devices
on the chip, and to give more flexibility in the variety and number
of chips to be produced, the makers of the tools for fabrication of
integrated circuits are asked to provide more and more precise con-
trol of temperature and time profiles during thermal processing. In
response to these demands, an important trend is to perform the
thermal steps on one wafer at a time in a chamber with cold walls
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Figure 10.68
Steps in making an integrated circuit
Source: Adapted from International Sematech, Steps in making an integrated circuit.

and a flexible heat source called a rapid thermal processing (RTP)
system.RTP

The demands on an RTP system are illustrated by the requirement
that the temperature of the wafer needs to rapidly increase or decrease
according to a profile such as that shown in Fig. 10.69, where the
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Figure 10.69
Typical RTP temperature
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ramp-up speeds are at rates of 25◦ to 150◦C/sec, and the soak temper-
atures range from 600◦C to 1100◦C and last from a few to as many
as 120 sec. The ramp-up rates are limited by the danger of causing
damage to the crystal structure if the temperature gradients become
too large. The ability of the RTP system to change temperature rapidly
permits fabrication of devices with very small critical lengths by being
able to stop the processes such as deposition or etching quickly and
accurately. An important performance consideration is control of tem-
perature uniformity. Hence the actual control is multivariable. However,
we will simplify the situation to a single-input single-output case for this
study.

Figure 10.70 shows a generic RTP reactor with tungsten halogen
lamps, stainless steel walls that are water cooled, and quartz win-
dows. Temperature measurement can be done by a variety of methods,
including thermocouples, RTDs, and pyrometers. For various reasons
(particle generation, minimal disturbance, etc.), it is desirable to use
noncontact temperature sensing; therefore, pyrometric techniques are
the most commonly employed. A pyrometer is a noncontact temper-
ature sensor that measures infrared (IR) radiation, which is directly a
function of the temperature. It is known that objects emit radiant energy
proportional to T4, where T is the temperature of the object. Among
the advantages of pyrometers are they have very fast response time, andPyrometer
can be used to measure the temperature of moving objects (for example,
a rotating semiconductor wafer), and in a vacuum for semiconductor
manufacturing.

The selection of the actuator depends on the choice of techniques
for supplying power (tungsten halogen lamps, arc lamps, hot susceptor,
etc.) to heat the wafer. Tungsten halogen lamps are now commonly usedTungsten halogen lamp
in RTP in semiconductor manufacturing (Emami-Naeini et al., 2003).
Figure 10.71(a) shows a system with two-sided heating by linear tung-
sten halogen lamps (typical of systems produced by Mattson). The lamp
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Figure 10.70
Generic RTP system
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arrays on the top and bottom are at right angles to provide more of
an axisymmetric configuration. Fig. 10.71(b) shows one-sided heating
with lamps in a honeycomb configuration (typical of the Applied Mate-
rials systems). Finally, Fig. 10.71(c) shows a configuration of lamps
arranged in concentric rings (typical of the Stanford–TI MMST cham-
ber, Gyugyi et al., 1993). The lamps do saturate and, for practical
reasons, it is desired to operate them within 5%–95% of maximum
power settings.

To illustrate the design of an RTP system, we present the results
of a specific design carried out at SC Solutions as a laboratory model
constructed to study problems associated with RTP design and oper-
ation (Emami-Naeini et al., 2003). The laboratory model is shown
schematically in Fig. 10.72. It is made of aluminum and consists of three
standard 35-W 12-V tungsten halogen lamps heating a rectangular plate

Figure 10.71
Various lamp
geometries for RTP
Source: Norman, S.A., “Wafer
temperature control in rapid
thermal processing,” Ph.D.
Dissertation, Stanford
University, Stanford, CA, 1992.
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Figure 10.72
Block diagram of the
RTP laboratory model
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that simulates the wafer. The plate measures 4 in × 1 3
4 in and is black-

ened to increase its radiation absorption. The plate is mounted parallel
to the lamps. The lamps are mounted in the lamp housing. The lamp
assembly is mounted on a railing so the distance from the lamps to the
plate is adjustable. As the lamps are moved out the gain of the system
decreases, but the radiation cross talk (coupling) increases. On the other
hand, as the lamps are moved closer to the plate, the gain of the system
increases and the coupling is reduced. The nominal distance from the
lamps to the plate is 1 in., but it is adjustable to several inches. The
lamps are driven by a pulse-width modulated (PWM) amplifier driver.
There is a separate power supply unit. There are three dials mounted
on the side for open-loop and manual system operations. There are
fourteen resistive temperature detector (RTD) strips mounted vertically
behind the back of the plate: twelve on the plate and two on each sup-
port on either side. There is a noise source filter that generates periodic
sensor noise at 1.5 Hertz so as to represent wafer rotation noise seen
in real RTP systems. All electronics (that is, sensor signal processing
and PWM amplifier) reside in the enclosure at the bottom of the unit.
Because there is exposure to the outside, the surrounding environment
provides sources of disturbance.RTP laboratory model

STEP 1. Understand the process and its performance specifications. RTP
is an inherently dynamic and nonlinear process. Among interesting



main_1 — 2019/2/5 — 18:43 — page 824 — #74

824 Chapter 10 Control System Design: Principles and Case Studies

properties of the system are multiple time scales (time constants for
lamps, wafer, showerhead, and quartz window are different); nonlin-
ear (radiation dominant) behavior; nonlinear lamps; effects of power
supplies; number and placement of sensors; number, placement, and
grouping of lamps; and large temperature variations. The DC gain in
the system (δ temperature/δ power) decreases with increasing tempera-
ture due to the nonlinear increase in radiative losses. Various types of
physical models are needed. Detailed physical models are required for
equipment design, but reduced-order models are needed for fast evalua-
tion of geometry changes, recipe development, and for feedback control
design. Smooth transition between manual and automatic control is
also required.

STEP 2. Select sensors. This was discussed earlier. For the laboratory
model, the sensors were a set of fourteen RTDs, but three (located at the
center and the support edges of the plate) can be used for feedback, and
the rest can be used for temperature monitoring purposes. In our case,
we will use only the center temperature for feedback control. (Another
alternative would be to sum the three temperatures into one signal and
control the average temperature.)

STEP 3. Select actuators. This was also discussed earlier. For the labo-
ratory model, the actuators were composed of three standard tungsten
halogen lamps previously described. In our case, we shall tie up all three
lamps into a single actuator by applying the same input command to
each lamp.

STEP 4. Make a linear model. The laboratory model was built (see
Step 9). The nonlinear system equations involve both conduction (see
Chapter 2) and radiation terms (see Emami-Naeini et al., 2003). Non-
linear system identification approaches were used to derive a model for
the system. Specifically, the three lamps were stepped up, held constant,
and then stepped down sequentially, and the three output temperatures
were recorded. System identification studies8 resulted in the follow-
ing nonlinear model for the system that contains the radiation andNonlinear radiation heat

transfer conduction terms (Ar and Acon, respectively):

M Ṫ = Ar

[
T

T∞

]4

+ Acon

[
T

T∞

]
+ B u. (10.42)

Here T = [T1 T2 T3]T denote the temperatures, T∞ = constant ambi-
ent temperature (Ṫ∞ = 0), u = [vcmd1 vcmd2 vcmd3]T are the voltage
commands, and the system matrices are

M−1 =
⎡
⎣

1.000040 0 0
0 5.557443 0
0 0 13.638218

⎤
⎦ ,

8Performed by Dr. G. van der Linden.
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Ar =
⎡
⎣

5.4762e− 2 −8.5706e− 3 −8.2961e− 4 −4.5361e− 2
−8.5706e− 3 8.5709e− 3 −1.6213e− 7 −8.9134e− 8
−8.2961e− 4 −1.6213e− 7 8.2998e− 4 2.0976e− 7

⎤
⎦ ,

Acon =
⎡
⎣

3.5599e− 7 −1.1136e− 7 −1.1976e− 7 −4.7011e− 8
−1.1136e− 7 1.1602e− 2 −2.5027e− 3 −9.0992e− 3
−1.9761e− 7 −2.5027e− 3 6.3736e− 3 −3.8707e− 3

⎤
⎦ ,

B =
⎡
⎣

3.4600e− 1 1.1772e− 1 2.8380e− 2
3.8803e− 11 8.0249e− 2 1.8072e− 2
8.0041e− 9 2.7216e− 3 3.1713e− 2

⎤
⎦ .

A linear model for the system was derived asRTP linear model

Ṫ = A3T+ B3u, (10.43)

y = C3T+D3u,

where y = [Ty1 Ty2 Ty3]T and

A3 =
⎡
⎣
−0.0682 0.0149 0.0000

0.0458 −0.1181 0.0218
0.0000 0.04683 −0.1008

⎤
⎦, B3 =

⎡
⎣

0.3787 0.1105 0.0229
0.0000 0.4490 0.0735
0.0000 0.0007 0.4177

⎤
⎦,

C3 =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦, D3 =

⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦.

The three open-loop poles are computed from Matlab and are located
at −0.0527, −0.0863, and −0.1482. For our case, because we tied the
three lamps into one actuator and are using only the center temperature
for feedback, the linear model is then

A =
⎡
⎣
−0.0682 0.0149 0.0000
0.0458 −0.1181 0.0218
0.0000 0.04683 −0.1008

⎤
⎦ , B =

⎡
⎣

0.5122
0.5226
0.4185

⎤
⎦ ,

C = [ 0 1 0
]

, D = [0] ,

resulting in the transfer function

G(s) = Ty2(s)

Vcmd(s)
= 0.5226(s+ 0.0876)(s+ 0.1438)
(s+ 0.1482)(s+ 0.0527)(s+ 0.0863)

.

STEP 5. Try a lead–lag or PID controller. We may try a simple PI
controller of the form

Dc(s) = (s+ 0.0527)
s

,

so as to cancel the effect of one of the slower poles. The linear closed-
loop response is shown in Fig. 10.73(a) and the associated control effort
is shown in Fig. 10.73(b). The system response follows the commanded
trajectory with a time delay of approximately 2 sec and no overshoot.
The lamp has its normal response until 75 sec and goes negative (shown
dashed) to try to follow the sharp drop in commanded temperature.
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Figure 10.73
Linear closed-loop RTP response for PI controller

This behavior is not possible in the system, as there is no means of active
cooling and the lamps do saturate low. Note there is no explicit means
of controlling the temperature nonuniformity in this approach.

STEP 6. Evaluate/modify plant. This was discussed already in connec-
tion with actuator and sensor selection.

STEP 7. Try an optimal design. We use the error-space approach for
inclusion of integral control and employ the linear quadratic Gaussian
technique of Chapter 7. The error system is

[
ė
ξ̇

]
=
[

0 C
0 A

] [
e
ξ

]
+
[

D
B

]
μ, (10.44)

where

As =
[

0 C
0 A

]
, Bs =

[
D
B

]
,

e = y − r, ξ = Ṫ, and μ = u̇. For state feedback design, the LQR
formulation of Chapter 7 is used; that is,

J =
∫ ∞

0
{zT Q z+ρμ2} dt,

where z = [e ξT ]T . Note J needs to be chosen in such a way as to penal-
ize the tracking error e and the control u, as well as the differences in the
three temperatures. Therefore, the performance index should include a
term of the formTemperature uniformity

10
{
(Ṫ1 − Ṫ2)

2 + (Ṫ1 − Ṫ3)
2 + (Ṫ2 − Ṫ3)

2
}

,

which minimizes a measure of the temperature nonuniformity. The fac-
tor of 10 was determined by trial and error as the relative weighting
between the error state and the plant state. The state and control
weighting matrices, Q and R, respectively, are then
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Q =

⎡
⎢⎢⎣

1 0 0 0
0 20 −10 −10
0 −10 20 −10
0 −10 −10 20

⎤
⎥⎥⎦ , R = ρ = 1.

The following Matlab command is used to design the feedback
gain:

[K] = lqr(As,Bs,Q,R).

The resulting feedback gain matrix computed from Matlab is

K = [K1 : K0],

where

K1 = 1, K0 =
[

0.1221 2.0788 −0.2140
]

,

which results in the internal model controller of the form

ẋc = Bce, (10.45)

u = Ccxc − K0T,

with xc denoting the controller state and

Bc = −K1 = −1, Cc = 1.

The resulting state-feedback closed-loop poles computed from
Matlab are at −0.5574± 0.4584j,−0.1442, and −0.0877. The full-order
estimator was designed with the process and sensor noise intensities
selected as the estimator design knobs:

Rw = 1, Rv = 0.001.

The following Matlab command is used to design the estimator:

[L] = lqe(A,B,C,Rw,Rv).

The resulting estimator gain matrix is

L =
⎡
⎣

16.1461
16.4710
13.2001

⎤
⎦ ,

with estimator error poles at −16.5268,−0.1438, and −0.0876. The
estimator equation is

˙̂T = AT̂+ Bu+L(y−CT̂). (10.46)

With the estimator, the internal model controller equation is modified
as

ẋc = Bce, (10.47)

u = Ccxc − K0T̂.

The closed-loop system equations are given by

ẋcl = Aclxcl + Bclr, (10.48)

y = Cclxcl +Dclr,
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where r is the reference input temperature trajectory, the closed-loop
state vector is xcl = [TT xT

c T̂T ]T and the system matrices are

Acl =
⎡
⎣

A BCc −BK0
BcC 0 0
LC BCc A− BK0−LC

⎤
⎦ , Bcl =

⎡
⎣

0
−Bc

0

⎤
⎦ ,

Ccl =
[
C 0 0

]
, Dcl = [0],

with closed-loop poles (computed with Matlab) located at −0.5574 ±
0.4584j, −0.1442, −0.0877, −16.5268, −0.1438 and −0.0876 as
expected. The closed-loop control structure is shown in Fig. 10.74.

The closed-loop control system diagram implemented in Simulink
is shown in Fig. 10.75. The linear closed-loop response is shown in
Fig. 10.76(a), and the associated control effort is shown in Fig. 10.76(b).
The commanded temperature trajectory, r, is a ramp from 0◦C to 25◦C,
with a 1◦C/sec slope followed by a 50 sec. soak time and a drop back
to 0◦C. (Note the ramp rate is very slow here because we have only
three lamps for our RTP laboratory model, whereas a real RTP system

©
+

-
©

+

-
R Y-Bc Cc

xc u

s
1

-K0

x = Ax + Bu

x = (A - LC) x + Bu + Lyˆ ˆ

Linear plant

Estimator

y = Cx

Figure 10.74
Closed-loop control structure diagram
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State-space1

Figure 10.75
Simulink block diagram for RTP closed-loop control
Source: Reprinted with permission of The MathWorks, Inc.
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Linear closed-loop RTP response for robust servomechanism controller

would have hundreds of lamps, and the much faster ramp rates men-
tioned earlier would be relevant.) The system tracks the commanded
temperature trajectory—albeit with a time delay of approximately 2 secTemperature trajectory

following for the ramp and a maximum of 0.089◦C overshoot. As expected, the
system tracks a constant input asymptotically, with zero steady-state
error. The lamp command increases as expected to allow for tracking
the ramp input, reaches a maximum value at 25 sec, then drops to a
steady-state value around 35 sec. The normal response of the lamp is
seen from 0 to 75 sec, followed by a negative commanded voltage for a
few seconds corresponding to fast cooling. Again, the negative control
effort voltage (shown in dashed lines) is physically impossible as there
is no active cooling in the system. Hence, in the nonlinear simulations,
commanded lamp power must be constrained to be strictly nonnegative
(Step 8). Note the response from 75 to 100 sec is that of the (negative)
step response of the system.

STEP 8. Simulate the design with nonlinearities. The nonlinear closed-
loop system was simulated in Simulink as shown in Fig. 10.77. TheSimulink nonlinear

simulation model was implemented in temperature units of degrees Kelvin and
the ambient temperature is 301K.9 The nonlinear plant model is the
implementation of Eq. (10.42). There is a prefilter following the refer-Prefilter
ence temperature trajectory (to smoothen the sharp corners) with the
transfer function

Gpf(s) = 0.2
s+ 0.2

. (10.49)

Note conversion from voltage to power was determined experimentally
to be given byLamp nonlinearity

P = V1.6, (10.50)

9[K] = [◦C]+ 273.
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Figure 10.77
Simulink diagram for nonlinear closed-loop RTP system: (a) nonlinear closed-loop; (b) nonlinear plant
Source: Reprinted with permission of The MathWorks, Inc.
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Figure 10.78
Simulink diagram for
nonlinear closed-loop
RTP system:
(a) subsystem to
convert voltage to
power; (b) subsystem
for lamp model
Source: Reprinted with
permission of The MathWorks,
Inc.
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and is implemented as a nonlinear block (named VtoPower) in the
Simulink diagram accordingly (see Fig. 10.78). The inverse of the static
nonlinear lamp model is also included as a block (named InvLamp):

V = P0.625. (10.51)

This will cancel the lamp nonlinearity. The voltage range for system
operation is between 1 and 4 volts, as seen from the diagram. A
saturation nonlinearity is included for the lamp as well as integrator
antiwindup logic to deal with lamp saturation. The nonlinear dynamic
response is shown in Fig. 10.79(a), and the control effort is shown in
Fig. 10.79(b). Note the nonlinear response is in general agreement with
the linear response.

(b) Control effort
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Nonlinear closed-loop response for robust servomechanism controller
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Figure 10.80
RTP temperature control
laboratory model
Source: Photo courtesy of
Abbas Emami-Naeini

A prototype of the RTP laboratory model was designed,
built,10 and demonstrated at the Sematech AEC/APC’98 Conference.
Figure 10.80 shows a photograph of the operational system. This system
is really multivariable in nature. The three-input–three-output multi-
variable controller used on the prototype system was designed using
the same approach discussed in Step 7, and was implemented on an
embedded controller platform that uses a real-time operating system.

The continuous controller (that is, the combined internal model
controller and the estimator) is of the form

ẋc = Acxc + Bce, (10.52)

u = Ccxc,

where xc = [xT
c T̂T ]T ,

Ac =
[

0 0
BCc A− BK0−LC

]
, Bc =

[
Bc
L

]
, (10.53)

and
Cc = [Cc −K0

]
.

The controller was discretized (see Chapter 8) with a sampling period
of Ts = 0.1 sec and implemented digitally (with appropriate antiwindup
logic) as

xc
k+1 = �cxc

k + �cek, (10.54)

uk = Ccxc
k.

The response of the actual system to the reference temperature trajec-
tory, along with the three lamp voltages, is shown in Fig. 10.81. It is in
good agreement with the nonlinear closed-loop simulation of the system
(once noise is accounted for).

For further information on modeling and control of RTP systems,
refer to Emami-Naeini et al. (2003), Ebert et al. (1995a,b), de Roover
et al. (1998), and Gyugyi et al. (1993).

10By Dr. J. L. Ebert.
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Figure 10.81
Response of the RTP
temperature control
laboratory model

V
cm

d
 (

V
)

T
em

p
er

at
lu

re
  
(C

)

0 14012010080604020
1

1.5

2

2.5

3

3.5

35

40

45

50

55

60

65

Time (sec)

0 14012010080604020

Time (sec)

Vcmd2

Vcmd1

Vcmd3

Tr

Ty1

Ty2

Ty3

10.7 Chemotaxis, or How E. Coli Swims Away
from Trouble

Biological systems have numerous feedback loops. One such system
is the human body, which implements feedback mechanisms to regu-
late its core temperature (98.6◦F), hormone levels, and eye response to
light levels, as well as the pH, arterial blood pressure, and sugar levels
of circulating blood. Core temperature is regulated by the hypothala-
mus region of the brain which, in part, signals the secretion of fluid
from sweat glands to lower body temperature, and conversely stimulates
skeletal muscles to shiver in order to raise the temperature. Blood sugar
levels are controlled using a tight negative feedback loop. If the blood
sugar level rises, the pancreas secretes insulin to bring the level back to
normal. Meanwhile, downward deflections in blood sugar levels result
in the secretion of fluids from the adrenal gland and pancreas to main-
tain the proper balance. Furthermore, the human heart is a nonlinear
feedback control system which has methods for maintaining a regular
heartbeat and the proper voltage potential in the membranes. Under-
standing these biological feedback loops is an important step towards
maintaining human health and developing therapies for disease.

Attempts are underway to characterize and model a whole bio-
logical organism’s behavior as a system of interconnected subsystems.
Toward that end, deriving a detailed understanding of a simple cellular
system, such as a single Escherichia coli bacterium, is a significant effort.
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Unlike the previous case studies, this example is not a feedback design
example, but rather an illustration of a natural feedback mechanism
which has evolved in biological systems.

Background
The cell is the basic structural and physiological subsystem of all living
organisms, and most of the biochemical activities necessary for life are
performed in cells. Some organisms, such as the bacteria in Fig. 10.82,
consist of only a single cell. Escherichia coli (E. coli), photographed in
Fig. 10.83, is one of these single-cell organisms that has been extensivelySystems biology
studied and whose interesting motion and control will be described in a
highly simplified way in this case study. The technical results for the
study come from the field of systems biology. Systems biology is an
emerging field with the goal of creating dynamic models to describe
the incredibly complex processes in many biological systems.The aim
is to determine how shifting variables in one part impact the whole. In
this case study, a model is presented to suggest how ideas from control
can contribute to this effort. In preparing the study, we have tried to
minimize the use of technical terms from biology and to define clearly
those found useful and necessary for the presentation. It is hoped that
this simple introduction will inspire control engineers to conduct direct
study of this important field. First, a bit of background.

Escherichia coli was discovered by German pediatrician and bac-Escherichia coli
teriologist Theodor Escherich in 1885. The bacterium is a cylindrical
organism with hemispherical endcaps, as depicted in Fig. 10.83. It is
approximately 1 micron (μ) in diameter and 2 microns (μ) in length
and weighs about 1 picogram (pg). E. coli lives in the large intestine

Figure 10.82
(a) A typical bacterium; (b) TEM of bacterium Bacillus coagulans
Source: Campbell, Neil A.; Reece, Jane B., Biology, 8th Ed., c© 2008, p. 98. Reprinted and Electronically reproduced by permission of
Pearson Education, Inc., Upper Saddle River, New Jersey.
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Figure 10.83
E. coli bacteria
Source: United States
Department of Health and
Human Services, National
Institutes of Health

of warm blooded “host” animals, including humans. The bacterium
can help in maintaining the balance of healthful intestinal flora (that is,
the population of microbial organisms) in the gut and can also synthe-
size vitamins that benefit its host. E. coli has been studied extensively
by geneticists because of its rather small genome size and the ease of
growth in a laboratory. E. coli grows longer and divides by binary fission
to create two genetically identical “daughter” bacteria. Under optimal
nutritional and environmental conditions, a population of E. coli can
double every 20 minutes. While most E. coli “strains,” or variants of the
E. coli species, are harmless, a particular strain (E. coli O157:H7) can
cause food poisoning in humans if ingested. The entire genome, or the
“library” of inherited genetic information, has been sequenced for dif-
ferent E. coli strains: for example, “lab strain” E. coli K12 MG1655
contains approximately 4.64 million of the adenosine-thymine (A-T)
and cytosine-guanine (C-G) DNA base pairs arranged into a total of
4466 predicted genes. These genes serve as instructions for the synthesis
of specific proteins. Proteins are the primary tools that cells use to imple-
ment biochemical and biophysical processes. Highly regulated networks
of Protein-Protein Interactions (PPI) give rise to higher order functions
essential for the survival of the cell, including, in the case of E. coli,
motility. In 2003, researchers demonstrated that solitary E. coli cells
exhibit “quorum sensing” via positive chemotaxis, meaning that they
are attracted to like cells in order to perform tasks requiring multiple E.
coli, such as the formation of a “biofilm.”

Escherichia coli has a set of 6 to 10 rotary motors, each driving a
thin helical filament about 10 μm long through a short, flexible and
proximal hook that acts as a universal joint. This entire assembly is
called a flagellum (Berg, 2004). The motor runs either clockwise (CW),
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Figure 10.84
Flagella motors turning
CCW resulting in a run
Source: Courtesy Nima Cyrus
Emami

Flagella

“Bundle”

E. coli

Plasma membrane

Cell wall

as seen by an observer outside of the cell looking down at the hook, or
counter-clockwise (CCW). When all the motors rotate CCW, the flag-
ella filaments bundle together and the cell swims steadily forward in a
“run,” as suggested in Fig. 10.84. When one or more motors switch to
CW rotation, the corresponding flagella unbundle and reorient the cell
in a “tumble” resulting in little displacement, as shown in Fig. 10.85.
The two modes of motion alternate and, in a state of equilibrium with

Figure 10.85
Flagella motors turning
CW resulting in a tumble
Source: Courtesy Nima Cyrus
Emami

Plasma membrane

Cell wall
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Figure 10.86
Escherichia coli
movements resembling
a biased random walk

its environment, the E. coli alternates between both modes with runs
lasting about 1 sec and tumbles about 0.1 sec, resulting in a 3-D ran-
dom walk. Through control of tumbling frequency, the bacteria can
direct their motion toward a relatively high concentration of attrac-
tant molecules or away from a relatively high concentration of repellent
molecules, as suggested in Fig. 10.86.

The Problem
Chemotaxis is the name given to the process by which a motile bac-Chemotaxis
terium senses the changes in its environment and moves toward places
with a more favorable environment. Chemotaxis is important for proper
functioning of the cell. An E. coli bacterium compares the current
attractant concentration with the past attractant concentration. If it
detects a positive change in the attractant concentration, it should move
up the gradient. To do so, the probability of a tumble, and hence
its tumbling frequency, is reduced and the runs are correspondingly
longer. In contrast, if it detects an increase in repellent concentration,
the assumption seems to be that it must have been swimming in a bad
direction; consequently, the bacterium increases its tumbling frequency
and tries to change direction so as to swim away from the repellents.
The dynamics of this chemotaxis are the subject of our case study.

Several different models of bacterial chemotaxis have been devel-
oped by researchers in systems biology. Our discussion is based on two
of these (Barkai & Libler, 1997; Yi et al., 2000). The different proteins
involved in chemotactic response have been well studied and their inter-
actions have been characterized in some detail as shown in Fig. 10.87.
Biologists have named the proteins involved in chemotaxis by letters of
the alphabet prefixed by “Che” (for example, CheA, CheB). In biology,
signal transduction is a process by which molecular stimuli outside of
the cell react with receptor proteins in the cell membrane, which in turn
activate “second messenger” proteins within the cell to carry out some
task (for example, expression of a gene, and biochemical synthesis). On
the surface of the bacterium is a class of receptor proteins called MCPs,
or methyl-accepting chemotaxis proteins. The MCPs contain extracel-
lular, transmembrane, and intracellular domains, meaning they have
sub-units which sense chemical stimuli outside of the cell and subse-
quently activate proteins inside of the cell. These chemicals constitute
the input to the system and are collectively called ligands. The system isLigand
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CheW

CheA

CheW

CheACheB P

CheR

CheZ
CheB

Cell Membrane MCPMCP

CheY

CheY P

M

Input (attractants)

Output
(tumbling frequency, CW flagellar rotation)
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Figure 10.87
The chemotaxis signal transduction pathway in E. coli
Source: Courtesy of Nima Cyrus Emami

set up to control the frequency of tumbling, which is done by control of
the activity of CheY, the protein that acts directly on the motor of the
flagella.

The MCPs bind CheA and CheW within the cell to form a recep-
tor complex which, through feedback regulation, maintains sensitivity
to changes in attractant binding over a wide range of ligand concen-
trations. Here the input and output conditions, PPI, and biochemi-
cal transformations that induce this regulatory process are described.
Receptors are considered either active and awaiting a ligand or are
inactive and not accepting any ligand. In biochemistry, phosphoryla-
tion, or the transfer of a negatively charged phosphate group (-PO3−

4 )
to a protein, is a common method for activating a protein for some
task by inducing a transformation in its structural and biochemical
properties. In chemotaxis, a decrease in attractant binding results
in increased phosphorylation of CheA (denoted by CheA–P), while
increased attractant binding causes decreased CheA phosphorylation.
Receptors with CheA–P are considered active (more frequent tumbles),
while those with dephosphorylated CheA are inactive (more frequent
runs). The mechanism behind this change in motility is the phosphory-
lation of CheY: CheA–P transfers its phosphate group to CheY, yielding
CheY–P, which binds the FliM protein in the flagellum basal body
(motor) to produce more frequent tumbling.

As part of the steady-state dynamics of chemotaxis, methyl groups
(-CH3) are regularly being added to the MCP by CheR (methylation)
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and equally removed by CheB (demethylation). Because CheA–P also
phosphorylates CheB and CheB–P more frequently demethylates the
MCP, this balance is upset when a ligand binds to an active recep-
tor complex. If the ligand is an attractant, the activity of CheA is
reduced (less CheA–P), the action of CheB in MCP demethylation is
reduced (less CheB–P), more receptors are made active and the activity
of CheA slowly returns to the steady-state. This is the feedback loop
in chemotaxis. Meanwhile, CheA reduces its rate of activating CheY
(less CheY–P) and this causes the tumbling frequency to be reduced. As
a consequence, the bacteria swim more and presumably swim toward
the attractant concentration. Now, if the ligand is a repellent, the activ-
ity of CheA is increased, which causes increased rate of CheY activity
and increased frequency of tumbling. The bacterium swims less while
it “looks” for a new direction in order to escape the concentration of
repellents. At the same time, in the feedback loop, CheB is also more
active, receptors are made inactive at a greater rate, and again CheA
and the tumble frequency return to their steady-state values. The fact
that the activity and the tumble frequency return to exactly the same
value after a change in ligand concentration is a remarkable property
called exact adaptation by system biologists. As we will see, to a controlExact adaptation
engineer, this is a very common control method.

The Model
The problem, then, is to develop a model as a control system block dia-
gram that will describe the average motion of this chemotaxis situation.
We represent the averages as if they were one receptor complex with
the related proteins acting on the flagella. As the research shows, the
equations are complex and highly nonlinear. Also, the surface of the
bacterium contains hundreds of receptor complexes, and these inter-
act as suggested already in Fig. 10.87. For our study, the variables for
the block diagram are selected as linear, small-signal deviations of the
averages of the several quantities away from their equilibrium values.
The input is taken to be the concentration of ligand, with attractors
being positive and repellents being negative. The outputs of the sys-
tem are the activity of CheA–P and resulting motion in the single x
direction. The parameters of our model were selected so the responses
matched the curves given in Fig. 10 of (Mello et al., 2004). The mechan-
ics of one-dimensional motion assume the viscous friction dominates
the mass so the dynamics are a single integrator. The model is based on
the following facts:

• It is observed that when a ligand binds to an active receptor site, the
changes in concentrations of CheA–P and resulting CheB–P and
CheY–P are almost instantaneous.

• However, the CheB phosphorylation only changes the rate of
demethylation, not the extent of demethylation itself. The changes
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in methylation level take place much more slowly than the changes
in tumble rate.

• Upon insertion of a concentration of attractants, the “activity”
as measured by the concentration of CheA–P drops quickly, then
slowly recovers to exactly the same steady-state level. This property
is called adaptation of activity.Adaptation

A control block diagram shown in Fig. 10.88 implements these
facts, including the adaptation. As seen, the adaptation result is accom-
plished by the standard control scheme of integral control. A Simulink
schematic is shown in Fig. 10.89, and the responses in Figs 10.90–10.92
for fixed concentrations of CheR. If the value of CheR is changed,
the steady-state intensity of the activity changes and the time constant
of the methylation also changes. Fig. 10.90 shows that if attractant is
added at time t = 20 sec, the tumble activity drops but recovers to its

Figure 10.88
Simplified block
diagram of E. coli
chemotaxis. �
represents ligand,m
the methylation, CheR
the steady-state rate of
methylation, ȳ the
steady-state activity,
and w the steady-state
random walk motion
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Figure 10.89
A Simulink schematic diagram for simulating E. coli chemotaxis
Source: Reprinted with permission of The MathWorks, Inc.
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Figure 10.90
Simulated tumble
frequency of the
chemotaxis model
following insertion of
attractant at t = 20 sec
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Figure 10.91
Methylation of the
chemotaxis model
following insertion of
attractant at t = 20 sec
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initial value within approximately 5 seconds. Fig. 10.91 shows the cor-
responding behavior of the methylation level, and Fig. 10.92 shows the
motion response of the chemotaxis model.

In the end, we leave this case study with more questions than
answers. For example, one should be able to derive the model by a
small-signal analysis from the basic chemical and physical equations of
the processes. The model as presented could be modified to account for
changes in the concentration of CheR, for example. Finally, how would
the model be extended to describe the motion in three dimensions? We
hope someone using this book is inspired to find the answers to these
questions.

While many years of research aimed at characterizing the biophys-
ical regulatory mechanisms of bacterial chemotaxis have resulted in
detailed biological models, ongoing research continues to reveal further
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Figure 10.92
Motion response of the
chemotaxis model
following insertion of
attractant at t = 20 sec
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intricacies of this pathway. For instance, while the MCPs in this case
study are represented as autonomous single-protein molecules, in fact
the MCP is a complex molecule composed of multiple-protein subunits
which must bind to one another to give rise to its higher order proper-
ties. Similarly, it is known that chemotaxis involves the binding of two
CheA proteins to one another, forming a “dimer” (or a complex com-
prised of two molecular subunits). Biophysicists have recently exploited
multiple methodologies for visualizing the structures of and interactions
between proteins and macromolecules to uncover a more detailed inter-
action model whereby MCPs complexes consist of a hexagonal lattice
of numerous subunits and are connected by interactions with multiple
CheW proteins and CheA dimers [A. Briegel, et al., 2012]. Hence, the
dynamics of this system may be subject to the dynamics of binding
for numerous subunit molecules in the formation of a very complex
macromolecular structure. Although biological details such as these
may introduce complexities into the modeling of such systems, they also
empower systems biologists to more accurately model the behaviors of
these systems, these organisms, and their emergent properties.

Summary
For years, biologists had been focusing on studying various parts of liv-
ing organisms. Recently, the focus has shifted to studying the whole
organism’s behavior as a system of interconnected parts. Since the
1970s, it had been known experimentally that many biological systems
adjust to their environment in an adaptive way. Recently, analytical
models have been developed to explain this phenomenon as we dis-
cussed in this case study. The new analytical models can explain the
inherent properties of the biological system such as robust perfect adap-
tation as given by the integral control of the receptor sensitivity. Control
theory methods and interpretations have proved helpful in increasing
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the level of our understanding of the behavior and properties of biolog-
ical systems. We hope this simple example helps stimulate interest in this
exciting field.

10.8 Historical Perspective
The first autopilot was tested on a Curtis flying boat in 1912, just nine
years after the first Wright brothers’ flight. It consisted of a gyroscope to
measure the attitude and servo motors to activate the control surfaces,
and was designed by Elmer Sperry. In part, it was a result of the Wright
brothers’ design to intentionally make the aircraft slightly unstable in
order to make it more controllable by the pilot. This system gained fame
in 1914 when it won a prize in France by demonstrating its capabilities
by flying close to the ground with the mechanic walking back and forth
along the wing with the pilot, Lawrence Sperry, standing in the cockpit
with his hands in the air. Sperry was clearly signifying there was no
mechanical connection from the stick to the control surfaces.

Autopilot development went underground in 1915 due to military
security for WWI. The next public display was an adaptation of the
Sperry system for Wiley Post in his 1933 flight around the world in
“Winnie Mae.” The flight would have been near impossible without the
autopilot because it allowed Post to doze off on occasion. It has been
reported that Post had a system consisting of a wrench and string tied
to his finger that would wake him up if he slept too soundly. The success
of this flight led to the development of an autopilot that included some
navigational capabilities as well as attitude control and, in 1947, the Air
Force demonstrated an automatic trans-Atlantic flight in a DC-3 type
airplane from take-off to landing.

Subsequently, airplanes developed swept wings and higher speeds
which required stability augmentation systems to help the pilot control
the aircraft even when not on the autopilot. These systems are on all
high-performance military and commercial airliners today. In 1974, the
F-16 became the first airplane to have aerodynamically unstable regimes
and was, therefore, highly dependent on the stability augmentation for
sustained flight. This was implemented in order to make the airplane
more maneuverable, but required a “fly-by-wire” and quad redundancy
for acceptable reliability.

The first spacecraft in the late 1950s had no attitude control, since
their only mission was to take measurements and broadcast the infor-
mation back to earth. However, they were followed in the early 1960s
with the Corona spacecraft, whose mission was to take photographs of
the earth, which required that the camera be pointed and stabilized very
accurately. At the time, these missions were classified for military pur-
poses and called Discoverer for public consumption, but since then have
been declassified and described in some detail.11

11Taubman (2003).
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The first digital autopilots were in the Apollo program lunar mod-
ule and the command module in the late 1960s. They were developed
primarily by MIT’s Instrumentation Lab under the direction of Bill
Widnall, Don Fraser, and Dick Battin. The decision to take the bold
step of using digital technology for the first time rather than the tradi-
tional analog implementation was made by NASA in order to handle
the complexity required at a reasonable weight.

Prior to 1980, automobile engine control systems consisted of a
mechanical arrangement in the distributor to vary the spark timing and
a fluidic system in the carburetor that varied fuel flow in response to
the airflow rate or sudden changes in the accelerator pedal position.
These were open-loop systems that essentially programmed the proper
control setting based on the operating condition of the engine. In 1980,
cars were required to improve their polluting characteristics; therefore,
it was essential to improve the controls using feedback as described in
Section 10.4. These systems still exist today along with variable valve
timing, variable fuel injection timing, tailored high pressure injection,
and variable valve opening levels. Large strides have also been made in
the vehicle’s control: stability augmentation has substantially reduced
SUV rollovers, cruise control now includes radar for keeping a reason-
able distance behind the car in front, and sensors to maintain the car
in the lane. A feedback controlled automobile is becoming a reality (for
example, the Google car).

Application of control to semiconductor wafer manufacturing
automation is gaining momentum. Many important process steps
such as RTP, chemical–mechanical planarization, and lithography
use advanced real-time controllers. It is anticipated that during the
next decade, many more of the semiconductor fabrication equip-
ment will employ sophisticated in-situ feedback control as new sensors
become available. This adoption of sophisticated closed-loop control
systems by the semiconductor industry presents new challenges and
opportunities for control system engineers especially for the upcom-
ing 450-mm diameter wafers. Application of control to magnetic res-
onance force microscopy for imaging atomic structure of materials
(de Roover et al., 2008) can fundamentally change our understand-
ing of atomic structures of devices and enable imaging of biological
subsystems.

The emerging field of systems biology marks the coming of age
of the life sciences. The usual approach of studying individual compo-
nents is being replaced by a new approach focused on understanding the
behavior of the whole biological system. Among the admirable goals are
understanding the behavior of biological systems and discovering cures
for diseases such as cancer, as well as developing novel approaches to
the discovery of new drugs, production of antibiotics, and vaccines.

The applications of control theory have never been more exciting
than they are today. Applications of feedback control ideas to biolog-
ical systems, network congestion control, and new aerospace systems
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are emerging. Applications in genomics treating the human body as a
dynamic system are underway. The Internet has attracted the attention
of many control-systems researchers eager to understand the tremen-
dous success of this technology and how to improve it. Network design
and control including Internet modeling, and development of conges-
tion routing and control are under study. A number of our colleagues
are enthusiastic about application of control theory to the financial
field; however, to date, none of them have profited enough to quit their
day job!

SUMMARY

• In this chapter, we have laid out a basic outline of control systems
design and applied it to six typical case studies. The design outline
calls for a number of explicit steps.

1. Make a system model and determine the required performance
specifications. The purpose of this step is to answer the ques-
tion: What is the system, and what is it supposed to do?

2. Select sensors. A basic rule of control is that if you can’t observe
it, you typically can’t control it. Following are some factors to
consider in the selection of sensors:
(a) Number and location of sensors;
(b) Technology to be used;
(c) Performance of the sensor, such as its accuracy;
(d) Physical size and weight;
(e) Quality of the sensor, such as lifetime and robustness to

environment changes, and;
(f) Cost.

3. Select actuators. The actuators must be capable of driving the
system so as to meet the required performance specifications.
The selection is governed by the same factors that apply to
sensor selection.

4. Make a linear model. All our design methods are based on
linear models. Both small-signal perturbation models and
feedback-linearization methods can be used.

5. Try a simple PID controller. An effort to meet the specifications
with a PID or its cousin, the lead–lag compensator, may suc-
ceed; in any case such an effort will expose the nature of the
control problem.

6. Evaluate/modify plant. Evaluate whether plant modifications
enhance closed-loop performance; if so, return to Step 1 or 4.

7. Try an optimal design. The SRL method for control-law
selection and estimator design based on state equations is
guaranteed to produce a stable control system and can be
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structured to show a trade-off between error reduction and
control effort. A related alternative is arbitrary pole place-
ment, which gives the designer direct control over the dynamic
response. Both the SRL and the pole-placement methods may
result in designs that are not robust to parameter changes.

8. Simulate the design, and verify its performance. All the tools
of analysis should be used here, including the root locus, the
frequency response, GM and PM measurements, and transient
responses. Also, the performance of the design can be tested
in simulation against changes in model parameters and the
effects of approximating the compensator with a discrete model
if digital control is to be used.

9. Build a prototype, and measure the performance with typical
input signals. No control design is acceptable until it has been
tested. No model can include all the features of a real physical
device; so the final step before fixing the design is to try it out
on a physical prototype if time and budget permit.

• The satellite case study illustrated particularly the use of a notch
compensation for a system with lightly damped resonance. It was
also shown that collocated actuator and sensor systems are much
easier to control than noncollocated systems.

• The Boeing 747 lateral-stabilization case study illustrated the use of
feedback as an inner-loop designed to aid the pilot, who provides
the primary outer-loop control.

• The Boeing 747 altitude control showed how to combine inner-
loop feedback with outer-loop compensation to design a complete
control system.

• The automobile fuel–air ratio control illustrated the use of the Bode
plot to design a system that includes time delay. Simulation of the
design with the nonlinear sensor verified our heuristic analysis of
limit cycles using the concept of equivalent gain with a root locus.

• The drone example illustrated control design for this emerging field
and the advantage of having four rotors, which allows uncoupling
the control of the four degrees of freedom.

• The RTP case study illustrated modeling and control of a nonlinear
thermal system.

• The E. coli chemotaxis case study illustrated a simple example of
the application of ideas from control theory to the emerging field of
systems biology.

• In all cases, the designer needs to be able to use multiple tools,
including the root locus, the frequency response, pole placement
by state feedback, and (nonlinear) simulation of time responses to
get a good design. We promised an understanding of these tools at
the beginning of the text, and we trust you are now ready to practice
the art of control engineering.
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REVIEW QUESTIONS

10.1 Why is a collocated actuator and sensor arrangement for a lightly
damped structure (such as a robot arm) easier to design than a non-
collocated setup?

10.2 Why should the control engineer be involved in the design of the process
to be controlled?

10.3 Give examples of an actuator and a sensor for the following control
problems:

(a) Attitude control of a geosynchronous communication satellite.

(b) Pitch control of a Boeing 747 airliner.

(c) Pitch control of a quadcopter.

(d) Fuel–air ratio control of a spark-ignited automobile engine.

(e) Position control for an arm of a robot used to paint automobiles.

(f) Heading control of a ship.

(g) Attitude control of a helicopter.

PROBLEMS

10.1 Of the three components of the PID controller (proportional, integral,
or derivative), which one is the most effective in reducing the error
resulting from a constant disturbance? Explain.

10.2 Is there a greater chance of instability when the sensor in a feedback
control system for a mechanical structure is not collocated with the
actuator? Explain.

10.3 The transfer function of a magnetic levitation system can be expressed
as

G(S) = 5

s2

(a) Is it possible to stabilize this system with a P-type controller? If not,
why?

(b) Is it possible to stabilize this system with a PD controller? Examine
the disturbance rejection if stabilization is possible.

(c) Design a PID controller. Compare its disturbance rejection with
that of the PD controller.

10.4 Consider the closed-loop system shown in Fig. 10.93.

(a) What is the phase margin if K = 70, 000?
(b) What is the gain margin if K = 70, 000?
(c) What value of K will yield a phase margin of ∼ 70◦?
(d) What value of K will yield a phase margin of ∼ 0◦?
(e) Sketch the root locus with respect to K for the system, and deter-

mine what value of K causes the system to be on the verge of
instability.
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Figure 10.93
Control system for
Problem 10.4
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(f ) If the disturbance w is a constant and K = 10, 000, what is the
maximum allowable value for w if y(∞) is to remain less than 0.1?
(Assume r = 0.)

(g) Suppose the specifications require you to allow larger values of w
than the value you obtained in part (f), but with the same error con-
straint [|y(∞)| < 0.1]. Discuss what steps you could take to alleviate
the problem.

10.5 Consider the system shown in Fig. 10.94, which represents the attitude
rate control for a certain aircraft.

(a) Design a compensator so that the dominant poles are at −2± 2j.
(b) Sketch the Bode plot for your design, and select the compensation

so the crossover frequency is at least 2
√

2 rad/sec and PM ≥ 50◦.
(c) Sketch the root locus for your design, and find the velocity constant

when ωn > 2
√

2 and ζ ≥ 0.5.

Figure 10.94
Block diagram for
aircraft-attitude rate
control

©
+

-
R Y

Compensator

Dc(s)

Hydraulic servo

s2 + 0.1s + 4
2s + 0.1

krg

s
1

Rate gyro

Aircraft

10.6 Consider the block diagram for the servomechanism drawn in
Fig. 10.95. Which of the following claims are true?

(a) The actuator dynamics (the pole at 1000 rad/sec) must be included in
an analysis to evaluate a usable maximum gain for which the control
system is stable.

(b) The gain K must be negative for the system to be stable.
(c) There exists a value of K for which the control system will oscillate

at a frequency between 4 and 6 rad/sec.
(d) The system is unstable if |K| > 10.
(e) If K must be negative for stability, the control system cannot

counteract a positive disturbance.
(f) A positive constant disturbance will speed up the load, thereby

making the final value of e negative.
(g) With only a positive constant command input r, the error signal e

must have a final value greater than zero.
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Figure 10.95
Servomechanism for
Problem 10.6
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(h) For K = −1 the closed-loop system is stable, and the disturbance
results in a speed error whose steady-state magnitude is less than 5
rad/sec.

10.7 A stick balancer and its corresponding control block diagram are shown
in Fig. 10.96. The control is a torque applied about the pivot.

(a) Using root-locus techniques, design a compensator Dc(s) that will
place the dominant roots at s = −5 ± 5j (corresponding to ωn = 7
rad/sec, ζ = 0.707).

(b) Use Bode plotting techniques to design a compensator Dc(s) to
meet the following specifications:

• Steady-state θ displacement of less than 0.001 for a constant
input torque Td = 1,

• Phase margin ≥ 50◦, and
• Closed-loop bandwidth ∼= 7 rad/sec.

Figure 10.96
Stick balancer for
Problem 10.7
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10.8 Consider the standard feedback system drawn in Fig. 10.97.

(a) Suppose

G(s) = 2500K
s(s+ 25)

.

Design a lead compensator so the phase margin of the system is
more than 45◦; the steady-state error due to a ramp should be less
than or equal to 0.01.

(b) Using the plant transfer function from part (a), design a lead com-
pensator so the overshoot is less than 25% and the 1% settling time
is less than 0.1 sec.

(c) Suppose

G(s) = K
s(1+ 0.1s)(1+ 0.2s)

,
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and let the performance specifications now be Kv = 100 and PM �
40◦. Is the lead compensation effective for this system? Find a lag
compensator, and plot the root locus of the compensated system.

(d) Using G(s) from part (c), design a lag compensator such that the
peak overshoot is less than 20% and Kv = 100.

(e) Repeat part (c) using a lead–lag compensator.
(f) Find the root locus of the compensated system in part (e), and

compare your findings with those from part (c).

Figure 10.97
Block diagram of a
standard feedback
control system
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10.9 Consider the system in Fig. 10.97, where

G(s) = 300
s(s+ 0.225)(s+ 4)(s+ 180)

.

The compensator Dc(s) is to be designed so the closed-loop system
satisfies the following specifications:

• Zero steady-state error for step inputs,
• PM = 55◦, GM ≥ 6 db,
• Gain crossover frequency is not smaller than that of the uncom-

pensated plant.

(a) What kind of compensation should be used and why?
(b) Design a suitable compensator Dc(s) to meet the specifications.

10.10 We have discussed three design methods: the root-locus method of
Evans, the frequency-response method of Bode, and the state-variable
pole-assignment method. Explain which of these methods is best
described by the following statements (if you feel more than one method
fits a given statement equally well, explain why):

(a) This method is the one most commonly used when the plant
description must be obtained from experimental data.

(b) This method provides the most direct control over dynamic response
characteristics such as rise time, percent overshoot, and settling
time.

(c) This method lends itself most easily to an automated (computer)
implementation.

(d) This method provides the most direct control over the steady-state
error constants Kp and Kv.

(e) This method is most likely to lead to the least complex controller
capable of meeting the dynamic and static accuracy specifications.

(f) This method allows the designer to guarantee that the final design
will be unconditionally stable.

(g) This method can be used without modification for plants that
include transportation lag terms—for example,

G(s) = e−2s

(s+ 3)2
.
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10.11 Lead and lag networks are typically employed in designs based on
frequency-response (Bode) methods. Assuming a Type 1 system, indi-
cate the effect of these compensation networks on each of the listed
performance specifications. In each case, indicate the effect as “an
increase,” “substantially unchanged,” or “a decrease.” Use the second-
order plant G(s) = K/[s(s+ 1)] to illustrate your conclusions.

(a) Kv,
(b) Phase margin,
(c) Closed-loop bandwidth,
(d) Percent overshoot, and
(e) Settling time.

10.12 Altitude Control of a Hot-Air Balloon: American solo balloonist Steve
Fossett landed in the Australian outback aboard Spirit of Freedom on
July 3rd, 2002, becoming the first solo balloonist to circumnavigate the
globe (see Fig. 10.98). The equations of vertical motion for a hot-air
balloon (see Fig. 10.99), linearized about vertical equilibrium, are

δṪ + 1
τ1
δT = δq,

τ2z̈ + ż = aδT + w,

Figure 10.98
Spirit of Freedom
balloon
Source: Pool/Getty Images
News/Getty Images
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Figure 10.99
Hot-air balloon

where

δT = deviation of the hot-air temperature from the equilibrium
temperature where buoyant force equals weight,

z = altitude of the balloon,

δq = deviation in the burner heating rate from the equilibrium rate
(normalized by the thermal capacity of the hot air),

w = vertical component of wind velocity,

τ1, τ2, a = parameters of the equations.

An altitude-hold autopilot is to be designed for a balloon whose
parameters are

τ1 = 250 sec τ2 = 25 sec a = 0.3 m/(sec ·◦C).
Only altitude is sensed, so a control law of the form

δq(s) = Dc(s)[zd(s)− z(s)],

will be used, where zd is the desired (commanded) altitude.

(a) Sketch a root locus of the closed-loop eigenvalues with respect to
the gain K for a proportional feedback controller, δq = −K(z −
zd). Use Routh’s criterion (or let s = jω and find the roots of the
characteristic polynomial) to determine the value of the gain and
the associated frequency at which the system is marginally stable.

(b) Our intuition and the results of part (a) indicate that a relatively
large amount of lead compensation is required to produce a satis-
factory autopilot. Because Steve Fossett was a millionaire, he could
afford a more complex controller implementation. Sketch a root

Ground

w

Wind

z

Burner
flame

Hot
air
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locus of the closed-loop eigenvalues with respect to the gain K for a
double-lead compensator, δq = Dc(s)(zd − z), where

Dc(s) = K
(

s+ 0.03
s+ 0.12

)2
.

(c) Sketch the magnitude portions of the Bode plots (straight-line
asymptotes only) for the open-loop transfer functions of the pro-
portional feedback and lead-compensated systems.

(d) Select a gain K for the lead-compensated system to give a crossover
frequency of 0.06 rad/sec.

(e) Select a gain K for the lead-compensated system to give a crossover
frequency of 0.06 rad/sec.

(f) If the error in part (e) is too large, how would you modify the com-
pensation to give higher low-frequency gain? (Give a qualitative
answer only.)

10.13 Satellite-attitude control systems often use a reaction wheel to provide
angular motion. The equations of motion for such a system are

Satellite : Iφ̈ = Tc + Tex,

Wheel : Jṙ = −Tc,

Measurement : Ż = φ̇ − aZ,

Control : Tc = −Dc(s)(Z − Zd),

where

J = moment of inertia of the wheel,

r = wheel speed,

Tc = control torque,

Tex = disturbance torque,

φ = angle to be controlled,

Z = measurement from the sensor,

Zd = reference angle,

I = satellite inertia (1000 kg/m2),

a = sensor constant (1 rad/sec),

Dc(s) = compensation.

(a) Suppose Dc(s) = K0, a constant. Draw the root locus with respect
to K0 for the resulting closed-loop system.

(b) For what range of K0 is the closed-loop system stable?
(c) Add a lead network with a pole at s = −1 so the closed-loop system

has a bandwidth ωBW = 0.04 rad/sec, a damping ratio ζ = 0.5, and
compensation given by

Dc(s) = K1
s+ z
s+ 1

.
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Where should the zero of the lead network be located? Draw the
root locus of the compensated system, and give the value of K1 that
allows the specifications to be met.

(d) For what range of K1 is the system stable?
(e) What is the steady-state error (the difference between Z and some

reference input Zd to a constant disturbance torque Tex for the
design of part (c)?)

(f) What is the type of this system with respect to rejection of Tex?
(g) Draw the Bode plot asymptotes of the open-loop system, with the

gain adjusted for the value of K1 computed in part (c). Add the
compensation of part (c), and compute the phase margin of the
closed-loop system. What is the type of this system with respect to
rejection of Tex?

(h) Write state equations for the open-loop system, using the state
variables φ, φ̇, and Z. Select the gains of a state-feedback con-
troller Tc = −Kφφ − Kφ̇ φ̇ to locate the closed-loop poles at s =
−0.02± 0.02

√
3j.

10.14 Three alternative designs are sketched in Fig. 10.100 for the closed-loop
control of a system with the plant transfer function G(s) = 1/s(s + 1).
The signal w is the plant noise and may be analyzed as if it were a step;

Figure 10.100
Alternative feedback
structures for
Problem 10.14
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the signal v is the sensor noise and may be analyzed as if it contained
power to very high frequencies.

(a) Compute values for the parameters K1, a, K2, KT , K3, d, and KD
so in each case (assuming w = 0 and v = 0),

Y
R
= 16

s2 + 4s+ 16
.

Note in system III, a pole is to be placed at s = −4.
(b) Complete the following table, expressing the last entries as A/sk to

show how fast noise from v is attenuated at high frequencies:

System Kv
y
w

∣
∣
∣
s=0

y
v

∣
∣
∣
s→∞

I
II
III

(c) Rank the three designs according to the following characteristics
(the best as “1,” the poorest as “3”):

Performance I II III

Tracking
Plant-noise rejection
Sensor-noise rejection

10.15 The equations of motion for a cart–stick balancer with state variables
of stick angle, stick angular velocity, and cart velocity are

ẋ =
⎡
⎣

0 1 0
31.33 0 0.016
−31.33 0 −0.216

⎤
⎦ x+

⎡
⎣

0
−0.649
8.649

⎤
⎦ u,

y = [ 10 0 0 ]x,

where the output is stick angle, and the control input is voltage on the
motor that drives the cart wheels.

(a) Compute the transfer function from u to y, and determine the poles
and zeros.

(b) Determine the feedback gain K necessary to move the poles of the
system to the locations −2.832 and −0.521 ± 1.068j, with ωn = 4
rad/sec.

(c) Determine the estimator gain L needed to place the three estimator
poles at −10.

(d) Determine the transfer function of the estimated-state-feedback
compensator defined by the gains computed in parts (b) and (c).

(e) Suppose we use a reduced-order estimator with poles at −10 and
−10. What is the required estimator gain?

(f) Repeat part (d) using the reduced-order estimator.
(g) Compute the frequency response of the two compensators.
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10.16 A 282-ton Boeing 747 is approaching land at sea level. If we use the
state given in the case study (see Section 10.3) and assume a veloc-
ity of 221 ft/sec (Mach 0.198), then the lateral-direction perturbation
equations are

⎡
⎢⎢⎣
β̇

ṙ
ṗ
φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−0.0890 −0.989 0.1478 0.1441

0.168 −0.217 −0.166 0
−1.33 0.327 −0.975 0

0 0.149 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
β

r
p
φ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0.0148
−0.151
0.0636

0

⎤
⎥⎥⎦ δr,

y = [ 0 1 0 0 ]

⎡
⎢⎢⎣
β

r
p
φ

⎤
⎥⎥⎦ .

The corresponding transfer function is

G(s) = r(s)
δr(s)

= −0.151(s+ 1.05)(s+ 0.0328± 0.414j)
(s+ 1.109)(s+ 0.0425)(s+ 0.0646± 0.731j)

.

(a) Draw the uncompensated root locus [for 1 + KG(s)] and the fre-
quency response of the system. What type of classical controller
could be used for this system?

(b) Try a state-variable design approach by drawing a SRL for the sys-
tem. Choose the closed-loop poles of the system on the SRL to
be

αc(s) = (s+ 1.12)(s+ 0.165)(s+ 0.162± 0.681j),

and choose the estimator poles to be five times faster at

αe(s) = (s+ 5.58)(s+ 0.825)(s+ 0.812± 3.40j).

(c) Compute the transfer function of the SRL compensator.
(d) Discuss the robustness properties of the system with respect to

parameter variations and unmodeled dynamics.
(e) Note the similarity of this design to the one developed for differ-

ent flight conditions earlier in the chapter. What does this suggest
about providing a continuous (nonlinear) control throughout the
operating envelope?

10.17 (Contributed by Prof. L. Swindlehurst) The feedback control system
shown in Fig. 10.101 is proposed as a position-control system. A key
component of this system is an armature-controlled DC motor. The
input potentiometer produces a voltage Ei that is proportional to the
desired shaft position: Ei = Kpθi. Similarly, the output potentiometer
produces a voltage E0 that is proportional to the actual shaft position:
E0 = Kpθ0. Note we have assumed both potentiometers have the same
proportionality constant. The error signal Ei−E0 drives a compensator,
which in turn produces an armature voltage that drives the motor. The
motor has an armature resistance Ra, an armature inductance La, a
torque constant Kt, and a back emf constant Ke. The moment of iner-
tia of the motor shaft is Jm, and the rotational damping due to bearing
friction is Bm. Finally, the gear ratio is N : 1, the moment of inertia of
the load is JL, and the load damping is BL.
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Figure 10.101
A servomechanism with
gears on the motor
shaft and
potentiometer sensors

© + 

 - 
Dc

ya

Compensator Motor

Output

potentiometer

Input

potentiometer

ui uo

km

Jm

Gears

JL

Eo

EbEb

E
Ei

Ei = voltage from input potentiometer

= Kpui
Eo = voltage from output potentiometer

= Kpuo
E = Ei - Eo = error voltage = Kp(ui - uo)

ya = armature voltage applied to motor
Eb = battery voltage applied the potentiometers

(a) Write the differential equations that describe the operation of this
feedback system.

(b) Find the transfer function relating θ0 and θi(s) for a general com-
pensator Dc(s).

(c) The open-loop frequency-response data shown in Table 10.1 were
taken using the armature voltage va of the motor as an input and the
output potentiometer voltage E0 as the output. Assuming the motor
is linear and minimum-phase, make an estimate of the transfer
function of the motor,

G(s) = �m(s)
Va(s)

,

where θm is the angular position of the motor shaft.

TABLE 10.1 Frequency-Response Data for Problem 10.17

Frequency
∣
∣
∣
∣

E0(s)
Va(s)

∣
∣
∣
∣
(db) Frequency

∣
∣
∣
∣

E0(s)
Va(s)

∣
∣
∣
∣
(db)

(rad/sec) (rad/sec)

0.1 60.0 10.0 14.0
0.2 54.0 20.0 2.0
0.3 50.0 40.0 −10.0
0.5 46.0 60.0 −20.0
0.8 42.0 65.0 −21.0
1.0 40.0 80.0 −24.0
2.0 34.0 100.0 −30.0
3.0 30.5 200.0 −48.0
4.0 27.0 300.0 −59.0
5.0 23.0 500.0 −72.0
7.0 19.5
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(d) Determine a set of performance specifications that are appropri-
ate for a position control system and will yield good performance.
Design Dc(s) to meet these specifications.

(e) Verify your design through analysis and simulation using Matlab.

10.18 Design and construct a device to keep a ball centered on a freely swing-
ing beam. An example of such a device is shown in Fig. 10.102. It uses
coils surrounding permanent magnets as the actuator to move the beam,
solar cells to sense the ball position, and a hall-effect device to sense the
beam position. Research other possible actuators and sensors as part
of your design effort. Compare the quality of the control achievable for
ball-position feedback only with that of multiple-loop feedback of both
ball and beam position.

Figure 10.102
Ball-balancer design
example
Source: Photo courtesy of
David Powell

10.19 Design and construct the magnetic levitation device shown in Fig. 9.1.
You may wish to use LEGO components in your design.

10.20 Design and build a Sun tracker using an Arduino board and related
software.

10.21 Run-to-Run Control: Consider the RTP system shown in Fig. 10.103.
We wish to heat up a semiconductor wafer, and control the wafer sur-
face temperature accurately using rings of tungsten halogen lamps. The
output of the system is temperature T as a function of time: y = T(t).
The system reference input R is a desired step in temperature (700◦ C),
and the control input is lamp power. A pyrometer is used to measure
the wafer center temperature. The model of the system is first order, and
an integral controller is used as shown in Fig. 10.103. Normally, there is
no sensor bias (b = 0).

(a) Suppose the system suddenly develops a sensor bias b �= 0, where b
is known. What can be done to ensure zero steady-state tracking of
temperature command R, despite the presence of the sensor bias?
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Figure 10.103
RTP system ©

 + 

 - 

©
 + 

 + 

R y = T

b

s
K

s + a
A

Metrology
Ox

(b) Now assume b = 0. In reality, we are trying to control the thickness
of the oxide film grown (Ox) on the wafer and not the temperature.
At present, no sensor can measure Ox in real time. The semiconduc-
tor process engineer must use off-line equipment (called metrology)
to measure the thickness of the oxide film grown on the wafer.
The relationship between the system output temperature and Ox
is nonlinear and given by the integral of the Arrhenius equation:

Oxide thickness =
tf∫

0

pe−
c

T(t) dt,

where tf is the process duration, and p and c are known constants.
Suggest a scheme in which the center wafer oxide thickness Ox can
be controlled to a desired value (say, Ox = 5000 Å) by employing
the temperature controller and the output of the metrology.

10.22 Develop a nonlinear model for a tungsten halogen lamp and simulate it
in Simulink.

10.23 Develop a nonlinear model for a pyrometer. Show how temperature can
be deduced from the model.

10.24 Repeat the RTP case study design by summing the three sensors to
form a single signal to control the average temperature. Demonstrate
the performance of the linear design, and validate the performance on
the nonlinear Simulink simulation.

10.25 One of the steps in semiconductor wafer manufacturing during pho-
tolithography is performed by placement of the wafer on a heated plate
for a certain period of time. Laboratory experiments have shown that
the transfer function from the heater power, u, to the wafer temperature,
y, can be given by

Y(s)
U(s)

= G(s) = 0.09
(s+ 0.19)(s+ 0.78)(s+ 0.00018)

.

(a) Sketch the 180◦ root locus for the uncompensated system.
(b) Using the root-locus design techniques, design a dynamic compen-

sator, Dc(s), such that the system meets the following time-domain
specifications

i. Mp ≤ 5%,
ii. tr ≤ 20 sec,

iii. ts ≤ 60 sec,
iv. Steady-state error to a 1◦C step input command < 0.1◦C.

Draw the 180◦ root locus for the compensated system.
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10.26 Excitation-Inhibition Model from Systems Biology (Yang and Iglesias,
2005): In Dictyostelium cells, the activation of key signaling molecules
involved in chemoattractant sensing can be modeled by the following
third-order linearized model. The external disturbance to the output
transfer function is:

Y(s)
W(s)

= S(s) = (1− α)s
(s+ α)(s+ 1)(s+ γ ) ,

where, w is the external disturbance signal proportional to chemoattrac-
tant concentration, and y is the output which is the fraction of active
response regulators. Show there is an alternate representation of the
system with the “plant” transfer function

G(s) = (1− α)
s2 + (1+ α + γ )s+ (α + γ + αγ ) ,

and the “feedback regulator”

Dc(s) = αγ

(1− α)s .

It is known α �= 1 for this version of the model. Draw the feedback
block diagram of the system showing the locations of the disturbance
input and the output. What is the significance of this particular repre-
sentation of the system? What hidden system property does it reveal?
Is the disturbance rejection a robust property for this system? Assume
the system parameter values are α = 0.5 and γ = 0.2, then plot the
disturbance rejection response of the system for a unit step disturbance
input.

10.27 When a powerful industrial robot is used for delicate tasks such as pol-
ishing glass, it needs to be able to precisely control the force applied to
the workpiece (see Figure 10.104). One way to approximately measure
the applied force is to measure the deflection of a stiff spring on the
robot’s end-effector. The robot-workpiece interaction can be modeled
as shown in Fig. 10.104, where it is assumed the workpiece and the base
are both fixed in place, and only the robot moves:

Figure 10.104
Robot system for
Problem 10.27

Workpiece

Robot

Base

Force

m

Assume the robot’s mass is m = 8kg, the damping friction in the robot is
b =150 Nsec/m, and the spring constant for the force sensor is k = 8000
N/m. The robot’s motor dynamics (the transfer function from control
command to applied force) can be modeled as a first-order system with
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a pole at -100. Hence the plant transfer function relating the applied
force to the robot-workpiece interaction force is:

G(s) = k

ms2 + bs+ k
.

A closed-loop system is to be designed to control the robot-workpiece
interaction force, as shown in Figure 10.105:

Figure 10.105
Feedback control
system for
Problem 10.27

Controller

G(s)©
+

-

Feedforward

Motor
Dynamics

Robot-workpiece
interaction

Y(s)

Force
©

+ +

N(s)

R(s)

Reference
Force

100

s+100
Dc(s)

(a) Sketch the open-loop step response for the combined actuator/robot
system (without feedback control).

(b) Let N(s) = 0. Sketch the root locus for the combined actuator/robot
system assuming Dc(s) = K. Discuss the usefulness of a propor-
tional control for decreasing the settling time. Discuss the effect
of actuator dynamics on closed-loop stability with proportional
control.

(c) Now let N(s) = N = constant. Derive the closed-loop transfer func-
tion for a generic controller Dc(s). Using your derivation, explain
why this feedback control structure employing the feedforward term
N(s), with the reference force entering the dynamics in two places,
may be preferable to the standard feedback only structure for this
problem. For which value of N is the system able to track a step
reference input with zero steady-state error?

10.28 A vibration isolation strut uses a voice coil actuator. It is in parallel
with a spring that has a natural frequency with the load of 10 Hz.
A seismometer has been chosen for the feedback and one for feedfor-
ward. Each seismometer proof mass is supported on a spring which
produces a natural frequency of the instrument of 4 Hz and a shunt
resistor provides eddy current damping to give a damping factor ζ=1.
See Figures 10.106(a) and (b).

(a) Include this instrument dynamics in the sensing (feedback) loop and
modify the compensation to provide a factor of 30 attenuation of
ground motion at 10 Hz.
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Figure 10.106
(a) Strut schematic to
isolate massm from
ground motion Zg, (b)
Schematic of
seismometer
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S
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(b) Assuming you can match scale factors and model parameters to 5%,
how much improvement could you make to the feedback attenua-
tion by using feedforward from a second seismometer mounted on
the ground?

(c) How would you handle the instrument dynamics if you want to
feedforward ground motion at low frequencies (ω <10 Hz)?

10.29 Suppose the load in Problem 10.28 is now elastic. Model the isolated
mass as having two parts separated by a spring stiffness such that the
free vibration frequency is 50 Hz as shown in Figure 10.107.

(a) How would you alter your feedback control law from Prob-
lem 10.28?

(b) What effect would this have on your feedforward implementation?
(c) Would you need another sensor to control Z2, the position of the

upper half of the isolated mass? What would you measure? How
would you put it into the feedback control law?

Figure 10.107
Schematic of elastic
load for Problem 10.29

km

m / 2

m / 2
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10.30 The six transfer functions for the Mikrokopter quadrotor (Bergamasco
and Lovera, 2014) identified from flight experiments are:

Gh =
az

fh
= 1.2498(s+ 0.3451)
(s+ 16.49)(s+ 5.309)(s+ 1.933)

,

Gψ = r
uψ
= 0.077646(s+ 5.475)(s− 0.2086)

(s+ 11.03)(s2 + 0.2838s+ 0.06947)
,

Gθ1 = q
uθ
= 0.22016(s+ 0.2579)(s− 0.2596)

(s+ 1.865)(s2 − 1.285s+ 8.067)
,

Gθ2 = ax

uθ
= −0.011659(s− 3.271)(s+ 3.681)

(s+ 1.865)(s2 − 1.285s+ 8.067)
,

Gϕ1 = p
uϕ
= −0.20194(s2 + 0.09235s+ 0.2532)

(s+ 1.82)(s2 − 1.388s+ 10.02)
,

Gϕ2 =
ay

uϕ
= −0.00359(s− 9.182)(s+ 4.164)

(s+ 1.82)(s2 − 1.388s+ 10.02)
.

where ϕ is roll angle, θ is pitch angle, ψ is yaw angle and p = φ̇ = roll
rate, q = θ̇ = pitch rate, r = ψ̇ = yaw rate as discussed in Chapter 2. ax,
ay, and az are the measurements of the components of the acceleration
of the quadrotor along the three body axes. fh is the control input for
the vertical (up and down) motion. The outputs provided by the inertial
sensors are ax, ay, az, p, q, and r.

(a) Find the order of the system and the number of transmission zeros
at infinity for each of the six transfer functions.

(b) Find the DC gain for each of the six transfer functions.
(c) Use Matlab to plot the unit impulse and step responses for each of

the six transfer functions. Is there anything peculiar about the yaw
step response?

(d) Classify each of the six transfer functions with regard to stability,
minimum-phase or non-minimum phase system.

10.31 For the quadrotor Problem 10.30,

(a) Find a second-order transfer function approximation for the third-
order transfer function from fh to az.

(b) Find a second-order transfer function approximation for the third-
order transfer function from uψ to r.

For each part, compare step responses (using Matlab) to demonstrate
how good your approximation is as compared to the original transfer
function.

10.32 For the quadrotor Problem 10.30, design a dynamic controller (PI or
PID) for the transfer function from fh to az so the rise time (tr) is
one sec or less and there is zero steady-state error to a step refer-
ence input. Use Matlab to show the resulting closed-loop step response
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for your design, and demonstrate that the design specifications have
been met.

10.33 For the quadrotor Problem 10.30, draw the 180◦ root locus for the six
transfer functions for this system using Matlab. In each case, specify
the range of the root locus gain, K, for which the closed-loop system is
stable.

10.34 For the quadrotor Problem 10.30, using root locus techniques, design a
dynamic controller for the transfer function from fh to az so the rise time
(tr) is one sec or less and there is zero steady-state error to a step refer-
ence input. Use Matlab to show the resulting closed-loop step response
for your design. Demonstrate that the design specifications have been
met.

10.35 For the quadrotor Problem 10.30, draw the Bode plot for the trans-
fer function from fh to az. Adjust the transfer function gain so the
low-frequency gain is unity (0-db) prior to plotting the Bode frequency
response.

10.36 For the quadrotor Problem 10.30, draw the Nyquist plots for the six
transfer functions for this system using Matlab. In each case, specify
the range of the gain, K (both positive and negative), for which the
closed-loop system is stable.

10.37 For the quadrotor Problem 10.30, draw the Bode plot for the transfer
function from fh to az. Adjust the transfer function gain so the
low-frequency gain is unity (0-db) prior to plotting the Bode frequency
response. Compute the values of the PM and GM from the Bode plot,
and the corresponding Nyquist plot. How do the values from Bode and
Nyquist compare?
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A.1 TheL− Laplace Transform
Laplace transforms can be used to study the complete response charac-
teristics of feedback systems, including the transient response. This is in
contrast to Fourier transforms, in which the steady-state response is the
main concern. In many applications, it is useful to define the Laplace
transform of f (t), denoted by L−{ f (t)} = F(s), as a function of the
complex variable s = σ1 + jω, where

F(s) �
∫ ∞

0−
f (t)e−st dt, (A.1)

which uses 0− (that is, a value just before t = 0) as the lower limit of
integration and is referred to as the unilateral (or one-sided) Laplace
transform.1 A function f (t) will have a Laplace transform if it is of
exponential order, which means that there exists a real number σ1 such
that

lim
t→∞ | f (t)e

−σ1t| = 0. (A.2)

The decaying exponential term in the integrand in effect provides a
built-in convergence factor. This means even if f (t) does not vanish
as t → ∞, the integrand will vanish for sufficiently large values of
σ1 if f does not grow at a faster-than-exponential rate. For example,
aebt is of exponential order, whereas et2

is not. If F(s) exists for some
s0 = σ0 + jω0, then it exists for all values of s such that

Re(s) ≥ σ0. (A.3)
The smallest value of σ0 for which F(s) exists is called the abscissa of
convergence, and the region to the right of Re(s) ≥ σ0 is called the
region of convergence. Typically, two-sided Laplace transforms exist for
a specified range

α < Re(s) < β, (A.4)
which defines the strip of convergence. Table A.2 gives some Laplace
transform pairs. Each entry in the table follows from direct application
of the transform definition.2

1Bilateral (or two-sided) Laplace transforms and the so-called L+ transforms, in which
the lower value of integral is 0+, also arise elsewhere.
2As for the one-sided Laplace transform, an astute reader would wonder what happens
to the validity of the Laplace transform for the rest of the s-plane, namely, the region
where Re(s) < σ0. Indeed it would be disappointing if F(s) was only valid for Re(s) ≥ σ0
and not elsewhere in the s-plane. Fortunately, except for some pathological cases (which
do not arise in practice), one can invoke an important result from the theory of complex
variables known as the Analytic Continuation Theorem to extend the region of the validity
of F(s) to the whole s-plane excluding the locations of the poles.

865
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A.1.1 Properties of Laplace Transforms
In this section, we will address and prove each of the significant prop-
erties of the Laplace transform as discussed in Chapter 3 and listed in
Table A.1. In addition, we will show examples how these properties can
be used.

1. Superposition

One of the more important properties of the Laplace transform is that
it is linear. We can prove this as follows:

L{αf1(t)+ βf2(t)} =
∫ ∞

0
[αf1(t)+ βf2(t)]e−st dt (A.5)

= α
∫ ∞

0
f1(t)e−st dt+ β

∫ ∞
0

f2(t)e−st dt

= αF1(s)+ βF2(s).

The scaling property is a special case of linearity; that is,

L{αf (t)} = αF(s). (A.6)

TABLE A.1 Properties of Laplace Transforms

Number Laplace Transform Time Function Comment

— F(s) f (t) Transform pair

1 αF1(s)+ βF2(s) αf1(t)+ βf2(t) Superposition

2 F(s)e−sλ f (t − λ) Time delay (λ ≥ 0)

3
1
|a| F

( s

a

)
f (at) Time scaling

4 F(s+ a) e−atf (t) Shift in frequency

5 smF(s)− sm−1f (0)
−sm−2 ḟ (0)− · · · − f (m−1)(0) f (m)(t) Differentiation

6
1
s
F(s)

∫ t

0
f (ζ ) dζ Integration

7 F1(s)F2(s) f1(t) ∗ f2(t) Convolution

8 lim
s→∞sF(s) f (0+) Initial Value Theorem

9 lim
s→0

sF(s) lim
t→∞f (t) Final Value Theorem

10
1
2π j

∫ σc+j∞
σc−j∞

F1(ζ )F2(s− ζ )dζ f1(t)f2(t) Time product

11
1
2π

∫ +j∞
−j∞

Y(−jω)U(jω) dω ∫∞
0 y(t)u(t) dt Parseval’s Theorem

12 − d

ds
F(s) tf (t) Multiplication by time
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TABLE A.2 Table of Laplace Transforms

Number F(s) f(t), t ≥ 0

1 1 δ(t)

2 1/s 1(t)

3 1/s2 t

4 2!/s3 t2

5 3!/s4 t3

6 m!/sm+1 tm

7
1

s+ a
e−at

8
1

(s+ a)2
te−at

9
1

(s+ a)3
1
2!
t2e−at

10
1

(s+ a)m
1

(m− 1)!
tm−1e−at

11
a

s(s+ a)
1− e−at

12
a

s2(s+ a)

1
a
(at − 1+ e−at)

13
b− a

(s+ a)(s+ b)
e−at − e−bt

14
s

(s+ a)2
(1− at)e−at

15
a2

s(s+ a)2
1− e−at(1+ at)

16
(b− a)s

(s+ a)(s+ b)
be−bt − ae−at

17
a

s2 + a2
sin at

18
s

s2 + a2
cos at

19
s+ a

(s+ a)2 + b2
e−at cos bt

20
b

(s+ a)2 + b2
e−at sin bt

21
a2 + b2

s[(s+ a)2 + b2]
1− e−at

(
cos bt + a

b
sin bt

)

EXAMPLE A.1 Sinusoidal Signal

Find the Laplace transform of f (t) = 1+ 2 sin(ωt).

Solution. The Laplace transform of sin(ωt) is

L{sin(ωt)} = ω

s2 + ω2 .
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Therefore, using Eq. (A.5) we obtain

F(s) = 1
s
+ 2ω

s2 + ω2 =
s2 + 2ωs+ ω2

s3 + ω2s
.

The following commands from the Symbolic Math Toolbox in Matlab
yield the same result,

syms s t w
laplace(1+2*sin(w*t)).

2. Time Delay

Suppose a function f (t) is delayed by λ > 0 units of time. Its Laplace
transform is

F1(s) =
∫ ∞

0
f (t− λ)e−st dt.

Let us define t′ = t − λ. Then dt′ = dt, because λ is a constant and
f (t) = 0 for t < 0. Thus

F1(s) =
∫ ∞
−λ

f (t′)e−s(t′+λ) dt′ =
∫ ∞

0
f (t′)e−s(t′+λ) dt′.

Because e−sλ is independent of time, it can be taken out of the integrand,
so

F1(s) = e−sλ
∫ ∞

0
f (t′)e−st′ dt′ = e−sλF(s). (A.7)

From this result, we see a time delay of λ corresponds to multiplication
of the transform by e−sλ.

EXAMPLE A.2 Delayed Sinusoidal Signal

Find the Laplace transform of f (t) = A sin(t− td).

Solution. The Laplace transform of sin(t) is

L{sin(t)} = 1
s2 + 1

.

Therefore, using Eq. (A.7) we obtain

F(s) = A
s2 + 1

e−std .

3. Time Scaling

If the time t is scaled by a factor a, then the Laplace transform of the
time-scaled signal is

F1(s) =
∫ ∞

0
f (at)e−stdt.
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Again, we define t′ = at. As before, dt′ = a dt and

F1(s) =
∫ ∞

0
f (t′)e−st′/a

|a| dt′ = 1
|a|F

( s
a

)
. (A.8)

EXAMPLE A.3 Sinusoid with Frequency ω

Find the Laplace transform of f (t) = A sin(ωt).

Solution. The Laplace transform of sin(t) is

L{sin(t)} = 1
s2 + 1

.

Therefore, using Eq. (A.8) we obtain

F(s) = A
|ω|

1
( s
ω

)2 + 1

= Aω
s2 + ω2 ,

as expected. The following commands in Matlab yield the same result,
syms s t w A
laplace(A*sin(w*t)).

4. Shift in Frequency

Multiplication (modulation) of f (t) by an exponential expression in the
time domain corresponds to a shift in frequency:

F1(s) =
∫ ∞

0
e−atf (t)e−st dt =

∫ ∞
0

f (t)e−(s+ a)t dt = F(s+ a). (A.9)

EXAMPLE A.4 Exponentially Decaying Sinusoid

Find the Laplace transform of f (t) = A sin(ωt)e−at.

Solution. The Laplace transform of sin(ωt) is

L{sin(ωt)} = ω

s2 + ω2 .

Therefore, using Eq. (A.9), we obtain

F(s) = Aω
(s+ a)2 + ω2 .
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5. Differentiation

The transform of the derivative of a signal is related to its Laplace
transform and its initial condition as follows:

L
{

df
dt

}
=

∫ ∞
0−

(
df
dt

)
e−st dt = e−stf (t)

∣∣∞
0− + s

∫ ∞
0−

f (t)e−st dt. (A.10)

Because f (t) is assumed to have a Laplace transform, e−stf (t) → 0 as
t→∞. Thus,

L[ ḟ ] = −f (0−)+ sF(s). (A.11)

Another application of Eq. (A.11) leads to

L{ f̈ } = s2F(s)− sf (0−)− ḟ (0−). (A.12)

Repeated application of Eq. (A.11) leads to

L{ f m(t)} = smF(s)−sm−1f (0−)−sm−2 ḟ (0−)−· · ·−f (m−1)(0−), (A.13)

where f m(t) denotes the mth derivative of f (t) with respect to time.

EXAMPLE A.5 Derivative of Cosine Signal

Find the Laplace transform of g(t) = d
dt f (t), where f (t) = cos(ωt).

Solution. The Laplace transform of cos(ωt) is

F(s) = L{cos(ωt)} = s
s2 + ω2 .

Using Eq. (A.11) with f (0−) = 1, we have

G(s) = L{g(t)} = s · s
s2 + ω2 − 1 = − ω2

s2 + ω2 .

6. Integration

Let us assume we wish to determine the Laplace transform of the
integral of a time function—that is, to find

F1(s) = L
{∫ t

0
f (ξ) dξ

}
=

∫ ∞
0

[∫ t

0
f (ξ) dξ

]
e−st dt.

Employing integration by parts, where

u =
∫ t

0
f (ξ) dξ and dν = e−st dt,

we get

F1(s) =
[
−1

s
e−st

(∫ t

0
f (ξ) dξ

)]∞
0
−

∫ ∞
0
−1

s
e−stf (t) dt = 1

s
F(s).

(A.14)
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EXAMPLE A.6 Time Integral of Sinusoidal Signal

Find the Laplace transform of f (t) = ∫ t
0 sinωτ dτ .

Solution. The Laplace transform of sin(ωt) is

L{sin(ωt)} = ω

s2 + ω2 .

Therefore, using Eq. (A.14),

F(s) = ω

s3 + ω2s
.

7. Convolution

Convolution in the time domain corresponds to multiplication in the
frequency domain. Assume L{ f1(t)} = F1(s) and L{ f2(t)} = F2(s).
Then

L{ f1(t) ∗ f2(t)} =
∫ ∞

0
f1(t) ∗ f2(t)e−st dt

=
∫ ∞

0

[∫ t

0
f1(τ )f2(t− τ) dτ

]
e−st dt.

We see t varies from zero to infinity and τ varies from zero to t. With
the aid of Fig. A.1, we reverse the order of integration and change the
limits of integration accordingly so τ varies from zero to infinity and
∞ � t � τ , to yield

L{ f1(t) ∗ f2(t)} =
∫ ∞

0

∫ ∞
τ

f1(τ )f2(t− τ)e−st dt dτ .

Multiplying by e−sτ esτ results in

L{ f1(t) ∗ f2(t)} =
∫ ∞

0
f1(τ )e−sτ

[∫ ∞
τ

f2(t− τ)e−s(t−τ) dt
]

dτ .

If we change variables t′ � t− τ , then

L{ f1(t) ∗ f2(t)} =
∫ ∞

0
f1(τ )e−st dτ

∫ ∞
0

f2(t′)e−st′ dt′,

L{ f1(t) ∗ f2(t)} = F1(s)F2(s).

Figure A.1
Diagram illustrating
reversal of the order of
integration

0

t

t = v

vv
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This implies that

L−1{F1(s)F2(s)} = f1(t) ∗ f2(t). (A.15)

EXAMPLE A.7 Ramp Response of a First-Order System

Find the ramp response of a first-order system with a pole at +a.

Solution. Let f1(t) = t be the ramp input and f2(t) = eat be the impulse
response of the first-order system. Then, using Eq. (A.15) we find that

L−1
{

1
s2

1
s− a

}
= f1(t) ∗ f2(t)

=
∫ t

0
f1(τ )f2(t− τ) dτ

=
∫ t

0
τea(t−τ) dτ

= 1
a2 (e

at − at− 1).

The following commands in Matlab yield the same result,
syms s t a
ilaplace(1/(s^3-a*s^2)).

8. Time Product

Multiplication in the time domain corresponds to convolution in the
frequency domain:

L{ f1(t)f2(t)} = 1
2π j

∫ σc+j∞

σc−j∞
F1(ξ)F2(s− ξ) dξ .

To see this, consider the relation

L{ f1(t)f2(t)} =
∫ ∞

0
f1(t)f2(t)e−st dt.

Substituting the expression for f1(t) given by Eq. (3.33) yields

L{ f1(t)f2(t)} =
∫ ∞

0

[
1

2π j

∫ σc+j∞

σc−j∞
F1(ξ)eξ t dξ

]
f2(t)e−st dt.

Changing the order of integration results in

L{ f1(t)f2(t)} = 1
2π j

∫ σc+j∞

σc−j∞
F1(ξ)

∫ ∞
0

f2(t)e−(s−ξ)t dt dξ .

Using Eq. (A.9), we get

L{ f1(t)f2(t)} = 1
2π j

∫ σc+j∞

σc−j∞
F1(ξ)F2(s− ξ) dξ = 1

2π j
F1(s) ∗ F2(s).

(A.16)
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9. Parseval’s Theorem

Parseval’s famous theorem is used to compute the “energy” in a signal
or “correlation” between two signals. It tells us that mentioned quan-
tities can be computed either in the time domain or in the frequency
domain. If ∫ ∞

0
|y(t)|2dt < 1 and

∫ ∞
0
|u(t)|2 dt < 1 (A.17)

(i.e., y(t) and u(t) are square integrable), then
∫ ∞

0
y(t)u(t)dt = 1

2π

∫ ∞
−∞

Y(−jω)U(jω) dω. (A.18)

Parseval’s result involves only a substitution of the transform for the
time functions and an exchange of integration:

∫ ∞
0

y(t)u(t) dt =
∫ ∞

0
y(t)

[
1

2π

∫ ∞
−∞

U(jω)e jωt dω
]

dt (A.19)

= 1
2π

∫ ∞
−∞

U(jω)
[∫ ∞

0
y(t)e jωt dt

]
dω (A.20)

= 1
2π

∫ ∞
−∞

U(jω)Y(−jω) dω. (A.21)

10. Multiplication by Time

Multiplication by time corresponds to differentiation in the frequency
domain. Let us consider

d
ds

F(s) = d
ds

∫ ∞
0

e−stf (t) dt

=
∫ ∞

0
−te−stf (t) dt

= −
∫ ∞

0
e−st[tf (t)] dt

= −L{tf (t)}.
Then

L{tf (t)} = − d
ds

F(s), (A.22)

which is the desired result.

EXAMPLE A.8 Time Product of Sinusoidal Signal

Find the Laplace transform of f (t) = t sinωt.

Solution. The Laplace transform of sinωt is

L{sin(ωt)} = ω

s2 + ω2 .
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Hence, using Eq. (A.22), we obtain

F(s) = − d
ds

[
ω

s2 + ω2

]
= 2ωs
(s2 + ω2)2

.

The following commands in Matlab yield the same result,
syms s t w
laplace(t*sin(w*t)).

A.1.2 Inverse Laplace Transform by Partial-Fraction
Expansion

As we saw in Chapter 3, the easiest way to find f (t) from its Laplace
transform F(s), if F(s) is rational, is to expand F(s) as a sum of simpler
terms that can be found in the tables via partial-fraction expansion. We
have already discussed this method in connection with simple roots in
Section 3.1.5. In this section, we will discuss partial-fraction expansion
for cases of complex and repeated roots.

Complex Poles In the case of quadratic factors in the denomina-
tor, the numerator of the quadratic factor is chosen to be first order as
shown in Example A.9. Whenever there exists a complex conjugate pair
of poles such as

F(s) = C1

s− p1
+ C2

s− p∗1
,

we can show
C2 = C∗1

(see Problem 3.1) and

f (t) = C1ep1t + C∗1 ep∗t1 = 2Re(C1ep1t).

Assuming p1 = α + jβ, we may rewrite f (t) in a more compact form as

f (t) = 2Re{C1ep1t} = 2Re{|C1|e j arg(C1)e(α+jβ)t} (A.23)

= 2|C1|eαt cos[βt+ arg(C1)].

EXAMPLE A.9 Partial-Fraction Expansion: Distinct Complex Roots

Find the function f (t) for which the Laplace transform is

F(s) = 1
s(s2 + s+ 1)

.

Solution. We rewrite F(s) as

F(s) = C1

s
+ C2s+ C3

s2 + s+ 1
.

Using the cover-up method, we find

C1 = sF(s)|s=0 = 1.
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Setting C1 = 1 then equating the numerators in the partial-fraction
expansion relation, we obtain

(s2 + s+ 1)+ (C2s+ C3)s = 1.

After solving for C2 and C3, we find C2 = −1 and C3 = −1. To make
it more suitable for using the Laplace transform tables, we rewrite the
partial fraction as

F(s) = 1
s
− s+ 1

2 + 1
2(

s+ 1
2

)2 + 3
4

.

From the tables we have,

f (t) =
(

1− e−t/2 cos

√
3
4

t− 1√
3

e−t/2 sin

√
3
4

t

)
1(t)

=
(

1− 2√
3

e−t/2 cos

(√
3

2
t− π

6

))
1(t).

Alternatively, we may write F(s) as

F(s) = C1

s
+ C2

s− p1
+ C∗2

s− p∗1
, (A.24)

where p1 = −1
2 + j

√
3

2 . C1 = 1, as before, and now

C2 = (s− p1)F(s)|s=p1 = −
1
2
+ j

1

2
√

3
,

C∗2 = −
1
2
− j

1

2
√

3
,

and

f (t) = (1+ 2|C2|eαt cos[βt+ arg(C2)])1(t)

=
(

1+ 2√
3

e−t/2 cos

[√
3

2
t+ 5π

6

])
1(t)

=
(

1− 2√
3

e−t/2 cos

[√
3

2
t− 5π

6

])
1(t).

The latter partial-fraction expansion can be readily computed using
the following Matlab statements:

num= 1; % form numerator

den= conv([1 0],[1 1 1]); % form denominator

[r,p,k]= residue(num,den) % compute residues

which yields the result

r = [–0.5000 + 0.2887i – 0.5000 – 0.2887i 1.0000]’;
p = [–0.5000 + 0.8660i – 0.5000 – 0.8660i 0]’;k = [ ]
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and agrees with the previous hand calculations. Note if we are using
the tables, the first method is preferable, while the second method is
preferable for checking Matlab results.

The following commands in Matlab yield the same result for the
inverse Laplace transform,

syms s t
ilaplace(1/(s*(s^2+s+1))).

Repeated Poles For the case in which F(s) has repeated roots, the
procedure to compute the partial-fraction expansion must be modified.
If p1 is repeated three times, we write the partial fraction as

F(s) = C1

s− p1
+ C2

(s− p1)
2 +

C3

(s− p1)
3 +

C4

s− p4
+ · · · + Cn

s− pn
.

We determine the constants C4 through Cn as discussed previously. If
we multiply both sides of the preceding equation by (s−p1)

3, we obtain

(s−p1)
3F(s) = C1(s−p1)

2+C2(s−p1)+C3+· · ·+Cn(s− p1)
3

s− pn
. (A.25)

If we then set s = p1, all the factors on the right side of Eq. (A.25) will
go to zero except C3, which is

C3 = (s− p1)
3F(s)|s=p1 ,

as before. To determine the other factors, we differentiate Eq. (A.25)
with respect to the Laplace variable s:

d
ds

[(s−p1)
3F(s)] = 2C1(s−p1)+C2+· · ·+ d

ds

[
Cn(s− p1)

3

s− pn

]
. (A.26)

Again, if we set s = p1, we have

C2 = d
ds

[(s− p1)
3F(s)]s=p1 .

Similarly, if we differentiate Eq. (A.26) again and set s = p1 a second
time, we get

C1 = 1
2

d2

ds2 [(s− p1)
3F(s)]s=p1 .

In general, we may compute Ci for a factor with multiplicity k as

Ck−i = 1
i!

[
di

dsi [(s− p1)
kF(s)]

]

s=p1

, i = 0, . . . , k − 1.

EXAMPLE A.10 Partial-Fraction Expansion: Repeated Real Roots

Find the function f (t) that has the Laplace transform

F(s) = s+ 3
(s+ 1)(s+ 2)2

.
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Solution. We write the partial fraction as

F(s) = C1

s+ 1
+ C2

s+ 2
+ C3

(s+ 2)2
.

Then

C1 = (s+ 1)F(s)|s=−1 = s+ 3
(s+ 2)2

∣∣
s=−1 = 2,

C2 = d
ds

[
(s+ 2)2F(s)

] ∣∣
s=−2 = −2,

C3 = (s+ 2)2F(s)|s=−2 = s+ 3
s+ 1

∣∣
s=−2 = −1.

The function f (t) is

f (t) = (2e−t − 2e−2t − te−2t)1(t).

The partial fraction computation can also be carried out using
Matlab’s residue function,

num = [1 3]; % form numerator
den = conv([1 1],[1 4 4]); % form denominator
[r,p,k] = residue(num,den) % compute residues

which yields the result

r = [−2 −1 2]’, p = [−2 −2 −1]’, and k = [ ];

and agrees with the hand calculations.
The following commands in Matlab yield the same result for the

inverse Laplace transform,
syms s t
ilaplace((s+3)/((s+1)*(s+2)^2)).

A.1.3 The Initial Value Theorem
We discussed the Final Value Theorem in Chapter 3. A second valuable
Laplace transform theorem is the Initial Value Theorem, which states
that it is always possible to determine the initial value of the time func-
tion f (t) from its Laplace transform. We may also state the theorem in
this way:

The Initial Value Theorem For any Laplace transform pair,

lim
s→∞ sF(s) = f (0+). (A.27)

We may show this as follows.
Using Eq. (A.11), we get

L
{

df
dt

}
= sF(s)− f (0−) =

∫ ∞
0−

e−st df
dt

dt. (A.28)
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Let us consider the case in which s→∞ and rewrite the integral as
∫ ∞

0−
e−st df (t)

dt
dt =

∫ ∞
0+

e−st df (t)
dt

dt+
∫ 0+

0−
e−st df (t)

dt
dt.

Taking the limit of Eq. (A.28) as s→∞, we get

lim
s→∞ [sF(s)− f (0−)] = lim

s→∞

[∫ 0+

0−
e0 df (t)

dt
dt+

∫ ∞
0+

e−st df (t)
dt

dt

]
.

The second term on the right side of the preceding equation
approaches zero as s→∞, because e−st → 0. Hence

lim
s→∞ [sF(s)− f (0−)] = lim

s→∞ [f (0+)− f (0−)] = f (0+)− f (0−)

or
lim

s→∞ sF(s) = f (0+).

In contrast with the Final Value Theorem, the Initial Value Theorem
can be applied to any function F(s).

EXAMPLE A.11 Initial Value Theorem

Find the initial value of the signal in Example 3.13.

Solution. From the Initial Value Theorem, we get

y(0+) = lim
s→∞ sY(s) = lim

s→∞ s
3

s(s− 2)
= 0,

which checks with the expression for y(t) computed in Example 3.13.

A.1.4 Final Value Theorem

The Final Value Theorem If all poles of sY(s) are in the left half of the s-plane, then

lim
t→∞ y(t) = lim

s→0
sY(s). (3.54)

Proof of the Final Value Theorem

We may prove this result as follows. The derivative relationship devel-
oped in Eq. (3.41) is

L
{

dy
dt

}
= sY(s)− y(0−) =

∫ ∞
0−

e−st dy
dt

dt.

We assume we are interested in the case where s→ 0. Then

lim
s→0

[sY(s)− y(0)] = lim
s→0

(∫ ∞
0

e−st dy
dt

dt
)
= lim

t→∞ [y(t)− y(0)],
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and we have
lim

t→∞ y(t) = lim
s→0

sY(s).

Another way to see this same result is to note the partial-fraction
expansion of Y(s) [Eq. (3.51)] is

Y(s) = C1

s− p1
+ C2

s− p2
+ · · · + Cn

s− pn
.

Let us say p1 = 0 and all other pi are in the left half-plane so that C1 is
the steady-state value of y(t). Using Eq. (3.53), we see

C1 = lim
t→∞ y(t) = sY(s)|s=0,

which is the same as the previous result.
For a thorough study of Laplace transforms and extensive tables,

see Churchill (1972) and Campbell and Foster (1948); for the two-sided
transform, see Van der Pol and Bremmer (1955).
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Review Questions

Chapter 1
1.1 What are the main components of a feedback control system?

The process, the actuator, the sensor, and the controller

1.2 What is the purpose of the sensor?
To measure the output variable and, usually, to convert it to an
electrical voltage

1.3 Give three important properties of a good sensor.
A good sensor is linear (the output is proportional to the input sig-
nal) over a large range of amplitudes and a large range of frequencies
at its input, has low noise, is unbiased, is easy to calibrate, and
has low cost. The relative values of these properties varies with the
particular application.

1.4 What is the purpose of the actuator?
The actuator takes an input, usually electrical, and converts it to
a signal such as a force or torque that causes the process output to
move or change over the required range.

1.5 Give three important properties of a good actuator.
A good actuator has fast response, and adequate power, energy,
speed, torque, and so on, to be able to cause the process out-
put to meet the design specifications and is efficient, lightweight,
small, cheap, and so on. As with sensors, the relative value of these
properties varies with the application.

1.6 What is the purpose of the controller? Give the input(s) and
output(s) of the controller.
The controller is to take the sensor output (the input to the con-
troller) and compute the control signal (the output of the controller)
to be sent to the actuator.

1.7 What physical variable is measured by a tachometer?
A tachometer measures speed of rotation or angular velocity.

1.8 Describe three different techniques for measuring temperature.
In each of the following cases, it is important to realize that
the devices mentioned need to be calibrated and often corrected
for nonlinearity in order to give a reliable, accurate measure of
temperature.

880
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(a) An early technique still used in many home thermostats is based
on the bimetallic strip composed of two strips of different metals
that expand with different coefficients with temperature. As a
result, the strip bends with temperature and the resulting motion
can be used as a measure of temperature. This principle was
introduced in the 18th century to maintain a constant length to
a clock pendulum for precision time keeping.

(b) A technique related to the bimetallic strip is based on the fact
that metals with different work functions placed in contact will
produce a voltage that is proportional to temperature. Such a
device is called a thermocouple and is the basis of a standard
laboratory technique for measuring temperature.

(c) A number of materials have electrical resistance that is depen-
dent in a monotonic way on temperature, and a resistance bridge
can be used with one of these to indicate temperature. Such
devices are called thermistors.

(d) For high temperatures, it is well known that the color of the
radiation due to heat depends on temperature. A piece of iron
placed in a fire will glow orange, then red, and finally become
white hot at high temperatures. An instrument for measuring
the frequency of the radiation, and thus the temperature, is a
pyrometer.

(e) In ceramic kilns, cones of different materials that melt at differ-
ent and known temperatures are placed near the products in the
kiln to indicate when the design temperature has been reached.
The potter watches until the cone of importance begins to sag
and then knows that the products should be removed. These give
a quantized measure of temperature.

1.9 Why do most sensors have an electrical output, regardless of the
physical nature of the variable being measured?
Electrical signals are the most easily manipulated; therefore, most
controllers are electrical devices, either analog or digital. To provide
the signal input to such a device, the sensor needs to produce an
electrical output.

Chapter 2
2.1 What is a “free-body” diagram?

To write the equations of motion of a system of connected bodies,
it is useful to draw each body in turn with the influence of all other
bodies represented by forces and torques on the body in question. A
drawing of the collection of such isolated bodies is called a “free-
body diagram.”

2.2 What are the two forms of Newton’s law?
Translational motion is described by F = ma. Rotational motion is
described by M = Iα.
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2.3 For a structural process to be controlled, such as a robot arm,
what is the meaning of “collocated control”? “Noncollocated
control”?
When the actuator and the sensor are located on the same rigid
body, the control is said to be “collocated.” When they are
on different bodies that are connected by springs, the control is
“noncollocated.”

2.4 State Kirchhoff’s current law.
The algebraic sum of all currents entering a junction or circuit is
zero.

2.5 State Kirchhoff’s voltage law.
The algebraic sum of voltages around a closed path in an electric
circuit is zero.

2.6 When, why, and by whom was the device named an “operational
amplifier”?
In a paper in 1947, Ragazzini, Randall, and Russell named the
high-gain, wide-bandwidth amplifier used in feedback to realize
operational calculus “operations” the operational amplifier.

2.7 What is the major benefit of having zero input current to an
operational amplifier?
With zero input current the amplifier does not load the input cir-
cuit; thus, the transfer function on the device is not dependent on the
amplifier characteristics. Also, the analysis of the circuit is simplified
in this case.

2.8 Why is it important to have a small value for the armature
resistance Ra of an electric motor?
The armature resistance causes power loss when the armature
current flows and thus reduces the efficiency of the motor.

2.9 What are the definition and units of the electric constant of a
motor?
A rotating motor produces a voltage (called the back emf) in its
armature proportional to the rotational speed. The electric constant
Ke is the ratio of this voltage to the speed, so e = Keθ̇ . The units are
volt-sec/radians.

2.10 What are the definition and units of the torque constant of an
electric motor?
When current ia flows in the armature of an electrical motor, a torque
τ is produced that is proportional to the current. The torque con-
stant Kt is the constant of proportionality, so τ = Ktia. The units
are Newton-meters/amp.
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2.11 Why do we approximate a physical model of the plant (which is
always nonlinear) with a linear model?
Analysis and design of linear models is vastly simpler than with
nonlinear models. Furthermore, it has been shown (by Lyapunov)
that, if the linear approximation is stable, then there is at least some
region of stability for the nonlinear model.

2.12 Give the relationships for (a) heat flow across a substance and�
(b) heat storage in a substance.

(a) Heat flow is proportional to the temperature difference divided
by the thermal resistance; that is,

q = 1
R
(T1 − T2).

(b) The differential equation describing the heat storage is

Ṫ = 1
C

q,

where C is the thermal capacity of the material.

2.13 Name and give the equations for the three relationships governing�
fluid flow.

Continuity: ṁ = win − wout.

Force equilibrium: f = pA.

Resistance: w = 1
R
(p1 − p2)

1/α.

Chapter 3
3.1 What is the definition of “transfer function”?

The Laplace transform of the output of a linear, time-invariant sys-
tem, Y(s), is proportional to the transform of its input, U(s). The
function of proportionality is the transfer function F(s), so that
Y(s) = F(s)U(s). It is assumed all initial conditions are zero.

3.2 What are the properties of systems whose responses can be
described by transfer functions?
The system must be both linear (superposition applies) and time
invariant (the parameters do not vary with time).

3.3 What is the Laplace transform of f1(t) = f (t − λ)1(t − λ) if the
transform of f (t) is F(s)?

L{f1(t)} = e−sλF(s).

3.4 State the Final Value Theorem.
If all the poles of sF(s) are in the LHP, then the final value of f (t) is
given by lim

t→∞ f (t) = lim
s→0

sF(s).

3.5 What is the most common use of the Final Value Theorem in
control?
A standard test of a control system is the step response, and the FVT
is used to determine the steady-state error to such an input.
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3.6 Given a second-order transfer function with damping ratio ζ and
natural frequency ωn, what is the estimate of the step response rise
time? What is the estimate of the percent overshoot in the step
response? What is the estimate of the settling time?
These are given by tr ∼= 1.8/ωn, Mp is set by the damping ratio (see
the curve in Fig. 3.24) and ts ∼= 4.6/σ .

3.7 What is the major effect of an extra zero in the LHP on the second-
order step response?
Such a zero causes additional overshoot, and the closer the zero is to
the imaginary axis, the higher the overshoot. If the zero is more than
six times the real part of the complex poles, the effect is negligible.

3.8 What is the most noticeable effect of a zero in the RHP on the step
response of the second-order system?
Such a zero often causes an initial undershoot of the response.

3.9 What is the main effect of an extra real pole on the second-order
step response?
A pole slows down the response and makes the rise time longer. The
closer the pole is to the imaginary axis, the more pronounced is the
effect. If the pole is more than six times the real part of the complex
poles, the effect is negligible.

3.10 Why is stability an important consideration in control system
design?
Almost any useful dynamic system must be stable to perform its
function. Feedback around a system that is normally stable can actu-
ally introduce instability, so control designers must be able to assure
the stability of their designs.

3.11 What is the main use of Routh’s criterion?
With this method, we can find (symbolically) the range of a
parameter such as the loop gain for which the system will be stable.

3.12 Under what conditions might it be important to know how to
estimate a transfer function from experimental data?
In many cases, the equations of motion are either extremely complex
or not known at all. Chemical processes such as a paper-making
machine are often of this kind. In these cases, if one wishes to build
a good control, it is very useful to be able to take transient data
or steady-state frequency-response data and to estimate a transfer
function from these.

Chapter 4
4.1 Give three advantages of feedback in control.

(a) Feedback can reduce the steady-state error in response to
disturbances.
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(b) Feedback can reduce the steady-state error in tracking a refer-
ence.

(c) Feedback can reduce the sensitivity of a transfer function to
parameter changes.

(d) Feedback can stabilize an unstable process.

4.2 Give two disadvantages of feedback in control.

(a) Feedback requires a sensor, which can be very expensive and may
introduce additional noise.

(b) Feedback systems are often more difficult to design and operate
than open-loop systems.

4.3 A temperature control system is found to have zero error to a con-
stant tracking input and an error of 0.5◦C to a tracking input that
is linear in time, rising at the rate of 40◦C/sec. What is the system
type of this control system and what is the relevant error constant
(Kp or Kv or Ka)?
The system is Type 1 and Kv is the ratio of input rate to error or
Kv = 40/0.5 = 80/sec.

4.4 What are the units of Kp, Kv, and Ka?
Kp is dimensionless, Kv is sec−1, and Ka is sec−2.

4.5 What is the definition of system type with respect to reference
inputs?
With only a polynomial of degree k reference input (no distur-
bances), the type is the largest value of k for which the steady-state
error is a constant.

4.6 What is the definition of system type with respect to disturbance
inputs?
With only a polynomial of degree k disturbance input (no reference),
the type is the largest value of k for which the steady-state error is a
constant.

4.7 Why does system type depend on where the external signal enters
the system?
Because the error depends on where the input enters, so does the type.

4.8 What is the main objective of introducing integral control?
Integral control will make the error to a constant input go to zero. It
removes the effects of process noise bias. It cannot remove the effects
of sensor bias.

4.9 What is the major objective of adding derivative control?
Derivative control typically makes the system better damped and
more stable.



main_1 — 2019/2/5 — 11:31 — page 886 — #7

886 Appendix B Solutions to the Review Questions

4.10 Why might a designer wish to put the derivative term in the
feedback rather than in the error path?
When a reference input includes sudden changes, including it in the
derivative action might cause unnecessary large controls.

4.11 What is the advantage of having a “tuning rule” for PID con-
trollers?
PID controllers are typically packaged as a unit with knobs on
the front for the several gain constants. These devices are widely
installed in factories and operated by technicians with modest
knowledge of control theory. A tuning rule permits such a per-
son to measure parameters of the process experimentally and use
this data to set the parameters in such a way as to give good
response.

4.12 Give two reasons to use a digital controller rather than an analog
controller.

(a) The control law is easier to change if the controller is digital.
(b) A digital controller can perform logic and other nonlinear

operations much easier than an analog controller.
(c) The hardware of a digital controller can be fixed in the design

before the details of the actual control design are finished.

4.13 Give two disadvantages to using a digital controller.

(a) The bandwidth of a digital controller is limited by the possible
sample frequency.

(b) The digital controller introduces noise by the quantization pro-
cess.

Chapter 5
5.1 Give two definitions for the root locus.

(a) The root locus is the locus of points in the s-plane where the
equation a(s)+ Kb(s) = 0 has a solution.

(b) The root locus is the locus of points in the s-plane where the angle
of G(s) = b(s)/a(s) is 180◦.

5.2 Define the negative root locus.
The negative root locus is the locus of points where the equation
a(s) − Kb(s) = 0 has a solution or where the angle of G(s) =
b(s)/a(s) is 0◦.

5.3 Where are the sections of the (positive) root locus on the real axis?
Segments of the real axis to the left of an odd number of zeros and
poles are on the root locus.
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5.4 What are the angles of departure from two coincident poles at s =
−a on the real axis? Assume there are no poles or zeros to the right
of −a.
The loci depart at ±90◦.

5.5 What are the angles of departure from three coincident poles at
s = −a on the real axis? Assume there are no poles or zeros to the
right of −a.
The loci depart at ±60◦ and 180◦.

5.6 What is the principal effect of a lead compensation on a root locus?
The lead compensation generally causes the locus to bend toward the
LHP, moving the dominant roots to a place of higher damping.

5.7 What is the principal effect of a lag compensation on a root locus
in the vicinity of the dominant closed-loop roots?
The lag compensation is normally placed so near the origin that it
has negligible effect on the root locus in the vicinity of the dominant
closed-loop roots.

5.8 What is the principal effect of a lag compensation on the steady-
state error to a reference input?
A lag compensation normally raises the gain at s = 0 and thus lowers
the errors.

5.9 Why is the angle of departure from a pole near the imaginary axis
especially important?
If the locus starts toward the RHP, then feedback will make the sys-
tem less stable. On the other hand, if the locus departs toward the
LHP, then feedback is going to make the system more stable.

5.10 Define a conditionally stable system.
A system that becomes unstable as gain is reduced is considered to
be conditionally stable. That is, its stability is conditioned on hav-
ing an operating compensator with at least a minimum value of
gain.

5.11 Show, with a root locus argument, that a system having three poles
at the origin must be conditionally stable.
With three poles at the origin, the angles of departure ensure that two
poles leave the origin at 180◦, ±60◦, or, if there are poles on the real
axis in the RHP, they may leave at 0◦, ±120◦ which is to say that
at least one pole begins by moving into the RHP. As gain is reduced
from the operating level, at least one root must pass into the RHP for
gain low enough; therefore, the system must be conditionally stable.

Chapter 6
6.1 Why did Bode suggest plotting the magnitude of a frequency

response on log–log coordinates?
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In log–log coordinates, the plot for a rational transfer function can
be well guided by linear asymptotes and thus easily plotted and
visualized.

6.2 Define a decibel.
If a power ratio is P1/P2, then the measure in decibels is 10 log(P1/

P2). Because power is proportional to voltage squared, and a transfer
function would give a ratio of voltages, then the gain of a transfer
function G(jω) in decibels is Gdb = 20 log |G(jω)|.

6.3 What is the transfer function magnitude if the gain is listed as
14 db?
14 = 20 log M, therefore M = 5.01.

6.4 Define gain crossover.
The gain crossover ωc is the value of frequency where the magnitude
gain is 1 (or 0 db).

6.5 Define phase crossover.
The phase crossover ωcp is the value of the frequency where the phase
crosses −180◦.

6.6 Define phase margin PM.
The phase margin PM is a measure of how far in phase the Nyquist
plot is from instability. In the typical case, if the phase of the sys-
tem at gain crossover is φ, then the phase margin is 180◦ + φ. For
example, if φ = −150◦, then the phase margin is 30◦.

6.7 Define gain margin GM.
The gain margin GM is a measure of how far the system is from
instability by changes in gain alone. If the gain at phase crossover,
where the system phase is 180◦, is

∣∣G(jωcp)
∣∣, then the gain margin is

calculated from GM∗ ∣∣G(jωcp)
∣∣ = 1.0 or GM = 1/

∣∣G(jωcp)
∣∣.

6.8 What Bode plot characteristic is the best indicator of the closed-
loop step response overshoot?
The phase margin is related to the equivalent closed-loop damping
ratio approximately by ζeq = PM/100. As we saw in Chapter 3,
the step response overshoot is monotonically related to the damping
ratio.

6.9 What Bode plot characteristic is the best indicator of the closed-
loop step response rise time?
The rise time is measured by the closed-loop natural frequency, which
in turn is adequately approximated by the gain crossover. Thus, the
best indicator of rise time is ωc.

6.10 What is the principal effect of a lead compensation on Bode plot
performance measures?
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The lead compensation usually is used to raise the phase margin at
a desired gain crossover frequency.

6.11 What is the principal effect of a lag compensation on Bode plot
performance measures?
The lag compensation is usually used to raise the low-frequency gain
to reduce the steady-state error to polynomial or low-frequency sinu-
soidal inputs. It can also be used to lower the crossover frequency ωc,
where a more favorable phase exists.

6.12 How do you find the Kv of a type 1 system from its Bode plot?
The Kv is determined by the low-frequency asymptote, which has a
slope of −1 for a type 1 system and is given by the expression Kv/ω.
The value of the constant may be found either from the frequency
where the asymptote reaches 1.0 (or 0 db) or else as the value of the
asymptote at the frequency of ω = 1.

6.13 Why do we need to know beforehand the number of open-loop
unstable poles in order to tell stability from the Nyquist plot?
The number of Nyquist plot encirclements counts the difference in
the number of zeros and the number of poles in the RHP of 1 +
KDcG. In order to know the number of zeros of this function (which
are closed-loop poles and thus unstable poles of the closed loop), we
must know the number of unstable open-loop poles for the plot.

6.14 What is the main advantage in control design of counting the
encirclements of −1/K of Dc(jω)G(jω) rather than encirclements
of −1 of KDc(jω)G(jω)?
If we plot DcG alone, then the stability depends on the encirclements
of −1/K. The designer can thus easily look at the entire range of
real K and determine the best value of gain for the design without
having to make any more plots.

6.15 Define a conditionally stable feedback system. How can you
identify one on a Bode plot?
A conditionally stable system becomes unstable as gain is reduced. If
the low-frequency phase drops below −180◦ then a reduction in gain
until gain crossover occurs where there is no phase margin, in which
case the system is almost surely unstable. A look at the Nyquist plot
is necessary to be certain. This condition can also be seen easily from
a root locus; the locus will have segments in the RHP for low values
of gain.

6.16 A certain control system is required to follow sinusoids, which�
may be any frequency in the range 0 ≤ ω
 ≤ 450 rad/sec and
have amplitudes up to 5 units with (sinusoidal) steady-state error
to be never more than 0.01. Sketch (or describe) the corresponding
performance function W1(ω).
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The magnitude of W1 is given by the ratio |R| /eb = 5/0.01 = 500.
The performance function would then have the value 500 for frequen-
cies up to 450 rad/sec. The Bode magnitude plot would be required
to be above this curve for these frequencies.

Chapter 7
The following questions are based on a system in state-variable form
with matrices A, B, C, and constant D, input u, output y, and state x:

7.1 Why is it convenient to write dynamic equations in state-variable
form?
It provides a standard way to describe the differential equations for
any dynamic system so that computer-aided analysis can be carried
out more conveniently. It is also more convenient to analyze linear
systems in terms of the standard description matrices.

7.2 Give an expression for the transfer function of this system.

G(s) = C(sI− A)−1B+D.

7.3 Give two expressions for the poles of the transfer function of the
system.

(a) p = eig(A).
(b) p = roots of det[sI− A] = a(s) = 0.

7.4 Give an expression for the zeros of the system transfer function.

z = roots of det
[

sI− A −B
C D

]
= b(s) = 0.

7.5 Under what condition will the state of the system be controllable?

(a) If the pair (A, B) is controllable—that is, if the matrix

C = [ B AB · · · An−1B
]

is full rank.
(b) If the system can be transformed into control canonical form.

7.6 Under what conditions will the system be observable from the
output y?

(a) If the matrices (A, C) are observable—that is, if the matrix

O =

⎡
⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎦

has full rank.
(b) If the system can be transformed into observable canonical form.
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7.7 Give an expression for the closed-loop poles if state feedback of the
form u = −Kx is used.

(a) pc=eig( A–B ∗ K).
(b) pc = roots of det(sI− A+ BK) = αc(s) = 0.

7.8 Under what conditions can the feedback matrix K be selected so
that the roots of αc(s) are placed arbitrarily?
If the system is controllable.

7.9 What is the advantage of using the LQR or symmetrical root locus
in designing the feedback matrix K?
With LQR, the closed-loop system will be more robust to parameter
changes, and the designer has some control over the control effort
used by the closed-loop system.

7.10 What is the main reason for using an estimator in feedback
control?
When the state is not available (usually because it is too expensive or
impractical to put sensors on each state variable), then an estimator
using only the output y can give an estimate that can be used in place
of the actual state.

7.11 If the estimator gain L is used, give an expression for the closed-
loop poles due to the estimator.

(a) pe=eig( A–L ∗ C).
(b) pe = roots of det(sI− A+ LC) = αe(s) = 0.

7.12 Under what conditions can the estimator gain L be selected so the
roots of αe(s) = 0 are placed arbitrarily?
If the system is observable.

7.13 If the reference input is arranged so the input to the estimator
is identical to the input to the process, what will be the overall
closed-loop transfer function?

T (s) = Ks
b(s)
αc(s)

.

7.14 If the reference input is introduced in such a way as to permit
the zeros to be assigned as the roots of γ (s), what will the overall
closed-loop transfer function be?

T (s) = Ks
γ (s)b(s)
αe(s)αc(s)

,

usually γ (s) = αe(s).

7.15 What are the three standard techniques for introducing integral
control in the state-feedback design method?

(a) By augmenting the process state to include an integrator state
variable
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(b) By the internal-model approach
(c) By using the extended-estimator approach

Chapter 8
8.1 What is the Nyquist rate? What are its characteristics?

The Nyquist rate is half the sample rate, or = ωs/2. Above this rate,
no frequencies can be represented by a sampled signal.

8.2 Describe the discrete equivalent design process.
The controller for a system is designed as if the controller will be
analog. The resulting controller is then approximated by a digital
equivalent.

8.3 Describe how to arrive at a Dd(z) if the sample rate is
30× ωBW .
Use the discrete-equivalent design method. It typically yields sat-
isfactory results for such a high sample rate. But after using the
discrete equivalent, check the result using a simulation that includes
the effect of sampling or else perform an exact discrete linear anal-
ysis. It is best to use a simulation that includes all known sampling
effects and system delays.

8.4 For a system with a 1 rad/sec bandwidth, describe the conse-
quences of various sample rates.
An absolute minimum sample rate is 2 rad/sec (or 0.32 Hz and
T = 3 sec). From 2 rad/sec to 10 or 20 rad/sec, the control will
be jerky with noticeable steps in the control and the design needs to
be done very carefully. Between 20 and 30 rad/sec, the magnitude
of the control steps become progressively smaller and design using
discrete equivalents works reasonably well. Above 30 rad/sec, the
control steps are hardly noticeable and the discrete equivalent can be
used with confidence.

8.5 Give two advantages for selecting a digital processor rather than
analog circuitry to implement a controller.

(a) The physical layout of a digital controller can be done before
the final design is complete, often resulting in completing the
hardware implementation in much less time than required to get
an analog controller specified and constructed.

(b) A digital processor is more flexible in making design changes
as software is easier to reprogram than rewiring and/or adding
op-amps to a printed circuit board.

(c) A digital processor can much more easily include nonlinear
terms and logic decision steps in the overall controller design
to permit adaptive control or gain scheduling, for example.

(d) Many models of the same basic controller can be accommo-
dated by simply using different PROMS with the same hardware
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design. For example, an automobile manufacturer might have
one engine controller hardware design for its entire product line;
but have a different PROM for each engine/vehicle combination.

(e) Digital controllers are less sensitive to temperature variations
than analog controllers.

8.6 Give two disadvantages of selecting a digital processor rather than
analog circuitry to implement a controller.

(a) The finite sampling rate of the A/D and D/A converters and the
finite computational speed of the processor limit the bandwidth
of the controller to about 1/10 of the sample frequency.

(b) The finite accuracy or bit length of the converters introduce extra
noise or offsets into the control loop if using low-end controllers.

(c) Cost. For simple controllers, a digital implementation will typ-
ically be more expensive than an analog implementation.

8.7 Describe how to arrive at a Dd(z) if the sample rate is 5× ωBW .�
Start by using the discrete equivalent, but include an approximation
of the effect of the delay in the plant model when carrying out the
analog design. Then check the result via an exact discrete analysis
by converting the plant to its discrete equivalent and combining that
with the discrete controller. If performance is degraded from that
desired, modify the discrete controller using discrete design methods.
Finish by using a simulation that includes all known sampling effects
and system delays.

Chapter 9
9.1 Why do we approximate a physical model of the plant (which is

always nonlinear) with a linear model?
Analysis and design of linear models is vastly simpler than nonlinear
models. Furthermore, it has been shown (by Lyapunov) that if the
linear approximation is stable, then there is at least some region of
stability for the nonlinear model.

9.2 How would you linearize the nonlinear system equation for radia-
tion heat transfer Ṫ = T4 + T + u?

δṪ = (4T3
o + 1)δT + δu,

where To is the nominal operating temperature. (see the RTP case
study in Chapter 10.)

9.3 A lamp used as a thermal actuator has a nonlinearity such that
the experimentally measured output power is related to the input
voltage by P = V1.6. How would you deal with such a nonlinearity
in feedback control design?
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We precede the lamp with an inverse nonlinearity—that is, V =
P0.625—so as to linearize the cascaded system (see the RTP case
study in Chapter 10).

9.4 What is integrator windup?
If the plant actuator output signal saturates, then it may take a long
time for the error to be brought back to zero from an initial upset and
during this time the integrator output may grow or “windup” much
more than it would if the system were linear. Special “antiwindup”
circuits are designed to prevent windup.

9.5 Why is an antiwindup circuit important?
When a control includes integral action and is subject to saturation,
large inputs can cause large overshoots and slow recovering unless an
antiwindup circuit is included.

9.6 Using the nonlinear saturation function having gain 1 and limits
±1, sketch the block diagram of saturation for an actuator that
has gain 7 and limits ±20.
If the output of the actuator is uout and its input is uin, the control is
given by

uout = 20 sat
(

7uin

20

)
.

9.7 What is a describing function, and how is it related to a transfer
function?
The goal of the describing function approach is to find something
like a “transfer function” for a nonlinear element. One may view
the describing function as an extension of the frequency response to
nonlinearities.

9.8 What are the assumptions behind the use of the describing func-
tion?
The basic assumption is that the plant behaves approximately as a
low-pass filter. The other assumptions are that the nonlinearity is
time invariant, and there is a single nonlinear element in the system.

9.9 What is a limit cycle in a nonlinear system?
In some nonlinear systems, the error builds up and the response
approaches a periodic solution of fixed amplitude, the limit cycle,
as time grows large.

9.10 How can one determine the describing function for a nonlinear
system in the laboratory?
One can inject sinusoidal signals into the system and place a low-
pass filter with a sharp cutoff at the output of the system to measure
the fundamental component of the output. The describing function
is then computed as the ratio of the amplitude of the fundamental



main_1 — 2019/2/5 — 11:31 — page 895 — #16

Appendix B Solutions to the Review Questions 895

component of the output of the nonlinear system over the amplitude
of the sinusoidal input signal.

9.11 What is the minimum-time-control strategy for a satellite attitude
control with bounded controls?
Bang-bang.

9.12 How are the two Lyapunov methods used?
His indirect or first method is based on linearization of the equa-
tions of motion and drawing conclusions about the stability of the
nonlinear system by considering the stability of the linear approxi-
mation. In his direct or second method, the nonlinear equations are
considered directly.

Chapter 10
10.1 Why is a collocated actuator and sensor arrangement for a lightly

damped structure such as a robot arm easier to design than a
noncollocated setup?
In the collocated case, the process naturally has zeros near the
lightly damped poles, which keep the root loci in the LHP.

10.2 Why should the control engineer be involved in the design of the
process to be controlled?
In many cases, the characteristics and locations of the actuators
and sensors can have a major impact on the complexity and diffi-
culty in design of the controller. If the needs of control are included
in the process design, the final systems are often more effective
(better closed-loop performance) and less expensive.

10.3 Give examples of an actuator and a sensor for the following
control problems:

(a) Attitude control of a geosynchronous communication satel-
lite
Actuators: Cold gas-jet thrusters, momentum wheels, magnetic
torquers (coils, torque rod), plasma thruster
Sensors: Earth sensor (roll, pitch), digital integrated rate
assembly (DIRA) gyro (for rates), star tracker

(b) Pitch control of a Boeing 747 airliner
Actuators: Elevator
Sensors: Pitch rate and/or pitch angle is measured using a gyro
or a ring-laser gyro

(c) Pitch control of a quadcopter:
Actuators: the #1 and #3 rotor motors as defined by Fig. 2.14
Sensor: usually a gyro measuring the angular motion about
the y-axis

(d) Fuel–air ratio control of a spark-ignited automobile engine
Actuators: Fuel injection



main_1 — 2019/2/5 — 11:31 — page 896 — #17

896 Appendix B Solutions to the Review Questions

Sensors: Zirconium oxide sensor
(e) Position control for an arm of a robot used to paint automo-

biles
Actuators: Hydraulic actuators or electric motors
Sensors: Encoders to measure arm rotations, pressure sensors,
and force sensors

(f) Heading control of a ship
Actuators: Rudder
Sensors: Gyrocompass

(g) Attitude control of a helicopter
Actuators: Moving swash plate (either via direct link or servo)
rotates main blade angle of attack
Sensors: Same as aircraft (pitot tube, accelerometers, rate
gyros)
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Matlab function
(.m file) or Variable Description Page (s)

\ Backslash or left matrix divide 600, 601
A(:) Vectorize matrix A
allmargin All stability margins and crossover

frequencies
abs Absolute value
acker Ackermann’s formula for pole placement 515, 523, 536, 540
angle Phase angle
ans Most recent answer
atan Inverse tangent
atan2 Four quadrant inverse tangent
atan2d Four quadrant inverse tangent, result in

degrees
axis Control axis scaling 313, 314, 358, 389
bilin Bilinear transform
bode Bode frequency response 124, 358, 373, 443
bodemag Bode magnitude frequency response
break Terminate execution of WHILE or FOR

loop
c2d Continuous-to-discrete conversion 649, 652, 672
canon State-space canonical forms 502
clear Clear variables and functions
clc Clear command window
clf Clear current figure
close Close figure
close all Close all figures
colon(:) Create vector of indices or reshape

matrices
63

conj Complex conjugate
conv Polynomial multiplication 134, 875, 877
cos Cosine
cross Cross product of the vectors
ctrb Controllability matrix
ctrbf Staircase canonical form, controllability 619
damp Damping and natural frequency 673
dcgain Computes DC gain of LTI system
deconv Division of polynomials

897
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Matlab function
(.m file) or Variable Description Page (s)

delete Delete file or graphics object
det Determinant of a matrix
diag Diagonal matrix, diagonals of a matrix
diary Save text of Matlab session
disp Displays the array
dlyap Solution to discrete-time Lyapunov

equation
dot Vector dot product
dstep Step response of a discrete system
d2c Discrete to continuous-time model
eig Eigenvalues and eigenvectors 501, 502, 891
eigs Find a few eigenvalues and eigenvectors
eps Precision parameter
eval Execute string with Matlab expression
exp Exponential
expm Matrix exponential
eye Identity matrix
ezplot Easy to use function plotter 182
feedback Feedback connection of two systems 150, 305, 318
feval Execute the specified function
figure Create figure window
figure(i) Make i the current figure, or create

figure i
find Find indices of nonzero elements
format Set output format
freqresp Frequency response of LTI systems
function Add new function 801
gensig Generate signals
gram Controllability/observability Gramian
grid Grid lines 305, 313, 314, 315
gtext Place text with mouse
help Display help text in Command Window
hold Hold current hold, toggles hold state
i

√−1
ilaplace Inverse Laplace transform 872, 876, 877
imag Complex imaginary part
impulse Impulse response of LTI system 154, 158, 170, 537
impulseplot Plot impulse response and return handle
inf Infinity
input Prompt for user input
initial Initial-condition response of state-space

system
537, 543

inv Matrix inverse 501, 502
j

√−1 523, 553, 555, 787
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Matlab function
(.m file) or Variable Description Page (s)

kron Kronecker tensor product 586
laplace Laplace transform 868, 869, 874
length Length of vector
linmod Linearization 688
linmod2 Linearization (advanced) 688
line Create a line
linspace Create linearly spaced vector
load Load in workspace variables
log Natural logarithm
log10 Logarithm to the base 10
loglog Log-log plot 124, 358, 373, 417
logspace Create logarithmically spaced vector 124, 358, 596
lqe Linear Quadratic Estimator design 596, 827
lqr Linear Quadratic Regulator design 531, 596, 827
lqry Linear Quadratic Regulator design with

output weighting
lsim Simulation of LTI system with arbitrary

input
143, 144

ltiview Opens the LTI viewer GUI
ltru Loop transfer recovery (LTR) 597
ltry Loop transfer recovery (LTR) 597
lyap Solution to continuous-time Lyapunov

equation
margin Gain and phase margins 417, 462, 596
max Largest component 443
mean Average or mean value
median Median value
min Smallest component
minreal Minimal realization of a system
nan Not-a-number
ngrid Nichol’s chart grid
nichols Nichol’s chart 447
norm Matrix or vector norm
nyquist Nyquist plot 385, 389, 392
obsv Observability matrix
obsvf Staircase canonical form, observability 619
ones Array of ones 143, 144
ord2 Generate continuous second-order

system
ode23 Solution to nonstiff differential

equations
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Matlab function
(.m file) or Variable Description Page (s)

ode45 Solution to nonstiff differential
equations

pade Pade approximation for time delay
parallel Parallel connection of two LTI

systems
150

pause Wait for user response
place Pole placement 517, 553, 556, 559, 578
pi 3.141592653589793 143, 144
pid Create a PID controller in parallel

form
pidstd Create a PID controller in standard

form
pidtune Designs a PID controller
pidTuner PID Tuner app 241
plot Plot function 63, 141, 143, 144
pole Poles of LTI system
poly Form polynomial from its roots 138
polyfit Fit polynomial to data
polyval Evaluate polynomial
prescale Optimal scaling of state-space

models
print Print figure or model
printsys Print system in pretty format
pzmap Pole-zero map 152
rand Uniformly distributed random

numbers
randn Normally distributed random

numbers
rank Matrix rank
readtable Create a table by reading from a file
real Complex real part
reshape Reshape array
residue Residues in partial fraction

expansion
134, 138, 875, 877

return Return to invoking function
rlocfind Find root-locus gain 298, 464
rlocus Root locus 284, 289, 291, 292
rlocusplot Plot root locus and return handle
sisotool Opens sisotool for root-locus design 294
roots Roots of a polynomial 179, 180, 182, 507, 517
save Save workspace variables
semilogx Semi-log plot 124, 358, 373, 417, 596
semilogy Semi-log plot
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Matlab function
(.m file) or Variable Description Page (s)

series Series connection of two LTI systems 150, 596, 672, 673
sgrid s-plane grid lines
shg Show graph window
sign Signum function
sin Sine
sim Simulate a Simulink model
sisotool SISO design tool 294
size Size of an array
sort Sort in ascending or descending order
sprintf Write formatted data to string
sqrt Square root 578
squeeze Remove singleton dimensions 124, 358, 373, 417
std Standard deviation
ss2tf State space to transfer function

conversion
490, 504, 507, 783

ss2zp State space to pole-zero conversion 490
ss Conversion to state space 485, 502, 506, 507, 595
ssdata Create a state space model 502
std Standard deviation
step Step response 50, 63, 141, 181, 672
stepinfo Returns information on the step response
subplot Multiple plots on the same window
sum Sum of elements
svd Singular value decomposition
syms Declaration of symbolic variables 868, 869, 872, 874
table Create a table from Matlab variables
tan Tangent of argument in radians
text Text annotation
tf2ss Transfer function to state space

conversion
492

tf2zp Transfer function to pole-zero
conversion

490

tf Creation or conversion to transfer
function

50, 63, 124, 140, 141

tfdata Transfer function data
title Plot title
tzero Transmission zeros and gain for

SISO systems
506, 507

var Variance
what List Matlab-specific files in directory
who List of current variables
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Matlab function
(.m file) or Variable Description Page (s)

why Answers any question you may have
whos List of current variables, long form
xlabel x-axis label
xlim x-axis limits
xlsread Get data from an Excel spreadsheet
ylabel y-axis label
ylim y-axis limits
zero Transmission zeros and gain for SISO systems 140, 141
zeros Array of zeros 143, 144
zgrid z-plane grid lines
zlabel z-axis label
zlim z-axis limits
zpk Zero-pole-gain
zp2ss Zero-pole to state-space conversion
zp2tf Zero-pole to transfer function conversion
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A
Abscissa of convergence, 865
Ackermann’s formula

in estimator form, 539
pole placement, 514
undamped oscillator,

514–515
AC motor actuators, 80
Activity, E. coli, 834–843
Actuators, 26, 755, 760, 790
AC motor, 80–81

DC motor, 78
rapid thermal processing

(RTP) system, 819–820
Actuator saturation, feedback

system with, 701
Adams prize, 37
Adaptation, biological, 839–841
Adaptive control, 728–731, 738
Additional poles effect of, 164,

172–174
Agilent Technologies, 358n1
Aircraft control, 316, 778

design procedure, 782
lateral, 781
longitudinal, 790
nonlinear equations, 778

Aircraft coordinates, 778
Aircraft response, 170
Airy, G. B., 36, 248
Aizerman’s conjecture, 733
Aliasing, 645, 661
Alternating current (AC)

induction motor, 80–81
Altimeter, 471, 790, 795
Altitude-hold autopilot,

789–795
Amplitude ratio, 123–124,

126–127
Amplitude scaling, 130, 184
Amplitude stabilization, 434
Analog computer components,

489
Analog implementation, 312
Analog prefilters, 637, 661

Analog realization, 312
Analog-to-digital (A/D)

converters, 637, 660
Analysis tools, 637, 667–668
Analytic continuation, 866
Angular velocity, 82
Anti-alias prefilters, 661–662
Anti-windup compensation for

PI controller, 703–706
Apollo, 607, 675, 844
Arbitrary zero assignment, 564
Argument principle, 379–380

application of, 380–383
Armature voltage, 79–82
Arrival angles, rule for, 282
Artificial intelligence (AI), 28
Assigned zeros, 563
Åström, Karl, 239n6, 675
Asymptotes

Angle of, 279, 280
center of, 279, 281
for negative locus, 323

Asymtotically stable Lyapunov,
723

Asynchronous sampling, 666
Athans, M., 593, 607
Attitude hold, 792
Attractant, biological,

837–839
Augmented state equations with

integral control, 611
Automatic control, 23
Automatic landing and collision

avoidance systems, 24
Automobile suspension, 51
Automotive engine, control of

fuel-air ratio in, 795–803
Automotive fuel/air ratio,

control of, 795–803
Autonomous estimator, 561

example, 563, 565
Autopilot design, via root locus,

316–323
via state-space, 777–795

Auxiliary variable, 511

B
Back emf voltage, 79–80
Bacteria, 834–837
Bacterial chemotaxis, 837
Ball levitator, 689
Band center, 154n10
Band reject filter, 764
Bandwidth, 71, 360
Bang-bang control, 721–723
Barkai, N., 837
Barometric altimeter, 790
Battin, Dick, 675, 844
Bell, Alexander Graham, 363n3
Bell Laboratories, 363
Bellman, R., 39
Berg, H., 835
Bertram, J. E., 686, 728, 737
BIBO stability, 174
Bilateral Laplace transforms,

866n1
Bilinear approximation, 648
Binary fission, 835
Biological systems, 834,

843–845
Black, H. S., 37, 249, 450
Block diagram, 26–29, 145–148
Blocking zeros, 580
Bode, H.W., 37–39, 123, 249,

362, 450
Bode plots, 124, 354–359

for nonminimum phase, 374
plotting techniques, 362–373

Bode’s gain-phase relationship,
402–407

Boeing 769, lateral and
longitudinal control of a,
777–795

altitude-hold autopilot,
789–795

equations of motion, 777–778
linearized longitudinal motion

equations, 780
stability augmentation, 778
yaw damper, 782–789

912
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Bounded input-bounded
output(BIBO) stability,
174–175

Boyd, S. P., 597
Brahe, Tycho, 96
Breakaway points, 275, 292–293
Break-in point, 275
Break point, 275
Bremmer, H, 128
Brennan, Richard P., 95
Bridged tee circuit, 73
Bristol company, The, 248–249
Bryson, A. E., 530, 585, 607,

710, 778
Bryson’s rule, 530
Butterworth configuration, 594

C
Campbell, G. A., 128
Cancellations, transfer

function, 139
Canonical forms, 491–493

Control, 491
Modal, 493
Observer, 497

Capacitor, 175
Carburetor, 795, 797, 844
Cascaded tanks, 629
Case studies

automotive fuel/air ratio,
control of, 795–803

Boeing 769, control of a,
777–795

E. coli chemotaxis, 833–843
Quadrotor drone, 803–819
RTP systems in

semiconductor wafer
manufacturing, 819–833

Satellite attitude control,
759–777

Catalytic converter, 796
Cauchy’s Principle of the

Argument, 379n8
Centrifugal governor. See

Fly-ball governor
Centrifugal-pendulum

governor, 37
Characteristic equation, 505
Cheap control, 532–533
Chemotaxis dynamics, 833–843
Chemotaxis model, 837–839

Circle criterion, 731–737
Circuit with a current source,

equations for a, 73–74
Classical control, 39
Clegg integrator, 746
Closed-loop control, 23, 41
Closed-loop cruise control, 31
Closed-loop estimator, 769
Closed-loop

frequency-response, 407–408
Closed loop stability, frequency

response determination, 376
Closed-loop system with sensor

dynamics, 221
Closed-loop transfer function,

182, 223, 376
Closed-loop zero of the system,

183, 521, 564
Collocated actuator, 58, 772
Collocated sensor, 58, 772
Command tracking, 32
Communication satellite, 680
Companion form matrix, 513
Compensated open-loop

transfer function, 405
Compensation design using

frequency response, 409–443
design considerations,

433–435
amplitude or gain

stabilization, 434
Bode plot, 442
complementary sensitivity

function, 439
performance frequency,

437
phase stabilization, 435
stability robustness, 436,

440, 441–443
in terms of the sensitivity

function, 435–437,
440–443

uncertainty in a plant
model, 440–441

vector margin (VM), 442
water bed effect, 442

lag compensation, 420–422
for DC motor, 424–426
for temperature control

system, 422–423
lead compensation, 410–412

for DC motor, 412–416

for temperature control
system, 416–418

for a type 23
servomechanism
system, 419–420

lead–lag compensator, 427
PD compensation, 409–410
PID compensation, 426

proportional-integral (PI)
compensation, 420

for spacecraft attitude
control, 427–433

state-space control design,
508

Complementary sensitivity
function, 215, 583, 593

Complete transient response,
127

Complex margin, 394
Complex mechanical systems,

68
Complex zeros, 169–170

Bode plot of, 372–373
Computed torque, 684, 687, 693
Computer, digital control,

662–663
Computer-aided Bode plot for

complex poles and zeros,
373

Computer-aided control design
software, 41

Computer aids, 41
Conditionally stable

compensator design,
552–554

Conditionally stable systems,
400, 697, 713–715

Constant closed loop
magnitude, contours of, 446

Continuation locus, 283
Continuity relation, 88
Contour evaluation, 379
Control canonical form, 491
Control, basic equations of

advantage of feedback, 215
closed-loop system, 210
derivative control (D), 229
feedforward control by plant

model inversion, 244–246
fundamental relationship of

feedback systems, 215
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Control (continued)
historical perspectives,

247–249
integral control (I), 226–229
open-loop system, 210
proportional control (P),

224–226
proportional plus integral (PI)

control, 229–230
proportional plus integral

plus derivative (PID)
control, 233–235

regulation, 213
sensitivity, 214–216
stability, 211–212
steady-state feedback gain,

214
tracking, 212–213
Ziegler–Nichols tuning of

PID controller, 238–243
Control characteristic equation,

510
Controllability, 496
Controller equations, 561
Control responses of analog

and digital implementations,
653, 656

Control theory and practice,247
Convolution, 117–118,

131–132, 872–873
integral, 117–118
response by, 113–118

Copernicus, Nicholas, 96
Corner frequencies, 411
Cosine signal derivative, 871
Cost function, 533, 756
Cover-up method of

determining coefficients, 133
Cramer’s rule, 54
Crossover frequency, 395

cross over at -23, 441
Cruise control model, 48–51
Cruise control step response,

484–485
Cruise control transfer function

using Matlab, 140

D
D/A converters, 639
Dakota autopilot, 316–323
Damped natural frequency, 154

Damping ratio, 154, 171
Damping response in digital

versus continuous design,
672–674

DC gain of a system, 647
DC gain of transfer function,

646
DC servo system, compensator

design for, 552–559
full-order compensator design

for, 552–554
in observer canonical form,

552
redesign of, 556–558
with reduced-order estimator,

555–556
second-order pole locations,

556–557
using SRL technique, 556–558

Decay ratio, 239–240
Decibel, 363
Delayed sinusoidal signal,

869–870
Demethylation, 839–840
Departure angles, root locus

design for, 293
Derivative, discrete control

laws, 669
Discrete-time domain, 636
Diophantine equation, 599
Derivative control (D), 229

Discrete, 669–670
Derivative feedback, 229
Derivative gain, 229
Describing functions, 706–716

conditionally stable system,
713–715

definition, 707
for hysteresis nonlinearity,

711–712
for a relay nonlinearity, 709
for saturation nonlinearity,

708–709
sizing the actuator, 706
stability analysis using,

712–716
Design criterion for space craft

attitude control, 404–407
Design synthesis, 161
Desired gain, graphical

calculation of, 286
Desoer, C. A., 607

Detroit Edison Company, 248
Differentiation, 131, 871
Digital autopilot, 675, 844
Digital control, 636–676
Digital-to-analog (D/A)

converter, 639, 660–661
Digitization, 637–639

analog-to-digital (A/D)
converter, 637

delay due to hold operation,
639

difference equations, 637
digital-to-analog (D/A)

converter, 639
discrete equivalents, 639
free running, 638
interrupt, 638
sampled data system, 638

Diophantine equation, 599
Dirac, Paul, 116
Direct current (DC) motor, 78

actuators, 78
gain of a system, 135–136
modeling, 79–82
position control, 222–223
reference input with, 520–521
shaft’s rotational velocity, 79
sketch of, 79
transfer function, 80–81,

141–142
with unity feedback, 222

Direct design with rational
transfer functions, 598–601

Direct transfer function
formulation, 598

Direct transmission term, 483
Discrete control laws, 669
Discrete controller, 647, 650,

666
Discrete design, 639

analysis tools, 667
damping and step response in

digital versus continuous
design, 672–674

discrete root locus, 668
exact discrete equivalent, 667
example, 670–672
feedback properties, 668–669

Discrete equivalents, 639, 647
Matched Pole-Zero, 653, 657
Tustin’s (bilinear) method, 647
ZOH method, 651
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Discrete root locus, 668
Discrete signals, 637
Discrete systems

design by discrete
equivalents(emulation), 647

applicability limits, 659
bilinear approximation,

648
comparison of digital

approximation
methods, 658–659

matched pole–zero (MPZ)
method, 653–657

modified matched
pole–zero(MMPZ)
method, 657

Tustin’s method, 647–651
zero-order hold (ZOH)

method, 651–653
hardware characteristics

analog-to-digital (A/D)
converters, 660

anti-alias prefilters,
661–662

computer, 663–664
digital-to-analog

converters, 660–661
historical perspective, 674–675
long division, for inversion,

641–643
relationship between s and z,

643–645
sample-rate selection

anti-alias prefilter, effect of,
665–666

asynchronous sampling,
666

disturbance rejection, 665
tracking effectiveness, 665
z-transform, 640–642
z-transform inversion,

641–643
Discrete transfer function, 641
Distinct real roots, 133–134
Distributed parameter systems,

68–70
Disturbance error transfer

function, 223
Disturbance input, 227
Disturbance rejection, 32

sinusoidal, 576–582

Disturbance-to-error transfer
function, 222

Disturbance to the process, 25
Divide and conquer state space

design, 482
Dominant second order poles,

522–524
Double-integrator plant, 56
Double pendulum, 100
Double precision, 663
Doyle, J. C., 592–593
Drebbel, Cornelis, 34
Drebbel’s incubator, 34
Drones, xiii, 58, 100, 312, 350,

470, 803–819, 863–864
Hexacopter, 102–103

Duality of estimation and
control, 539

Duality relationships, 539–540
Duffing’s equation, 750
Dutch roll, 783
Dutch roll yaw damper, 473
Dynamic equations, 47
Dynamic response

amplitude and time scaling,
184

effects of zeros and additional
poles, 164–173

historical perspective, 184–185
pole locations, effect of,

150–158
stability, 174–184
state equations, 482–488
time-domain specifications,

159–163
Dynamic system with

saturation, 495

E
E. coli, 834
E. coli genome, 835
E. coli motion, 840
Effect of zero using Matlab,

150, 164, 168
Eigenvalues, 499, 502
Eigenvector, 499
Eigenvector/eigenvalue

problem, 499
Eigenvectors, 499
Einstein, Albert, 97

Electric circuits, models of,
71–76

Electric power line conductor,
206

Electromagnet, 77
Electromechanical systems,

dynamic models of, 78–82
Electromechanical systems,

models of
gears, 82–83
loudspeakers, 76–78
motors, 78–82

Electronic feedback amplifier,
37

Emulation design, 647
Bilinear, Tustins, 648
MPZ, 653, 657
EPROM, 663
ZOH, 651

Equations for a circuit with a
current source, 73–74

Equations of motion for rigid
bodies, 70–71

Equilibrium, 681, 683
Equivalent gain analysis

using frequency response,
706–712

using root locus, 694–700
Errors

constants, 217, 220
in equations for systems, 53
as a function of system type,

219
in output speed, 30

Error space, 573
Escherichia coli chemotaxis, 837

chemotaxis signal pathway,
838

exact adaptation, 839
importance of, 837–838
ligands, 837
model, 840–843

Estimator design, 534–546
Estimator equations, 535, 541,

571
Estimator error characteristic

equation, 535
Estimator errors

closed-loop matrix for the
third-order case, 538

equation, 544, 561–562



main_1 — 2019/2/5 — 11:40 — page 916 — #5

916 Index

Estimator mode controllability,
568

Estimator/observer, 508
Estimator pole selection,

544–546
Estimator SRL equation, 545
Euler’s relation, 122
Evans, W. R., 38, 270, 331
Evans form of characteristic

equation, 272
Evans method, 331
Exact adaptation of activity,

839
Exact discrete equivalent, 651,

667
Excitation-Inhibition Model,

860–861
Expensive control, 531–532
Experimental models, 184
Exponentially decaying

sinusoid, 870
Exponential order, Laplace

transforms, 866
Extra pole, effect of, 172

F
Factored zero-pole form, 138
Faraday, Michael, 96–97
Fast poles, 153
Feedback, first analysis of,

28–32
Feedback control, 24
Feedback law with integral

control, 572
Feedback loop, 451, 512, 538,

650
Feedback output error to state

estimate equation, 535
Feedback scheme for autopilot

design, 317
Feedback structure, 209–210,

220
Feedback system for testing

stability, 179
Feedback system fundamentals,

32–33
Feedforward, 24
Feedforward control by plant

for DC motor, 244–246
model inversion, 244–246

Fibonacci numbers, 678

Final value theorem, 134–136,
171, 228, 878–879

for discrete systems, 645–647
incorrect use of, 135

Finite zeros, 139, 161, 173
First order system

impulse response, 151
SRL for, 526
step response, 151–152

First-order system response,
151

step response, 162
First order term, 365
Fixed point arithmetic, 664
Flagellum, 835, 838
Flexible robot arm, 70
Flexible satellite, 57
Fluid flow models, 83–95
Fluid flow rate, control of, 33
Fly-ball governor, 35

action of, 35–36
operating parts of a, 36

Fly-by-wire, 844
Folding, 645

and s-plane, 645
Forced differential equations

solution, 137
Force equilibrium, 88
Fourier, 112, 125, 185
Fourth-order partial differential

equation, 68
Fourth order system in modal

canonical form, 494
Foxboro Company, 248
Franklin, G. F., 607, 636, 644
Fraser, Don, 675, 844
Free-body diagram for cruise

control, 49
satellite control, 58

Free running, 638
Frequency response, 354–451

Bode plot techniques, 362–373
advantages, 363
for complex poles and

zeros, 371–372
composite curve, 367
computer-aided, 373
peak amplitude, 367
for real poles and zeros,

369–370
Bode’s gain-phase

relationship, 402–407

break points, 365
of a capacitor, 357

closed-loop
frequency-response,

407–408
compensation, 408–443
equivalent gain analysis using,

706–716
experimental, 358
frequency-response plot, 356
historical perspective, 450–451
of lag–lead compensation, 567
of lead compensator, 357–359
LTR design, 592
magnitude, 356, 366
neutral stability, 376–378
nonminimum phase, 374

steady-state errors, 374
velocity-error coefficient,

375
Nyquist stability criterion,

379–393
open-loop

frequency-response, 395
partial-fraction expansion,

355
phase, 356, 366
plot vs. time, 356
presentation

inverse Nyquist diagram,
450

Nichols chart, 445–450
resonant peak versus phase

margin, 398
spacecraft attitude-control

problem, 404–407
stability margins, 393–402

from Nichols chart for
complex system,
448–450

stability specification, 449
time delay, 443–445

Frequency shift, 782
Fuel-air ratio control, 795, 847
Fuel injection, 797
Fuller, 35, 36
Full-order estimator, 534–540

G
Gain margin (GM), 394
Gain phase relationship, 402
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Gain stabilization, 310
Galilei, Galileo, 96
Gears, 82–83
Golden Nugget airlines, 349,

473
Gyroscope, 782

H
Halley, Edmond, 95
Hanging crane, 65–68
Hardware characteristics of

discrete systems
analog-to-digital (A/D)

converters, 660
anti-alias prefilters, 661–662
computer, 662–663

central processor
unit(CPU), 662

DSP chips, 663
programmable read-only

memory (EPROM) or
flash memory, 663

random-access
memory(RAM), 663

read-only memory (ROM),
662–663

digital-to-analog converters,
660–661

Heat and fluid-flow models
heat flow, 84–88
incompressible fluid flow,

88–95
Heat exchanger

closed-loop Simulink
diagram, 604–605

control effort for, 606
design with pure time delay,

602–605
root locus for a, 606
tuning of, 241–243

Heaviside, Oliver, 184
operational calculus for

solving differential
equations, 184

Helicopter near hover, 340,
626

Hessenberg matrix, 618
Hexacopter, 102–103
High frequency plant

uncertainty, 434

Homogeneous differential
equation, 136–137

Hot air balloon, 851–853
Huygens, Christiaan, 36
Hydraulic actuators, 92–95

equations of motion, 92–95
linearization and

simplification equations,
94–95

Hydraulic piston, 89–90
Hysteresis nonlinearity,

715–716

I
Ideal op-amp, 74
Impulse, 116, 154
Impulse response, 154–155
Impulse signal, 116
Incompressible fluid flow,

88–95
Inertial acceleration, 48
Inertial reference frame, 48
Initial value theorem, 877–878
Inner-loop design, 791
Input filter, 28
Instrument Landing

System(ILS), 32
Integral control (I), 226–229
Discrete, 669
Integral feedback, 226–229
Integrator, 75–76
Integrator anti windup circuit,

701–706
feedback system, 701–702
for a PI controller, 703–706
purpose of, 702

Internal model principle, 577
Internal stability, 176
Interrupt, 638
Inverse Laplace transform, 121,

126, 168
by partial-fraction expansion,

132–134, 874–877
Inverse nonlinearity, 687, 693
Inverse Nyquist diagram, 450
Inverse transform, 125
Inverted pendulum, 67

J
James, H. M., 674

K
Kalman, R. E., 39
Kalman Filter (LQF), 607
Kendall, David, 248
Kepler, Johannes, 96
Keynes, John Maynard, 96
Khalil, H., 707
Kharitonov Theorem, 183–184
Kirchhoff’s current law (KCL),

72–73
Kirchhoff’s voltage law (KVL),

72, 122
Kuo, B., 81

L
Lag compensation, 301,

307–309, 569
Lamp nonlinearity, 831
Laplace, Pierre-Simon, 184–185
Laplace transform, 48, 118,

355, 567, 642–643
convolution, 131–132,

872–873
of cosine signal, 871
delayed sinusoidal signal, 869
derivative of a signal, 871
final value theorem, 134–136
of the impulse response, 119
of the input, 121
of integral of a time function,

131, 871
inverse, 125, 126
key property of, 125
L-, 128, 866
multiplication by time, 132
one-sided (or unilateral), 128
principle of superposition,

130, 867
procedure for determining,125
properties of, 130–132,

867–875
ramp response of a first-order

system, 873
shift in frequency, 131, 869
of a signal f (t), 124
of sinusoid function, 129–130
to solve differential equations,

136–138
of step and ramp functions,

129
table of, 867
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Laplace transform (continued)
time delay, 130, 868
time product, 132, 872

of sinusoidal signal,
874–875

time scaling, 131, 868–869
two-sided, 128
of unit-impulse function, 129
of y(t) and u(t), 124

Law of generators, 78
Law of motors, 76
Lead compensation, 301–307,

410–420
circuit of, 312

Lead–lag compensator, 427
Lead ratio, 412
Least common multiple, 590
Ligands, 837
Limit cycle, 699
Linear analysis methods, 63
Linear closed-loop RTP

response for robust servo
mechanism controller, 829

Linearization, 687, 755
by inverse nonlinearities, 693
of motion in a ball levitator,

689–691
by nonlinear feedback,

692–693
of nonlinear pendulum,

688–689, 693
of rapid thermal

processing(RTP) system,
693–694

by small-signal analysis,
687–688

of water tank revisited,
691–692

Linear models of aircraft
motion, 783, 790

Linear Quadratic
Gaussian(LQG) problem,
607

Linear quadratic regulator
(LQR)

design, 524, 530–533
limiting behavior of regulator

poles, 531–533
robustness properties, 533

Linear system analysis, 139–145
cruise control transfer

function, 140

DC motor transfer function,
141–142

satellite transfer function,
143–145

Linear time-invariant
systems(LTIs), 112, 116,
125, 127

stability of, 175–176
Liquid-level control, 33
Loop gain, 32
Loop transfer recovery (LTR),

592–598
frequency response plots for,

596
for nonminimum-phase

systems, 594
plant inversion, 594
for satellite system, 595–598
Simulink block diagram for,

597
use of, 593

Loudspeakers, 76–77
with circuits, 78
equations of motion, 77–78
geometry for a, 77

LTR, 592–594
Luenberger, D. G., 607
Lumped parameter model, 70
Lyapunov, A. M., 37–38, 685,

737
Lyapunov function, 686
Lyapunov stability analysis,

723–731

M
Magnetic ball levitator, 689
Magnetic levitation, 343,

689–691
Magnitude

frequency response, 123, 356
Magnitude condition, 285
Magnitude plot, 124

gain and phase margin,
394–395

transfer function classes, 364
M and N circles, 446
Manual control, 23
Mason’s rule, 150, 512
Matched pole–zero (MPZ)

method, 653–657
Mathematical model, 29, 46

of dynamic response of a
system, 33

Matlab, xiii, xiv, 41, 123
aircraft response using, 170
computing roots, 180
dynamics of a system, 62–63
impulse response by, 158
linear system analysis,

139–145
cruise control transfer

function, 140
DC motor transfer

function, 141–142
satellite transfer function,

143–145
pidTuner, 241
sisotool, 294–295

transformations using,
142–143

Matlab commands, 897–902
a\b, 600–601
acker, 514, 540
axis, 389, 392
bode, 123–124, 417, 596
canon, 502
eig, 499
ezplot, 182
feedback, 150, 318
impulse, 154, 537, 543
initial, 537, 543
inv, 501–502
linmod, 688
linmod2, 688
loglog, 124, 358
logspace, 417
lqe, 596
lqr, 530, 596
lsim, 143
margin, 596
max, 443
nichols, 447
nyquist, 385, 388, 392
ones, 143
parallel, 150
pidTuner, 241
place, 517, 540
plot, 63, 143
poly, 138
pzmap, 152
residue, 134
rlocfind, 464
rlocus, 284, 289–293
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roots, 182, 507
semilogx, 124, 358, 373, 417
series, 150
sisotool, 294–295
sqrt, 578
ss, 502, 507
ssdata, 502
ss2tf, 504, 507
ss2zp, 490
step, 50, 62
tf, 141, 143, 154
tf2ss, 492
tf2zp, 490
tzero, 507

Matlab’s algorithm, 241
Matlab’s PID Tuner App, 241
Matrix fraction descriptions

(MFDs), 607
Maxwell, James Clerk, 36–37,

97, 248
Mayr, O., 33–34
Mechanical systems

combined rotation and
translation, 65–68

rotational motion, 54–65
flexible satellite attitude

control, 57–58
quadrotor drone, 58–61
satellite attitude control,

54–57
simple pendulum, 61–66

translational motion, 47–54
cruise-control model,

48–51
quarter-car model, 51–54

Méchanique céleste(Celestial
Mechanics), 184

Mello, B. A., 839
Memoryless nonlinearity, 694
Method of computed torque,

687
Microphone, 107
Minimum phase systems and

Bode plot, 374
MIT rule, 728
Modal canonical form, 493–497
Model, 29
Model-following design, 585
Modern control, 39
Modes of the system, 139

Modified matched
pole–zero(MMPZ) method,
657

Moler, Cleve, 333
Monic polynomial, 272, 599
Motors, 76–82

AC, 80
DC, 78–80

N
Napoleon, 184
Natural frequency of system,

504
Natural mode of system, 504
N circles, 446
Natural response of the system,

151
Negative feedback, 146
Negative root locus, 277,

323–326
Neutrally stable, 176, 240
Newton, Isaac, 95–96
Newton’s laws of motion, 70

free-body diagram, 49
history, 95
rotational motion, 54
third law, 60
translational motion, 47

Nichols, N. B., 248, 447, 674
Nichols plot, 398, 445–450
Node analysis, 72
Non-causal system, 118
Noncollocated system, 297
Nonlinear radiation heat

transfer, 824
Nonlinear aircraft equations of

motion, 778–779
Nonlinear automobile exhaust

sensor, 797
Nonlinear systems

changing overshoot and
saturation nonlinearity,
695–696

circle criterion, 731–737
describing functions, 706–716
historical perspective, 737–738
hysteresis nonlinearity,

715–716
integrator anti windup circuit,

701–706

Lyapunov stability analysis,
723–731

need to study, 685
nonlinear characteristics, 687
nonlinear elements, 695

Nonminimum-phase zero, 167
Nonminimum-phase

compensator, 555
Nonminimum phase systems

Bode plot, 375
LTR, 593

Notch compensation, 301,
310–312, 700

Notch filter, 764–770
pole–zero pattern, 766

Nyquist, H., 38, 451
Nyquist frequency, 645
Nyquist rate, 661
Nyquist’s frequency-response

stability test, 174
Nyquist–Shannon sampling

theorem, 661
Nyquist stability criterion,

379–393
Nyquist Plot

for an open-loop unstable
system, 389–392

hysteresis nonlinearity, 711
for LQR design, 528
for a system with multiple

crossover frequencies,
400–402

for a second-order system,
383–386

for a third-order system,
386–389

O
Observability, 539
Observability matrix, 539
Observer canonical form,

497–498, 538
One-sided (or unilateral)

Laplace transform, 128
Op-amp integrator, 76
Op-amp summer, 75
Open-loop control system, 23,

30
Operational amplifier, 74
Optimal control, 522, 524
Optimal design, 756
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Ordinary differential
equations(ODEs), 39, 150

Oscillatory time response,
157–158

Output matrix, 483
Overshoot, 159–161

versus damping ratio for the
second-order system, 161

P
Padé approximant, 331, 603
Papermaking machine, 43
Parseval’s theorem, 873
Partial-fraction expansion,

132–134, 176, 355
using cover-up method, 133

Peak amplitude, 367
Peak time, 159–160
Pendulum, 61–66

control law, 510–511
moment of inertia, 61
reduced-order estimator for,

542–544
Simulink numerical

simulation, 64
transfer function, 62

Phase
condition, 277
Frequency response, 123
margin (PM), 394, 398
Plot, 124
stabilization, 310, 434

Phillips, R. S., 674
Philosophiæ Naturalis Principia

Mathematica, 95–96
Phugoid mode, 791
PI control, 232–233
PID, 38, 233, 426

tuning, 241
Piper Dakota, 316–323, 507
Plant, 27
Plant inversion, 594
Plant uncertainty, 434
Poincaré, 737
Pole assignment, 552–554, 557,

599
Pole locations for a system,

150–158
Poles of a system, 132, 138–139
Pole–zero patterns on dynamic

response, 173–174

Pontryagin, L. S., 39
Position error constant, 218,

374
Positive feedback, 146
Positive root locus, 277–287
Power db, 363
Principle of superposition, 113,

130
Process noise, 545
Process reaction curve, 238
Proportional control (P),

224–226
Proportional feedback, 224
Proportional gain, 224
Proportional-integral-

derivative(PID) control, 38,
233–238, 426, 762–770

for a DC motor position
control, 235–236

of motor speed, 235–236
Ziegler–Nichols tuning of,

238–244
Proportional-integral (PI)

control, 181, 229–233
thermal system, 230–233

Prototype testing, 757
Proximate Time Optimal

Servo(PTOS), 722–723
Pure time delay, 602–606
Pyrometers, 821

Q
Q parametrization, 607
Quadcopter, 58–61, 100
Quadrotor Drone, xiii

actuators, 805
linear model, 805–809
optimal design, 815–819
PID controller, single axis, 810
Problems, 100, 350, 470,

863–864
process understanding, 804
root locus design, 312–316
rotational motion, 58–61
sensor selection, 804–805
state-space model, 815
24-D motion, horizontal

plane, 813–815
Quality factor, 458
Quarter-car model, 51–54
Quarter decay ratio, 239–242

R
Ragazzini, J. R., 674
Ramp function, 171, 216–217
Rapid thermal processing

(RTP) system
actuators, 824
block diagram of, 823
closed-loop system equations,

827–828
demands on an, 819–820
design of, 822–823
design with nonlinearities,

829–831
feedback gain matrix

computed from Matlab, 827
generic, 822
laboratory model, 823
lamp geometries of, 822
lamp nonlinearity, 829–830
linear closed-loop RTP

response for PI controller,
826

linear model, 824–825
optimal design, 826
performance specifications,

823–824
sensors, 824
Simulink block diagram,

828–829
temperature control, 832
temperature non uniformity,

826–827
temperature trajectory, 821,

829
Reduced-order estimator,

540–544
Reference input, 25

with full-state feedback,
518–522

control equation, 518
direct current (DC) motor,

520–522
gain calculation, 518
general structure, 561–570

Regulators, 23
Relay nonlinearity, 709
Reset control, 701
Reset windup, 701
Resonant frequency, 446
Ring-laser gyroscope, 782
Rise time, 159–160
Robot, 102
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Robustness, 32
of integral control, 228
of system type, 220

Robust tracking, 571–592
Robustness constraints,

441–443
Roll mode, 783
Room temperature control

system, component block
diagram of a, 26

Root locus, 39, 270, 762, 774,
776

analog and digital
implementations, 312

analysis and design of system
with limit cycle using,
698–701

arrival angles, rule for, 282
asymptote angles, 279–280
asymptotes, 279–280
basic feedback system,

271–276
for combined controller and

estimator, 550
compensation design, 301–312
complex multiple roots,

299–300
continuation locus, 283
departure angles, rule for, 282
design examples, 312–323
equivalent gain analysis using,

694–705
Evans, 272
guidelines for determining,

276–287
historical perspective, 39,

331–333
magnitude condition, 285–286
negative or 0◦, 277, 323–326
for noncollocated flexibility,

297–299
parameter selection, 285–287
phase condition, 277
positive or 180◦, 277–287
for satellite control with

collocated flexibility,
295–297

stability of conditionally
stable system, 696–697

time delays, 331
using lag compensation,

307–309

using lead compensation,
302–307

using notch compensation,
310–312

using two parameters in
succession, 326–328

Root-locus form, 273
Root-mean-square (RMS)

value of the control, 597
Rosenbrock, H. H., 607
Rotational motion, 54
Routh, E. J., 37, 451, 727
Routh method, 177–184, 727
RTP linear model, 824–825
Rudder, 778
Run-to-run control, 859

S
Saberi, A., 593
Safonov, M., 607
Sample and Hold devices, 661
Sampled data system, 638
Sample period, 637
Sample rate, 637
Sample rate selection, 639
Sastry, S. S., 728
Satellite attitude control, 54–57,

236–238
design of, 759–776
historical perspective, 843–844
loop transfer recovery (LTR),

595–597
matched pole–zero (MPZ)

method, 653–657
root locus, 288–297

with collocated flexibility,
295–297

PD control, 288–291
state-space control design,

549–552
in state-variable form,

483–484
symmetric root locus(SRL)

design, 526–528
Saturation nonlinearity,

695–696
Scaling, 184
Schmitt trigger circuit, 710–711
Schmitz, E., 70
Segway, 68
Sensitivity function, 215

time response to parameter
changes, 247

Sensor noise, 545
Sensors

collocated, 772
rapid thermal processing

(RTP) system, 824
selection and placement, 27,

754
Servomechanisms, 38
Servo systems, 23
Setpoint, 25
Settling time, 159, 161–163
Shanghai maglev train, 691–692
Short-period modes, 791
Sign errors, 53
Simple compensation

PID/lead–lag design, 755
Simple feedback system, 25–28
Simulink, xiv, 41, 56
Simulink diagram

for the anti windup, 704–705
block diagram, 64–65
heat exchanger, 605–606
for nonlinear closed-loop RTP

system, 830–831
for RTP closed-loop control,

828, 830
simulating E. coli chemotaxis,

841
Simulink nonlinear simulation,

64–66, 704, 801, 830
Simulink simulations, 579, 597
Single-Input-Single-Output

(SISO) systems, 482
Sinusoid transform, 129–130
Sisotool, 294–295
Smith compensator, 602
Space station digital controller,

direct discrete design of,
670–672

Speed control, system type for,
219

Spiral mode, 783
Spirule, 331
s-plane, 152–158, 162–163
1/s2 plant, 56
S-shape of the step response

curve, 238
Stability, 32, 37, 151, 155,

174–184, 211–212
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Stability (continued)
analysis and design based on,

37
bang-bang control,

721–723
Maxwell’s and Routh’s

stability problem, 38
phase plane, 717–720

analysis using describing
functions, 712–716

BIBO stability, 174–175
Lyapunov stability analysis,

723–731
Lyapunov redesign of

adaptive control,
728–731

Lyapunov’s position
feedback system,
727–728

for second-order system,
726–727

necessary condition for,
176–177

Routh, 177–184
Versus parameter range,

180–181
Stability margins, 393–402

of a conditionally stable
system, 400

Star tracker, 760
State of the system, 483
State-space control design

advantages of, 480–482
analog-computer

implementation, 489–490
block diagrams, 488–490

control canonical form,
491–502

in modal canonical form,
493

normal modes of the
system, 493

compensator design
for DC servo system,

552–554
frequency-response plots,

551
poles of combined control

law and estimator,
547–548

reduced-order
compensator transfer
function, 549

regulator, 547
for satellite altitude

control, 549–552
transfer function, 548–549

direct design with rational
transfer functions, 598–602

Diophantine equation, 599
general controller in

polynomial form, 598
monic polynomials, 599
pole placements, 599–600
polynomial transfer

function model,
600–601

discrete models, 674
equations in state equations,

491–508
characteristic equation,

505
controllability matrix, 496
dynamic response from,

503–508
in modal canonical form,

493–497
observer canonical form,

497–498
of quadrotor, 815
state transformations, 495
transformation of thermal

system from control to
modal form, 500–501

estimator design approach
duality of estimation and

control, 539–540
full-order estimators,

534–536
left companion matrix, 538
observer canonical form,

538–539
reduced-order estimators,

540–544
selection of estimator pole

locations, 544–546
for simple pendulum,

436–437
SRL estimator design for a

simple pendulum, 546
extended estimator, 589–592

full-state feedback,
control-law design for,
508–522

Ackermann’s formula, 514
characteristic equation of

closed-loop system,
509–510

companion form matrix,
513

control canonical form,
511–512

control law, 508–514,
516–517

estimator/observer, 508
observer canonical form

with a zero, 516–517
reference input with,

518–521
historical perspective, 607–608
integral control, 571–572

of a motor speed system,
572–573

using error-space system,
583–585

model-following design,
585–589

for disk drive, 587–589
normal form, 481
phase plane, 481
pole-placement design

approach
comments on, 533–534
dominant second-order

poles, 522–524
linear quadratic

regulator(LQR)
design, 524, 530–531

symmetric root locus(SRL)
design, 524–533

reference input with estimator
general structure, 561–565
reduced-order estimator,

566
selecting gain, 570

robust tracking, 571–582
in state-variable form, 482

bridged tee circuit,
485–486

cruise control step
response, 484–485

DC motor, 487
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loudspeaker with circuit,
487

satellite attitude control
model, 483–484

for time-delayed system,
602–605

State-variable approach to
control theory, 37, 39

Steady-state error, 216
to polynomial inputs, 216–223

Steady-state tracking and
disturbance rejection,
222–223

of motor speed, 591–592
Steady-state tracking error,

217–227
Steady-state error, 216–223
Step-response transform, 156
Step response with Matlab,

50–51
Successive loop closure, 326
Summer, 29
Summer circuit, 75
Superposition, 113
Sylvester equation, 586
Sylvester matrix, 600
Symbols for linear circuit

elements, 71–72
Symmetric root locus (SRL)

closed-loop step response,
767

design, 524–533, 556, 756
for an inverted pendulum,

528–530
frequency response, 772
of lateral dynamics, 788
for the satellite system,

526–528
of satellite system, 771
for servo speed control, 526

SRL estimator design for a
simple pendulum, 546

System error, 28
System identification, 46
System impulse response, 155
System modeling diagrams. See

Block diagram
System stability, 174
System type for regulation and

disturbance rejection,
222–223

System type for tracking,
217–221

Systems biology, 834

T
Table leveller, 108
Tachometer feedback,

220–221
Taylor, George, 248
Temperature control, 26
Tesla, N., 80
Thermal control system, 85–86
Thermostat, 25, 27–28
Time constant, 151
Time-domain specifications

overshoot, 160–161
peak time, 160–161
rise time, 159–163
settling time, 159, 161–163

Time-delay, 443
design for, 602
magnitude and phase, 444
stability effect, 444

Time invariance, 113–117
Time-invariant systems, 116

output for a general input,
116

Time sequences associated with
z-plane, 646

Tischler, M. B., 402
Torque-speed curves for a

servomotor, 81
Torricelli, 737
Tracking, 23
Trankle, T., 348
Transfer function, 50,

53–54
for an RC circuit, 122–123
from block diagram, 147–148
Bode form, 364
of the closed-loop system,

182, 223, 376, 569
complex zeros, 169–170
DC gain of the system, 136
direct current (DC) motor,

78–80
frequency response and,

118–128
gears, 82–83
poles from state equations,

505

of a simple system using
Matlab, 149–150

thermal system, 503–504
Transfer function poles, 505
Transfer function zeros, 506
Transient response, 125–126

complex zeros, effect of, 170
settling time, 161–163
zero, effect of, 168

Transportation lag, 602
Transpose of a vector, 483
Truxal’s formula, 223, 564–565
Type k system, definition, 220
Tungsten halogen lamp, 822
Tustin’s method, 647–651
Two-mass system, suspension

model, 51–54
Two-sided Laplace transform,

128

U
Ultimate gain, 240
Ultimate period, 240
Ultimate sensitivity method,

240
Ultra-large-scale

integrated(ULSI) circuit,
819

Uncontrollable systems, 515
Undamped natural frequency,

154
Uncontrollability of estimator

modes, 568
Unit-impulse function, 129
Unit-step function, 117
Unity feedback system, 146
Unmanned Aerial Vehicles

(UAVs), 803
Unstable system, 174
Upper companion form, 513
USCG Cutter Tampa, 348

V
Van der Pol’s equation, 749
Vector margin, 394, 399
Vector transpose, 483
Velocity error constant, 218
Vibration isolation, 861
Vidyasagar, M., 728
Voice coil, 76–77
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W
Washout, 784
Water tank height, equations

for, 89
linearization of, 91–92

Watt, James, 35
Watt’s flyball governor,

35
Widnall, Bill, 675
Winnie Mae, 843
Woodson, H. H., 681
Wright brothers, 843

Y
Yakubovich, 733
Yaw damper, 782–789
Young’s modulus, 69

Z
Zadeh, L., 607
Zames, G., 607
Zero-order hold (ZOH), 639

approximation method,
651–653

Zeros of a system, 132, 138–139
effects of, 164–173

Zero assignment, 561
Zero degree locus, 277,

323–326
Ziegler–Nichols tuning of PID

controller, 238–244
Zirconia sensor, 797
z-plane, 644
ZOH transfer function, 659,

667
z-Transform, 640
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Appendix WA
A Review of Complex
Variables

This appendix is a brief summary of some results on complex vari-
ables theory, with emphasis on the facts needed in control theory. For
a comprehensive study of basic complex variables theory, see stan-
dard textbooks such as Brown and Churchill (1996) or Marsden and
Hoffman (1998).

WA.1 Definition of a Complex Number
The complex numbers are distinguished from purely real numbers in
that they also contain the imaginary operator, which we shall denote as
j. By definition,

j2 = −1 or j = √−1. (WA.1)

A complex number may be defined as

A = σ + jω, (WA.2)

where σ is the real part and ω is the imaginary part, denoted, respec-
tively, as

σ = Re(A), ω = Im(A). (WA.3)

Note the imaginary part of A is itself a real number.
Graphically, we may represent the complex number A in two ways.

In the Cartesian coordinate system (see Fig. WA.1a), A is represented
by a single point in the complex plane. In the polar coordinate system,
A is represented by a vector with length r and an angle θ ; the angle is
measured in radians counter-clockwise from the positive real axis (see
Fig. WA.1b). In polar form, the complex number A is denoted by

A = |A| · ∠ arg A = r · ∠θ = re jθ , 0 ≤ θ ≤ 2π , (WA.4)

where r—called the magnitude, modulus, or absolute value of A—is the
length of the vector representing A, namely,

r = |A| =
√
σ 2 + ω2, (WA.5)

and where θ is given by
tan θ = ω

σ
(WA.6)

or
θ = arg(A) = tan−1

(ω
σ

)
. (WA.7)

1
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Figure WA.1
The complex number A
represented in
(a) Cartesian and
(b) polar coordinates

(a)

Im (s)

Re (s)
u

Ajx

(b)

Im (s)

Re (s)
u

Ajx

u

r

00

(a)

Im (s)

Re (s)

A2

A1

A1 + A2

u1 + u2

(b)

Im (s)

Re (s)

A2

A1

A1 A2

u1

u2

u1 - u2

(c)

Im (s)

Re (s)

A2

A1

A1

A2

u1

u2

000

Figure WA.2
Arithmetic of complex numbers: (a) addition; (b) multiplication; (c) division

Care must be taken to compute the correct value of the angle,
depending on the sign of the real and imaginary parts (that is, one must
find the quadrant in which the complex number lies).

The conjugate of A is defined as

A∗ = σ − jω· (WA.8)

Therefore,

(A∗)∗ = A, (WA.9)

(A1 ± A2)
∗ = A∗1 ± A∗2, (WA.10)

(
A1

A2

)∗
= A∗1

A∗2
, (WA.11)

(A1A2)
∗ = A∗1A∗2, (WA.12)

Re(A) = A+ A∗

2
, Im(A) = A− A∗

2j
, (WA.13)

AA∗ = (|A|)2. (WA.14)
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WA.2 Algebraic Manipulations
WA.2.1 Complex Addition
If we let

A1 = σ1 + jω1 and A2 = σ2 + jω2, (WA.15)

then

A1 +A2 = (σ1 + jω1)+ (σ2 + jω2) = (σ1 + σ2)+ j(ω1 +ω2). (WA.16)

Because each complex number is represented by a vector extending from
the origin, we can add or subtract complex numbers graphically. The
sum is obtained by adding the two vectors. This we do by constructing
a parallelogram and finding its diagonal, as shown in Fig. WA.2a. Alter-
natively, we could start at the tail of one vector, draw a vector parallel
to the other vector, then connect the origin to the new arrowhead.

Complex subtraction is very similar to complex addition.

WA.2.2 Complex Multiplication
For two complex numbers defined according to Eq. (WA.15),

A1A2 = (σ1 + jω1)(σ2 + jω2)

= (σ1σ2 − ω1ω2)+ j(ω1σ2 + σ1ω2). (WA.17)

The product of two complex numbers may be obtained graphically
using polar representations, as shown in Fig. WA.2b.

WA.2.3 Complex Division
The division of two complex numbers is carried out by rationalization.
This means that both the numerator and denominator in the ratio are
multiplied by the conjugate of the denominator:

A1

A2
= A1A∗2

A2A∗2

= (σ1σ2 + ω1ω2)+ j(ω1σ2 − σ1ω2)

σ 2
2 + ω2

2

. (WA.18)

From Eq. (WA.4), it follows that

A−1 = 1
r

e−jθ , r �= 0. (WA.19)

Also, if A1 = r1e jθ1 and A2 = r2e jθ2 , then

A1A2 = r1r2e j(θ1+θ2), (WA.20)

where |A1A2| = r1r2 and arg(A1A2) = θ1 + θ2, and

A1

A2
= r1

r2
e j(θ1−θ2), r2 �= 0, (WA.21)
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where
∣∣∣A1
A2

∣∣∣ = r1
r2

and arg
(

A1
A2

)
= θ1 − θ2. The division of complex

numbers may be carried out graphically in polar coordinates as shown
in Fig. WA.2c.

EXAMPLE WA.1 Frequency Response of First-Order System

Find the magnitude and phase of the transfer function G(s) = 1
s+ 1 ,

where s = jω.

Solution. Substituting s = jω and rationalizing, we obtain

G( jω) = 1
σ + 1+ jω

σ + 1− jω
σ + 1− jω

= σ + 1− jω
(σ + 1)2 + ω2 .

Therefore, the magnitude and phase are

|G( jω)| =
√
(σ + 1)2 + ω2

(σ + 1)2 + ω2 =
1√

(σ + 1)2 + ω2
,

arg(G( jω)) = tan−1
(

Im(G( jω))
Re(G( jω))

)
= tan−1

( −ω
σ + 1

)
·

WA.3 Graphical Evaluation of Magnitude and
Phase

Consider the transfer function

G(s) =
∏m

i=1(s+ zi)∏n
i=1(s+ pi)

. (WA.22)

The value of the transfer function for sinusoidal inputs is found by
replacing s with jω. The gain and phase are given by G( jω) and may
be determined analytically or by a graphical procedure. Consider the
pole-zero configuration for such a G(s) and a point s0 = jω0 on the
imaginary axis, as shown in Fig. WA.3. Also consider the vectors drawn
from the poles and the zero to s0. The magnitude of the transfer func-
tion evaluated at s0 = jω0 is simply the ratio of the distance from the
zero to the product of all the distances from the poles:

|G( jω0)| = r1

r2r3r4
. (WA.23)

The phase is given by the sum of the angles from the zero, minus
the sum of the angles from the poles:

arg G( jω0) = ∠G( jω0) = θ1 − (θ2 + θ3 + θ4). (WA.24)

This may be explained as follows: The term s+z1 is a vector addition of
its two components. We may determine this equivalently as s − (−z1),
which amounts to translation of the vector s + z1 starting at −z1, as
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Figure WA.3
Graphical
determination of
magnitude and phase

Im (s)

Re (s)

s0

r4

r3

r2

r1u2

u1u4

u3

0

Figure WA.4
Illustration of graphical
computation of s+ z1

Im (s)

Re (s)

s0 + z1s0 + z1
s0

-z1 z1
0

shown in Fig. WA.4. This means that a vector drawn from the zero
location to s0 is equivalent to s + z1. The same reasoning applies to
the poles. We reflect p1, p2, and p3 about the origin to obtain the pole
locations. Then the vectors drawn from −p1, −p2, and −p3 to s0 are the
same as the vectors in the denominator represented in polar coordinates.
Note that this method may also be used to evaluate s0 at places in the
complex plane besides the imaginary axis.

WA.4 Differentiation and Integration
The usual rules apply to complex differentiation. Let G(s) be dif-
ferentiable with respect to s. Then the derivative at s0 is defined
as

G′(s0) = lim
s→s0

G(s)− G(s0)

s− s0
, (WA.25)

provided that the limit exists. For conditions on the existence of the
derivative, see Brown and Churchill (1996).

The standard rules also apply to integration, except that the
constant of integration c is a complex constant:

∫
G(s)ds =

∫
Re[G(s)]ds+ j

∫
Im[G(s)]ds+ c. (WA.26)
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WA.5 Euler’s Relations
Let us now derive an important relationship involving the complex
exponential. If we define

A = cos θ + j sin θ , (WA.27)

where θ is in radians, then

dA
dθ
= − sin θ + j cos θ = j2 sin θ + j cos θ

= j(cos θ + j sin θ) = jA. (WA.28)

We collect the terms involving A to obtain

dA
A
= jdθ . (WA.29)

Integrating both sides of Eq. (WA.29) yields

ln A = jθ + c, (WA.30)

where c is a constant of integration. If we let θ = 0 in Eq. (WA.30), we
find that c = 0 or

A = e jθ = cos θ + j sin θ . (WA.31)

Similarly,
A∗ = e−jθ = cos θ − j sin θ . (WA.32)

From Eqs. (WA.31) and (WA.32), it follows thatEuler’s relations

cos θ = e jθ + e−jθ

2
, (WA.33)

sin θ = e jθ − e−jθ

2j
. (WA.34)

WA.6 Analytic Functions
Let us assume G is a complex-valued function defined in the complex
plane. Let s0 be in the domain of G, which is assumed to be finite within
some disk centered at s0. Thus, G(s) is defined not only at s0 but also at
all points in the disk centered at s0. The function G is said to be analytic
if its derivative exists at s0 and at each point in the neighborhood of s0.

WA.7 Cauchy’s Theorem
A contour is a piecewise-smooth arc that consists of a number of smooth
arcs joined together. A simple closed contour is a contour that does not
intersect itself and ends on itself. Let C be a closed contour as shown in
Fig. WA.5a, and let G be analytic inside and on C. Cauchy’s theorem
states that ∮

C
G(s)ds = 0. (WA.35)
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Figure WA.5
Contours in the s-plane:
(a) a closed contour;
(b) two different paths
between A1 and A2

(a)
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There is a corollary to this theorem: Let C1 and C2 be two paths
connecting the points A1 and A2 as in Fig. WA.5b. Then,

∫

C1

G(s)ds =
∫

C2

G(s)ds. (WA.36)

WA.8 Singularities and Residues
If a function G(s) is not analytic at s0, but is analytic at some point in
every neighborhood of s0, it is said to be a singularity. A singular point
is said to be an isolated singularity if G(s) is analytic everywhere else in
the neighborhood of s0 except at s0. Let G(s) be a rational function (that
is, a ratio of polynomials). If the numerator and denominator are both
analytic, then G(s) will be analytic except at the locations of the poles
(that is, at the roots of the denominator). All singularities of rational
algebraic functions are pole locations.

Let G(s) be analytic except at s0. Then we may write G(s) in its
Laurent series expansion form:

G(s) = A−n

(s− s0)
n + . . .+

A−1

(s− s0)
+ B0 + B1(s− s0)+ . . . . (WA.37)

The coefficient A−1 is called the residue of G(s) at s0, and may be
evaluated as

A−1 = Res[G(s); s0] = 1
2π j

∮

C
G(s) ds, (WA.38)

where C denotes a closed arc within an analytic region centered at s0
that contains no other singularity, as shown in Fig. WA.6. When s0 is
not repeated with n = 1, we have

A−1 = Res[G(s); s0] = (s− s0)G(s)|s=s0 . (WA.39)

This is the familiar cover-up method of computing residues.
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Figure WA.6
Contour around an
isolated singularity

Im (s)

Re (s)

Cs0

WA.9 Residue Theorem
If the contour C contains l singularities, then Eq. (WA.39) may be
generalized to yield Cauchy’s residue theorem:

1
2π j

∮
G(s) ds =

l∑
i=1

Res[G(s); si]. (WA.40)

WA.10 The Argument Principle
Before stating the argument principle, we need a preliminary result from
which the principle follows readily.

Number of Poles and Zeros
Let G(s) be an analytic function inside and on a closed contour C,
except for a finite number of poles inside C. Then, for C described in
the positive sense (clockwise direction),

1
2π j

∮
G′(s)
G(s)

ds = N − P, (WA.41)

or

1
2π j

∮
d(ln G) = N − P, (WA.42)

where N and P are the total number of zeros and poles of G inside C,
respectively. A pole or zero of multiplicity k is counted k times.

Proof Let s0 be a zero of G with multiplicity k. Then, in some
neighborhood of that point, we may write G(s) as

G(s) = (s− s0)
k f (s), (WA.43)
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where f (s) is analytic and f (s0) �= 0. If we differentiate Eq. (WA.43), we
obtain

G′(s) = k(s− s0)
k−1f (s)+ (s− s0)

kf ′(s). (WA.44)

Equation (WA.44) may be rewritten as

G′(s)
G(s)

= k
s− s0

+ f ′(s)
f (s)

. (WA.45)

Therefore, G′(s)/G(s) has a pole at s = s0 with residue K. This anal-
ysis may be repeated for every zero. Hence, the sum of the residues of
G′(s)/G(s) is the number of zeros of G(s) inside C. If s0 is a pole with
multiplicity l, we may write

h(s) = (s− s0)
lG(s), (WA.46)

where h(s) is analytic and h(s0) �= 0. Then Eq. (WA.46) may be rewritten
as

G(s) = h(s)
(s− s0)

l
. (WA.47)

Differentiating Eq. (WA.47), we obtain

G′(s) = h′(s)
(s− s0)

l
− lh(s)
(s− s0)

l+1
, (WA.48)

so
G′(s)
G(s)

= −l
s− s0

+ h′(s)
h(s)

. (WA.49)

This analysis may be repeated for every pole. The result is that the sum
of the residues of G′(s)/G(s) at all the poles of G(s) is −P.

The Argument Principle
Using Eq. (WA.38), we get

1
2π j

∮

C
d[ln G(s)] = N − P, (WA.50)

where d[ln G(s)] was substituted for G′(s)/G(s). If we write G(s) in polar
form, then ∮

�

d[ln G(s)] =
∮

�

d{ln |G(s)| + j arg[ln G(s)]}
= ln |G(s)||s=s2

s=s1
+ j arg G(s)|s=s2

s=s1
. (WA.51)

Because � is a closed contour, the first term is zero, but the second term
is 2π times the net encirclements of the origin:

1
2π j

∮

�

d[ln G(s)] = N − P. (WA.52)

Intuitively, the argument principle may be stated as follows: We let G(s)
be a rational function that is analytic except possibly at a finite num-
ber of points. We select an arbitrary contour in the s-plane so G(s)
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is analytic at every point on the contour (the contour does not pass
through any of the singularities). The corresponding mapping into the
G(s)-plane may encircle the origin. The number of times it does so is
determined by the difference between the number of zeros and the num-
ber of poles of G(s) encircled by the s-plane contour. The direction of
this encirclement is determined by which is greater, N (clockwise) or
P (counter-clockwise). For example, if the contour encircles a single
zero, the mapping will encircle the origin once in the clockwise direc-
tion. Similarly, if the contour encloses only a single pole, the mapping
will encircle the origin, this time in the counter-clockwise direction.
If the contour encircles no singularities, or if the contour encloses an
equal number of poles and zeros, there will be no encirclement of the
origin. A contour evaluation of G(s) will encircle the origin if there is
a nonzero net difference between the encircled singularities. The map-
ping is conformal as well, which means that the magnitude and sense
of the angles between smooth arcs is preserved. Chapter 6 provides
a more detailed intuitive treatment of the argument principle and its
application to feedback control in the form of the Nyquist stability
theorem.

WA.11 Bilinear Transformation
A bilinear transformation is of the form

w = as+ b
cs+ d

, (WA.53)

where a, b, c, d are complex constants, and it is assumed ad − bc �=
0. The bilinear transformation always transforms circles in the w-plane
into circles in the s-plane. This can be shown in several ways. If we solve
for s, we obtain

s = −dw+ b
cw− a

. (WA.54)

The equation for a circle in the w-plane is of the form

|w− σ |
|w− ρ| = R. (WA.55)

If we substitute for w in terms of s in Eq. (WA.53), we get

|s− σ ′|
|s− ρ′| = R′, (WA.56)

where

σ ′ = σd − b
a− σc

, ρ′ = ρd − b
a− ρc

, R′ =
∣∣∣∣
a− ρc
a− σc

∣∣∣∣ R, (WA.57)

which is the equation for a circle in the s-plane. For alternative proofs,
the reader is referred to Brown and Churchill (1996) and Marsden and
Hoffman (1998).
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Appendix WB
Summary of Matrix Theory

In the text, we assume you are already somewhat familiar with matrix
theory and with the solution of linear systems of equations. However,
for the purposes of review we present here a brief summary of matrix
theory with an emphasis on the results needed in control theory. For
further study, see Strang (2006) and Gantmacher (1959).

WB.1 Matrix Definitions
An array of numbers arranged in rows and columns is referred to as a
matrix. If A is a matrix with m rows and n columns, an m× n (read “m
by n”) matrix, it is denoted as

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ , (WB.1)

where the entries aij are its elements. If m = n, then the matrix is square;
otherwise it is rectangular. Sometimes a matrix is simply denoted by
A = [aij]. If m = 1 or n = 1, then the matrix reduces to a row vector or a
column vector, respectively. A submatrix of A is the matrix with certain
rows and columns removed.

WB.2 Elementary Operations on Matrices
If A and B are matrices of the same dimension, then their sum is defined
by

C = A+ B, (WB.2)

where
cij = aij + bij. (WB.3)

That is, the addition is done element by element. It is easy to verify the
following properties of matrices:

Commutative law for
addition

Associative law for
addition

A+ B = B+ A, (WB.4)

(A+ B)+ C = A+ (B+ C). (WB.5)

Two matrices can be multiplied if they are compatible. Let A = m × n
and B = n× p. Then the m× p matrix

C = AB, (WB.6)

11
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is the product of the two matrices, where

cij =
n∑

k=1

aikbkj. (WB.7)

Matrix multiplication satisfies the associative lawAssociative law for
multiplication

A(BC) = (AB)C, (WB.8)

but not the commutative law; that is, in general,

AB �= BA. (WB.9)

WB.3 Trace
The trace of a square matrix is the sum of its diagonal elements:

trace A =
n∑

i=1

aii. (WB.10)

WB.4 Transpose
The n×m matrix obtained by interchanging the rows and columns of A
is called the transpose of matrix A:

AT =

⎡
⎢⎢⎢⎣

a11 a21 . . . am1
a12 a22 . . . am2

...
...

...
a1n a2n . . . amn

⎤
⎥⎥⎥⎦ ·

A matrix is said to be symmetric if

AT = A. (WB.11)

It is easy to show thatTransposition

(AB)T = BT AT , (WB.12)

(ABC)T = CT BT AT , (WB.13)

(A+ B)T = AT + BT . (WB.14)

WB.5 Determinant and Matrix Inverse
The determinant of a square matrix is defined by Laplace’s expansion

det A =
n∑

j=1

aijγij for any i = 1, 2, . . . , n, (WB.15)

where γij is called the cofactor and

γij = (−1)i+j det Mij, (WB.16)
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where the scalar det Mij is called a minor. Mij is the same as the matrix
A except that its ith row and jth column have been removed. Note Mij
is always an (n− 1)× (n− 1) matrix, and the minors and cofactors are
identical except possibly for a sign.

The adjugate of a matrix is the transpose of the matrix of its
cofactors:

adj A = [γij]T . (WB.17)

It can be shown that
A adj A = (det A)I, (WB.18)

where I is called the identity matrix:Identity matrix

I =

⎡
⎢⎢⎢⎣

1 0 . . . . . . 0
0 1 0 . . . 0
...

...
. . .

...
0 . . . . . . 0 1

⎤
⎥⎥⎥⎦ ,

that is, I has ones along the diagonal and zeros elsewhere. If det A �= 0,
then the inverse of a matrix A is defined by

A−1 = adj A
det A

, (WB.19)

and has the property
AA−1 = A−1A = I. (WB.20)

Note a matrix has an inverse—that is, it is nonsingular—if its determi-
nant is nonzero.

The inverse of the product of two matrices is the product of the
inverse of the matrices in reverse order:

(AB)−1 = B−1A−1 (WB.21)

andInversion
(ABC)−1 = C−1B−1A−1. (WB.22)

WB.6 Properties of the Determinant
When dealing with determinants of matrices, the following elementary
(row or column) operations are useful:

1. If any row (or column) of A is multiplied by a scalar α, the resulting
matrix Ā has the determinant

det Ā = α det A. (WB.23)

Hence
det(αA) = αn det A. (WB.24)

2. If any two rows (or columns) of A are interchanged to obtain Ā,
then

det Ā = − det A. (WB.25)
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3. If a multiple of a row (or column) of A is added to another to obtain
Ā, then

det Ā = det A. (WB.26)

4. It is also easy to show that

det A = det AT (WB.27)

and
det AB = det A det B. (WB.28)

Applying Eq. (WB.28) to Eq. (WB.20), we have

det A det A−1 = 1. (WB.29)

If A and B are square matrices, then the determinant of the block
triangular matrix is the product of the determinants of the diagonal
blocks:

det
[

A C
0 B

]
= det A det B. (WB.30)

If A is nonsingular, then

det
[

A B
C D

]
= det A det(D− CA−1B). (WB.31)

Using this identity, we can write the transfer function of a scalar
system in a compact form:

G(s) = C(sI− A)−1B+D =
det

[
sI− A B
−C D

]

det(sI− A)
. (WB.32)

WB.7 Inverse of Block Triangular Matrices
If A and B are square invertible matrices, then

[
A C
0 B

]−1

=
[

A−1 −A−1CB−1

0 B−1

]
. (WB.33)

WB.8 Special Matrices
Some matrices have special structures and are given names. We have
already defined the identity matrix, which has a special form. A diago-Diagonal matrix
nal matrix has (possibly) nonzero elements along the main diagonal and
zeros elsewhere:

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 0
a22

a33
. . .

0 ann

⎤
⎥⎥⎥⎥⎥⎦

. (WB.34)
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A matrix is said to be (upper) triangular if all the elements below theUpper triangular matrix
main diagonal are zeros:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n
0 a22
... 0

...

0
...

. . .
. . .

0 0 · · · 0 ann

⎤
⎥⎥⎥⎥⎥⎥⎦

. (WB.35)

The determinant of a diagonal or triangular matrix is simply the
product of its diagonal elements.

A matrix is said to be in the (upper) companion form if it has the
structure

Ac =

⎡
⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · −an
1 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

. (WB.36)

Note all the information is contained in the first row. Variants of this
form are the lower, left, or right companion matrices. A Vandermonde
matrix has the following structure:

A =

⎡
⎢⎢⎢⎣

1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

...
...

...
...

1 an a2
n · · · an−1

n

⎤
⎥⎥⎥⎦ . (WB.37)

WB.9 Rank
The rank of a matrix is the number of its linearly independent rows or
columns. If the rank of A is r, then all (r+ 1)× (r+ 1) submatrices of A
are singular, and there is at least one r× r submatrix that is nonsingular.
It is also true that

row rank of A = column rank of A. (WB.38)

WB.10 Characteristic Polynomial
The characteristic polynomial of a matrix A is defined by

a(s) � det(sI− A)

= sn + a1sn−1 + · · · + an−1s+ an, (WB.39)

where the roots of the polynomial are referred to as eigenvalues of A.
We can write

a(s) = (s− λ1)(s− λ2) · · · (s− λn), (WB.40)
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where {λi} are the eigenvalues of A. The characteristic polynomial of a
companion matrix [for example, Eq. (WB.36)] is

a(s) = det(sI− Ac)

= sn + a1sn−1 + · · · + an−1s+ an. (WB.41)

WB.11 Cayley–Hamilton Theorem
The Cayley–Hamilton theorem states that every square matrix A satis-
fies its characteristic polynomial. This means if A is an n×n matrix with
characteristic equation a(s), then

a(A) � An + a1An−1 + · · · + an−1A+ anI = 0. (WB.42)

WB.12 Eigenvalues and Eigenvectors
Any scalar λ and nonzero vector v that satisfy

Av = λv, (WB.43)

are referred to as the eigenvalue and the associated (right) eigenvector of
the matrix A [because v appears to the right of A in Eq. (WB.43)]. By
rearranging terms in Eq. (WB.43), we get

(λI− A)v = 0. (WB.44)

Because v is nonzero,
det(λI− A) = 0, (WB.45)

so λ is an eigenvalue of the matrix A as defined in Eq. (WB.43). The nor-
malization of the eigenvectors is arbitrary; that is, if v is an eigenvector,
so is αv. The eigenvectors are usually normalized to have unit length;
that is, ‖v‖2 = vT v = 1.

If wT is a nonzero row vector such that

wT A = λwT , (WB.46)

then w is called a left eigenvector of A [because wT appears to the left of
A in Eq. (WB.46)]. Note we can write

AT w = λw, (WB.47)

so w is simply a right eigenvector of AT .

WB.13 Similarity Transformations
Consider the arbitrary nonsingular matrix T such that

Ā = T−1AT. (WB.48)

The matrix operation shown in Eq. (WB.48) is referred to as a similarity
transformation. If A has a full set of eigenvectors, then we can choose T
to be the set of eigenvectors, and Ā will be diagonal.
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Consider the set of equations in state-variable form:

ẋ = Ax+ Bu. (WB.49)

If we let

Tξ = x, (WB.50)

then Eq. (WB.49) becomes

Tξ̇ = ATξ + Bu, (WB.51)

and premultiplying both sides by T−1, we get

ξ̇ = T−1ATξ + T−1Bu

= Āξ + B̄u, (WB.52)

where

Ā = T−1AT,

B̄ = T−1B. (WB.53)

The characteristic polynomial of Ā is

det(sI− Ā) = det(sI− T−1AT)

= det(sT−1T− T−1AT)

= det[T−1(sI− A)T]

= det T−1 det(sI− A) det T. (WB.54)

Using Eq. (WB.29), Eq. (WB.54) becomes

det(sI− Ā) = det(sI− A). (WB.55)

From Eq. (WB.55), we can see that Ā and A both have the same char-
acteristic polynomial, giving us the important result that a similarity
transformation does not change the eigenvalues of a matrix. From
Eq. (WB.50), a new state made up of a linear combination of the old
state has the same eigenvalues as the old set.

WB.14 Matrix Exponential
Let A be a square matrix. The matrix exponential of A is defined as the
series

eAt = I+ At+ 1
2!

A2t2 + A3t3

3!
+ · · · · (WB.56)

It can be shown that the series converges. If A is an n × n matrix, then
eAt is also an n× n matrix and can be differentiated:

d
dt

eAt = AeAt. (WB.57)
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Other properties of the matrix exponential are

eAt1 eAt2 = eA(t1+t2) (WB.58)

and, in general,
eAeB �= eBeA. (WB.59)

(In the exceptional case where A and B commute—that is, AB = BA—
then eAeB = eBeA.)

WB.15 Fundamental Subspaces
The range space of A, denoted by R(A) and also called the column space
of A, is defined by the set of vectors

x = Ay, (WB.60)

for some vector y. The null space of A, denoted by N (A), is defined by
the set of vectors x such that

Ax = 0. (WB.61)

If x ∈ N (A) and y ∈ R(AT ), then yT x = 0; that is, every vector in the
null space of A is orthogonal to every vector in the range space of AT .

WB.16 Singular-Value Decomposition
The singular-value decomposition (SVD) is one of the most useful tools
in linear algebra and has been widely used in control theory during the
last few decades. Let A be an m × n matrix. Then there always exist
matrices U, S, and V such that

A = USVT . (WB.62)

Here U and V are orthogonal matrices; that is,

UUT = I, VVT = I. (WB.63)

S is a quasidiagonal matrix with singular values as its diagonal elements;
that is,

S =
[
� 0
0 0

]
, (WB.64)

where � is a diagonal matrix of nonzero singular values in descending
order:

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. (WB.65)

The unique diagonal elements of S are called the singular values. The
maximum singular value is denoted by σ̄ (A), and the minimum singular
value is denoted by σ(A). The rank of the matrix is the same as the
number of nonzero singular values. The columns of U and V,

U = [ u1 u2 . . . um ],

V = [ υ1 υ2 . . . υn ], (WB.66)
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are called the left and right singular vectors, respectively. SVD provides
complete information about the fundamental subspaces associated with
a matrix:

N (A) = span[ υr+1 υr+2 . . . υn ],

R(A) = span[ u1 u2 . . . ur ],

R(AT ) = span[ υ1 υ2 . . . υr ],

N (AT ) = span[ ur+1 ur+2 . . . um ]. (WB.67)

Here N denotes the null space and R, the range space, respectively.
The norm of the matrix A, denoted by ‖A‖2, is given by

‖A‖2 = σ̄ (A). (WB.68)

If A is a function of ω, then the infinity norm of A, ‖A‖∞, is given by

‖A(jω)‖∞ = max
ω
σ̄ (A). (WB.69)

WB.17 Positive Definite Matrices
A matrix A is said to be positive semidefinite if

xT Ax ≥ 0 for all x. (WB.70)

The matrix is said to be positive definite if equality holds in Eq. (WB.70)
only for x = 0. A symmetric matrix is positive definite if and only if all
of its eigenvalues are positive. It is positive semidefinite if and only if all
of its eigenvalues are nonnegative.

An alternate method for determining positive definiteness is to test
the minors of the matrix. A matrix is positive definite if all the leading
principal minors are positive, and positive semidefinite if they are all
nonnegative.

WB.18 Matrix Identity
If A is an n×m matrix and B is an m× n matrix, then

det[In − AB] = det[Im − BA],

where In and Im are identity matrices of size n and m, respectively.

WB.19 Cramer’s Rule
Consider the solution to a linear system of equations:

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1
b2
...

bn

⎤
⎥⎥⎥⎦ , (WB.71)
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or
Ax = b, (WB.72)

where A is a nonsingular square n× n matrix, x is an n× 1 vector of the
unknowns, and b is also an n× 1 vector. The solution can be expressed
in terms of the ratio of the two determinants

xi = det(Ai)

det(A)
, i = 1, 2, . . . , n (WB.73)

where Ai is the matrix A with its ith column replaced by b.
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Appendix WC
Controllability and
Observability

Controllability and observability are important structural properties of
dynamic systems. First identified and studied by Kalman (1960) and
later by Kalman et al. (1961), these properties have continued to be
examined during the last five decades. We will discuss only a few of
the known results for linear constant systems with one input and one
output. In the text, we discuss these concepts in connection with con-
trol law and estimator designs. For example, in Section 7.4, we suggest
that, if the square matrix given by

C = [B AB A2B . . . An−1B], (WC.1)

is nonsingular, by transformation of the state we can convert the given
description into control-canonical form. We can then construct a con-
trol law that will give the closed-loop system an arbitrary characteristic
equation.

WC.1 Controllability
We begin our formal discussion of controllability with the first of four
definitions.

Definition WC.1 The system (A, B) is controllable if, for any given nth-
order polynomial αc(s), there exists a (unique) control law u = −Kx such
that the characteristic polynomial of A− BK is αc(s).

From the results of Ackermann’s formula (see Appendix WD), we
have the following mathematical test for controllability: (A, B) is a con-
trollable pair if and only if the rank of C is n. Definition WC.1 based on
pole placement is a frequency-domain concept. Controllability can be
equivalently defined in the time domain.

Definition WC.2 The system (A, B) is controllable if there exists a
(piecewise continuous) control signal u(t) that will take the state of the
system from any initial state x0 to any desired final state xf in a finite time
interval.

We will now show that the system is controllable by this definition if and
only if C is full rank. We first assume that the system is controllable but

rank[B AB A2B . . . An−1B] < n. (WC.2)

21
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We can then find a vector v such that

v[B AB A2B . . . An−1B] = 0 (WC.3)

or
vB = vAB = vA2B = . . . = vAn−1B = 0. (WC.4)

The Cayley-Hamilton theorem states that A satisfies its own character-
istic equation, namely,

−An = a1An−1 + a2An−2 + . . .+ anI. (WC.5)

Therefore,

−vAnB = a1vAn−1B+ a2vAn−2B+ . . .+ anvB = 0. (WC.6)

By induction, vAn+kB = 0 for k = 0, 1, 2, . . ., or vAmB = 0 for
m = 0, 1, 2, . . ., and thus

veAtB = v
(

I+ At+ 1
2!

A2t2 + . . .
)

B = 0, (WC.7)

for all t. However, the zero initial-condition response (x0 = 0) is

x(t) =
∫ t

0
eA(t−τ)Bu(τ ) dτ

= eAt
∫ t

0
e−AτBu(τ ) dτ . (WC.8)

Using Eq. (WC.7), Eq. (WC.8) becomes

vx(t) =
∫ t

0
veA(t−τ)Bu(τ ) dτ = 0, (WC.9)

for all u(t) and t > 0. This implies that all points reachable from the ori-
gin are orthogonal to v. This restricts the reachable space, and therefore
contradicts the second definition of controllability. Thus if C is singular,
(A, B) is not controllable by Definition WC.2.

Next, we assume C is full rank but (A, B) is uncontrollable by Def-
inition WC.2. This means that there exists a nonzero vector v such
that

v
∫ tf

0
eA(tf −τ )Bu(τ ) dτ = 0, (WC.10)

because the whole state-space is not reachable. But Eq. (WC.10) implies
that

veA(tf −τ )B = 0, 0 ≤ τ ≤ tf . (WC.11)

If we set τ = tf , we see vB = 0. Also, differentiating Eq. (WC.11) and
letting τ = tf gives vAB = 0. Continuing this process, we find

vB = vAB = vA2B = . . . = vAn−1B = 0, (WC.12)

which contradicts the assumption that C is full rank.
We have now shown the system is controllable by Definition WC.2

if and only if the rank of C is n, which is exactly the same condition we
found for pole assignment.
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Figure WC.1
Block diagram of a
system with a diagonal
matrix

b1

b2

bn

c1
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cn

1
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1
s + nn

 + 
 + 

 + 
©u

Our final definition comes closest to the structural character of
controllability.

Definition WC.3 The system (A, B) is controllable if every mode of A is
connected to the control input.

Because of the generality of the modal structure of systems, we will
treat only the case of systems for which A can be transformed to diag-
onal form. (The double-integration plant does not qualify.) Suppose we
have a diagonal matrix Ad and its corresponding input matrix Bd with
elements bi. The structure of such a system is shown in Fig. (WC.1).
By definition, for a controllable system, the input must be connected to
each mode so the bi are all nonzero. However, this is not enough if the
poles (λi) are not distinct. Suppose, for instance, that λ1 = λ2. The first
two state equations are then

ẋ1d = λ1x1d + b1u,

ẋ2d = λ1x2d + b2u. (WC.13)

If we define a new state, ξ = b2x1d − b1x2d , the equation for ξ is

ξ̇ = b2ẋ1d − b1ẋ2d = b2λ1x1d + b2b1u− b1λ1x2d − b1b2u = λ1ξ ,
(WC.14)

which does not include the control u; hence, ξ is not controllable. The
point is that if any two poles are equal in a diagonal Ad system with only
one input, we effectively have a hidden mode that is not connected to
the control, and the system is not controllable (see Fig. WC.2a). This
is because the two state variables move together exactly, so we cannot

y

(a)

1
s + 1

1
s + 1

 + 
 + 

 + 
u ©

1
s + 1

(b)

1
s - 1

 + 
u y©
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Figure WC.2
Examples of uncontrollable systems
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independently control x1d and x2d . Therefore, even in such a simple case,
we have two conditions for controllability:

1. All eigenvalues of Ad are distinct.
2. No element of Bd is zero.

Now let us consider the controllability matrix of this diagonal sys-
tem. By direct computation,

C =

⎡
⎢⎢⎢⎢⎣

b1 b1λ1 . . . b1λ
n−1
1

b2 b2λ2 . . .
...

...
... · · · ...

bn bnλn . . . bnλ
n−1
n

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

b1 0
b2

. . .
0 bn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 λ1 λ2
1 . . . λn−1

1

1 λ2 λ2
2 . . .

...
...

...
... · · · ...

1 λn λ2
n . . . λn−1

n

⎤
⎥⎥⎥⎥⎦

. (WC.15)

Note that the controllability matrix C is the product of two matrices
and is nonsingular if and only if both of these matrices are invertible.
The first matrix has a determinant that is the product of bi, and the
second matrix (called a Vandermonde matrix) is nonsingular if and only
if the λi are distinct. Thus, Definition WC.3 is equivalent to having a
nonsingular C also.

Important to the subject of controllability is the Popov–Hautus–
Rosenbrock (PHR) test (see Rosenbrock, 1970, and Kailath, 1980),
which is an alternate way to test the rank (or determinant) of C. The
system (A, B) is controllable if the system of equations

vT [sI− A B] = 0T , (WC.16)

has only the trivial solution vT = 0T —that is, if the matrix pencil

rank [sI− A B] = n, (WC.17)

is full rank for all s, or if there is no nonzero vT such that1

vT A = svT , (WC.18)

vT B = 0. (WC.19)

This test is equivalent to the rank-of-C test. It is easy to show that,
if such a vector v exists, C is singular. For if a nonzero v exists such that
vT B = 0, then by Eqs. (WC.18) and (WC.19), we have

vT AB = svT B = 0. (WC.20)

Then, multiplying by AB, we find that

vT A2B = svT AB = 0, (WC.21)

1vT is a left eigenvector of A.
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and so on. Thus we determine that vTC = 0T has a nontrivial solution,
that C is singular, and that the system is not controllable. To show that
a nontrivial vT exists if C is singular requires more development, which
we will not give here (see Kailath, 1980).

We have given two pictures of uncontrollability. Either a mode is
physically disconnected from the input (see Fig. WC.2b), or else two
parallel subsystems have identical characteristic roots (see Fig. WC.2a).
The control engineer should be aware of the existence of a third simple
situation, as illustrated in Fig. WC.2c, namely, a pole-zero cancellation.
Here the problem is the mode at s = 1 appears to be connected to the
input, but is masked by the zero at s = 1 in the preceding subsystem;
the result is an uncontrollable system. This can be confirmed in several
ways. First let us look at the controllability matrix. The system matrices
are

A =
[ −1 0

1 1

]
, B =

[ −2
1

]
,

so the controllability matrix is

C = [ B AB ] =
[ −2 2

1 −1

]
, (WC.22)

which is clearly singular. The controllability matrix may be computed
using the ctrb command in Matlab: [cc]=ctrb(A,B). If we compute the
transfer function from u to x2, we find

H(s) = s− 1
s+ 1

(
1

s− 1

)
= 1

s+ 1
. (WC.23)

Because the natural mode at s = 1 disappears from the input–output
description, it is not connected to the input. Finally, if we consider the
PHR test,

[sI− A B] =
[

s+ 1 0 −2
−1 s− 1 1

]
, (WC.24)

and let s = 1, then we must test the rank of[
2 0 −2
−1 0 1

]
,

which is clearly less than 2. This result means, again, that the system is
uncontrollable.

Definition WC.4 The asymptotically stable system (A, B) is controllable
if the controllability Gramian, the square symmetric matrix Cg, given by
the solution to the Lyapunov equation

ACg + CgAT + BBT = 0, (WC.25)

is nonsingular. The controllability Gramian is also the solution to the
following integral equation:

Cg =
∫ ∞

0
eτABBT eτAT

dτ . (WC.26)
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One physical interpretation of the controllability Gramian is that, if
the input to the system is white Gaussian noise, Cg is the covariance
of the state. The controllability Gramian (for an asymptotically sta-
ble system) can be computed with the following command in Matlab:
[cg] = gram(A,B).

In conclusion, the four definitions for controllability—pole assign-
ment (Definition WC.1), state reachability (Definition WC.2), mode
coupling to the input (Definition WC.3), and controllability Gramian
(Definition WC.4)—are equivalent. The tests for any of these four prop-
erties are found in terms of the rank of the controllability, controllability
Gramian matrices, or the rank of the matrix pencil [sI − A B]. If C is
nonsingular, we can assign the closed-loop poles arbitrarily by state
feedback, we can move the state to any point in the state space in a
finite time, and every mode is connected to the control input.2

WC.2 Observability
So far, we have discussed only controllability. The concept of observ-
ability is parallel to that of controllability, and all of the results we have
discussed thus far may be transformed to statements about observabil-
ity by invoking the property of duality, as discussed in Section 7.7.2.
The observability definitions are analogous to those for controllability.

Definition WC.1: The system (A, C) is observable if, for any nth-
order polynomial αe(s), there exists an estimator gain L such that the
characteristic equation of the state estimator error is αe(s).
Definition WC.2: The system (A, C) is observable if, for any x(0), there
is a finite time τ such that x(0) can be determined (uniquely) from u(t)
and y(t) for 0 ≤ t ≤ τ .
Definition WC.3: The system (A, C) is observable if every dynamic mode
in A is connected to the output through C.
Definition WC.4: The asymptotically stable system (A, C) is observable
if the observability Gramian is nonsingular.

As we saw in the discussion for controllability, mathematical tests
can be developed for observability. The system is observable if the
observability matrix

O =

⎡
⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎦ , (WC.27)

is nonsingular. If we take the transpose of O, and let CT = B and
AT = A, then we find the controllability matrix of (A, B), which is
another manifestation of duality. The observability matrix O may be

2We have shown the latter for diagonal A only, but the result is true in general.
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computed using the obsv command in Matlab: [oo]=obsv(A,C). The sys-
tem (A, C) is observable if the following matrix pencil is full rank for
all s:

rank
[

sI− A
C

]
= n. (WC.28)

The observability Gramian Og, which is a symmetric matrix, and the
solution to the integral equation

Og =
∫ ∞

0
eτAT

CT CeτA dτ , (WC.29)

as well as the Lyapunov equation

ATOg +OgA+ CT C = 0, (WC.30)

also can be computed (for an asymptotically stable system) using the
gram command in Matlab: [og]=gram(A’,C’). The observability Gramian
has an interpretation as the “information matrix” in the context of
estimation.
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Appendix WD
Ackermann’s Formula
for Pole Placement

Given the plant and state-variable equation

ẋ = Ax + Bu, (WD.1)

our objective is to find a state-feedback control law

u = −Kx, (WD.2)

such that the closed-loop characteristic polynomial is

αc(s) = det(sI − A + BK). (WD.3)

First we have to select αc(s), which determines where the poles are to be
shifted; then we have to find K such that Eq. (WD.3) will be satisfied.
Our technique is based on transforming the plant equation into control
canonical form.

We begin by considering the effect of an arbitrary nonsingular
transformation of the state, as

x = Tx̄, (WD.4)

where x̄ is the new transformed state. The state equations in the new
coordinates, from Eq. (WD.4), are

ẋ = T ˙̄x = Ax + Bu = ATx̄ + Bu, (WD.5)

˙̄x = T−1ATx̄ + T−1Bu = Āx̄ + B̄u. (WD.6)

Now the controllability matrix for the original state,

Cx = [ B AB A2B · · · An−1B ], (WD.7)

provides a useful transformation matrix. We can also define the control-
lability matrix for the transformed state:

Cx̄ = [ B̄ ĀB̄ Ā2B̄ · · · An−1B̄ ]. (WD.8)

The two controllability matrices are related by

Cx̄ = [ T−1B T−1ATT−1B · · · ] = T−1Cx (WD.9)

and the transformation matrix

T = CxC−1
x̄ . (WD.10)

From Eqs. (WD.9) and (WD.10), we can draw some important con-
clusions. From Eq. (WD.9), we see if Cx is nonsingular, then for any
nonsingular T, Cx̄ is also nonsingular. This means that a similarity

28
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transformation of the state does not change the controllability prop-
erties of a system. We can look at this in another way. Suppose we
would like to find a transformation to take the system (A, B) into con-
trol canonical form. As we shall shortly see, Cx̄ in that case is always
nonsingular. From Eq. (WD.9), we see a nonsingular T will always exist
if and only if Cx is nonsingular. We derive the following theorem.

Theorem WD.1 We can always transform (A, B) into control canonical
form if and only if the system is controllable.

Let us take a closer look at the control canonical form and treat the
third-order case, although the results are true for any nth-order case:

Ā = Ac =
⎡
⎣

−a1 −a2 −a3
1 0 0
0 1 0

⎤
⎦ , B̄ = Bc =

⎡
⎣

1
0
0

⎤
⎦ . (WD.11)

The controllability matrix, by direct computation, is

Cx̄ = Cc =
⎡
⎣

1 −a1 a2
1 − a2

0 1 −a1
0 0 1

⎤
⎦ . (WD.12)

Because this matrix is upper triangular with ones along the diagonal, it
is always invertible. Also note the last row of Cx̄ is the unit vector with
all zeros, except for the last element, which is unity. We shall use this
fact in the following.

As we pointed out in Section 7.5, the design of a control law for the
state x̄ is trivial if the state equations happen to be in control canonical
form. The characteristic equation is

s3 + a1s2 + a2s + a3 = 0, (WD.13)

and the characteristic equation for the closed-loop system comes from

Acl = Ac − BcKc (WD.14)

and has the coefficients shown:

s3 + (a1 + Kc1)s2 + (a2 + Kc2)s + (a3 + Kc3) = 0. (WD.15)

To obtain the desired closed-loop pole locations, we must make the
coefficients of s in Eq. (WD.15) match those in

αc(s) = s3 + α1s2 + α2s + α3, (WD.16)

so

a1 + Kc1 = α1, a2 + Kc2 = α2, a3 + Kc3 = α3, (WD.17)

or in vector form,
a + Kc = α, (WD.18)

where a and α are row vectors containing the coefficients of the
characteristic polynomials of the open-loop and closed-loop systems,
respectively.
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We now need to find a relationship between these polynomial
coefficients and the matrix A. The requirement is achieved by the
Cayley–Hamilton theorem, which states that a matrix satisfies its own
characteristic polynomial. For Ac, this means that

An
c + a1An−1

c + a2An−2
c + · · · + anI = 0. (WD.19)

Now suppose we form the polynomial αc(A), which is the closed-loop
characteristic polynomial with the matrix A substituted for the complex
variable s:

αc(Ac) = An
c + α1An−1

c + α2An−2
c + · · · + αnI. (WD.20)

If we solve Eq. (WD.19) for An
c and substitute into Eq. (WD.20), we find

that

αc(Ac) = (−a1 + α1)An−1
c + (−a2 + α2)An−2

c + · · · + (−αn + αn)I.

(WD.21)

But, because Ac has such a special structure, we observe that if we mul-
tiply it by the transpose of the nth unit vector, eT

n = [ 0 · · · 0 1 ],
we get

eT
n Ac = [ 0 · · · 0 1 0 ] = eT

n−1, (WD.22)

as we can see from Eq. (WD.11). If we multiply this vector again by Ac,
getting

(eT
n Ac)Ac = [ 0 · · · 0 1 0 ]Ac

= [ 0 · · · 0 1 0 0 ] = eT
n−2, (WD.23)

and continue the process, successive unit vectors are generated until

eT
n An−1

c = [
1 0 · · · 0

] = eT
1 . (WD.24)

Therefore, if we multiply Eq. (WD.21) by eT
n , we find that

eT
n αc(Ac) = (−a1 + α1)eT

1 + (−a2 + α2)eT
2 + · · · + (−an + αn)eT

n

= [ Kc1 Kc2 · · · Kcn ] = Kc, (WD.25)

where we use Eq. (WD.18), which relates Kc to a and α.
We now have a compact expression for the gains of the system in

control canonical form as represented in Eq. (WD.25). However, we
still need the expression for K, which is the gain on the original state. If
u = −Kcx̄, then u = −KcT−1x, so

K = KcT−1 = eT
n αc(Ac)T−1

= eT
n αc(T−1AT)T−1

= eT
n T−1αc(A). (WD.26)

In the last step of Eq. (WD.26), we used the fact that (T−1AT)k =
T−1AkT and that αc is a polynomial, that is, a sum of the powers of
Ac. From Eq. (WD.9), we see that

T−1 = CcC−1
x . (WD.27)
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With this substitution, Eq. (WD.26) becomes

K = eT
n CcC−1

x αc(A). (WD.28)

Now, we use the observation made earlier for Eq. (WD.12) that the last
row of Cc, which is eT

n Cc, is again eT
n . We finally obtain Ackermann’sAckermann’s formula

formula:
K = eT

n C−1
x αc(A). (WD.29)

We note again that forming the explicit inverse of Cx is not advisable
for numerical accuracy. Thus we need to solve bT such that

eT
n C−1

x = bT . (WD.30)

We solve the linear set of equations

bTCx = eT
n , (WD.31)

then compute
K = bTαc(A). (WD.32)

Ackermann’s formula, Eq. (WD.29), even though elegant, is not recom-
mended for systems with a large number of state variables. Even if it is
used, Eqs. (WD.31) and (WD.32) are recommended for better numerical
accuracy.
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Appendix W2.1.4
Complex Mechanical Systems

In some cases, mechanical systems contain both translational and
rotational portions. The procedure is the same as that described in
Section 2.1: sketch the free-body diagrams, define coordinates and pos-
itive directions, determine all forces and moments acting, and apply
Eqs. (2.1) and/or (2.10).

EXAMPLE W2.1 Rotational and Translational Motion: Hanging Crane

Write the equations of motion for the hanging crane pictured in Fig.
W2.1 and shown schematically in Fig. W2.2. Linearize the equations

Figure W2.1
Crane with a hanging
load
Source: Photo courtesy of
Harnischfeger Corporation,
Milwaukee, Wisconsin

32
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Figure W2.2
Schematic of the crane
with hanging load
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Figure W2.3
Inverted pendulum
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Figure W2.4
Hanging crane: (a) free-body diagram of the trolley; (b) free-body diagram of the pendulum; (c) position
vector of the pendulum

about θ = 0, which would typically be valid for the hanging crane. Also
linearize the equations for θ = π , which represents the situation for the
inverted pendulum shown in Fig. W2.3.

Solution. A schematic diagram of the hanging crane is shown in
Fig. W2.2, while the free-body diagrams are shown in Fig. W2.4. In
the case of the pendulum, the forces are shown with bold lines, while
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the components of the inertial acceleration of its center of mass are
shown with dashed lines. Because the pivot point of the pendulum is
not fixed with respect to an inertial reference, the rotation of the pendu-
lum and the motion of its mass center must be considered. The inertial
acceleration needs to be determined because the vector a in Eq. (2.1)
is given with respect to an inertial reference. The inertial acceleration of
the pendulum’s mass center is the vector sum of the three dashed arrows
shown in Fig. W2.4b. The derivation of the components of an object’s
acceleration is called kinematics and is usually studied as a prelude to
the application of Newton’s laws. The results of a kinematic study are
shown in Fig. W2.4b. The component of acceleration along the pen-
dulum is lθ̇2 and is called the centripetal acceleration. It is present for
any object whose velocity is changing direction. The ẍ-component of
acceleration is a consequence of the pendulum pivot point accelerat-
ing at the trolley’s acceleration and will always have the same direction
and magnitude as those of the trolley’s. The lθ̈ component is a result
of angular acceleration of the pendulum and is always perpendicular to
the pendulum.

These results can be confirmed by expressing the center of mass of
the pendulum as a vector from an inertial reference, then differentiating
that vector twice to obtain an inertial acceleration. Figure W2.4c shows
î and ĵ axes that are inertially fixed and a vector r describing the position
of the pendulum center of mass. The vector can be expressed as

r = xî+ l(î sin θ − ĵ cos θ).

The first derivative of r is

ṙ = ẋî+ lθ̇ (î cos θ + ĵ sin θ).

Likewise, the second derivative of r is

r̈ = ẍî+ lθ̈ (î cos θ + ĵ sin θ)− lθ̇2(î sin θ − ĵ cos θ).

Note the equation for r̈ confirms the acceleration components shown in
Fig.W2.4b. The lθ̇2 term is aligned along the pendulum pointing toward
the axis of rotation, and the lθ̈ term is aligned perpendicular to the
pendulum pointing in the direction of a positive rotation.

Having all the forces and accelerations for the two bodies, we now
proceed to apply Eq. (2.1). In the case of the trolley, Fig.W2.4a, we
see that it is constrained by the tracks to move only in the x-direction;
therefore, application of Eq. (2.11) in this direction yields

mtẍ+ bẋ = u−N, (W2.1)

where N is an unknown reaction force applied by the pendulum. Con-
ceptually, Eq. (2.1) can be applied to the pendulum of Fig. W2.4b in
the vertical and horizontal directions, and Eq. (2.10) can be applied for
rotational motion to yield three equations in the three unknowns: N,
P, and θ . These three equations then can be manipulated to eliminate
the reaction forces N and P so a single equation results describing the
motion of the pendulum—that is, a single equation in θ . For example,
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application of Eq. (2.1) for pendulum motion in the x-direction
yields

N = mpẍ+mplθ̈ cos θ −mplθ̇2 sin θ . (W2.2)

However, considerable algebra will be avoided if Eq. (2.1) is applied
perpendicular to the pendulum to yield

P sin θ +N cos θ −mpg sin θ = mplθ̈ +mpẍ cos θ . (W2.3)

Application of Eq. (2.10) for the rotational pendulum motion, for which
the moments are summed about the center of mass, yields

−Pl sin θ −Nl cos θ = I θ̈ , (W2.4)

where I is the moment of inertia about the pendulum’s mass center.
The reaction forces N and P can now be eliminated by combining Eqs.
(W2.3) and (W2.4). This yields the equation

(I +mpl2)θ̈ +mpgl sin θ = −mplẍ cos θ . (W2.5)

It is identical to a pendulum equation of motion, except that it contains
a forcing function that is proportional to the trolley’s acceleration.

An equation describing the trolley motion was found in Eq. (W2.1),
but it contains the unknown reaction force N. By combining Eqs.
(W2.2) and (W2.1), N can be eliminated to yield

(mt +mp)ẍ+ bẋ+mplθ̈ cos θ −mplθ̇2 sin θ = u. (W2.6)

Equations (W2.5) and (W2.6) are the nonlinear differential equations
that describe the motion of the crane with its hanging load. For an accu-
rate calculation of the motion of the system, these nonlinear equations
need to be solved.

To linearize the equations for small motions about θ = 0, let
cos θ ∼= 1, sin θ ∼= θ , and θ̇2 ∼= 0; thus, the equations are approxi-
mated by

(I +mpl2)θ̈ +mpglθ = −mplẍ,

(mt +mp)ẍ+ bẋ+mplθ̈ = u. (W2.7)

Neglecting the friction term b leads to the transfer function from
the control input u to the hanging crane angle θ :

�(s)
U(s)

= −mpl

((I +mpl2)(mt +mp)−m2
pl2)s2 +mpgl(mt +mp)

. (W2.8)
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For the inverted pendulum in Fig. W2.3, where θ ∼= π , assume θ =
π + θ ′, where θ ′ represents motion from the vertical upward direction.
In this case, cos θ ∼= −1, sin θ ∼= −θ ′ in Eqs. (W2.5) and (W2.6), and
Eqs. (W2.7) become1Inverted pendulum

equations
(I +mpl2)θ̈ ′ −mpglθ ′ = mplẍ,

(mt +mp)ẍ+ bẋ−mplθ̈ ′ = u. (W2.9)

As noted in Example 2.2, a stable system will always have the
same signs on each variable, which is the case for the stable hanging
crane modeled by Eqs. (W2.7). However, the signs on θ and θ̈ in the
top Eq. (W2.9) are opposite, thus indicating instability, which is the
characteristic of an inverted pendulum.

The transfer function, again without friction, is

�′(s)
U(s)

= mpl

((I +mpl2)−m2
pl2)s2 −mpgl(mt +mp)

. (W2.10)

W2.1 Additional Problems for Translational and
Rotational Systems

Assume the driving force on the hanging crane of Fig. W2.2 is provided
by a motor mounted on the cab with one of the support wheels con-
nected directly to the motor’s armature shaft. The motor constants are
Ke and Kt, and the circuit driving the motor has a resistance Ra and
negligible inductance. The wheel has a radius r. Write the equations of
motion relating the applied motor voltage to the cab position and load
angle.

Solution. The dynamics of the hanging crane are given by Eqs. (W2.5)
and (W2.6),

(
I +mpl2

)
θ̈ +mpgl sin θ = −mplẍ cos θ ,

(
mt +mp

)
ẍ+ bẋ+mplθ̈ cos θ −mplθ̇2 sin θ = u,

where x is the position of the cab, θ is the angle of the load, and u is the
applied force that will be produced by the motor. Our task here is to
find the force applied by the motor. Normally, the rotational dynamics
of a motor is

J1θ̈m + b1θ̇m = Tm = Ktia,

where the current is found from the motor circuit, which reduces to

Raia = Va − Keθ̇m,

1The inverted pendulum is often described with the angle of the pendulum being positive
for clockwise motion. If defined that way, then reverse the sign on all terms in Eq. (W2.9)
in θ ′ or θ̈ ′.
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for the case where the inductance is negligible. However, since the
motor is geared directly to the cab, θm and x are related kinematically by

x = rθm,

and we can neglect any extra inertia or damping from the motor itself,
compared to the inertia and damping of the large cab. Therefore, we
can rewrite the two motor equations in terms of the force applied by the
motor on the cab

u = Tm/r = Ktia/r,

ia = (Va − Keθ̇m)/Ra,

where
θ̇m = ẋ/r.

These equations, along with
(

I +mpl2
)
θ̈ +mpgl sin θ = −mplẍ cos θ ,

(
mt +mp

)
ẍ+ bẋ+mplθ̈ cos θ −mplθ̇2 sin θ = u,

constitute the required relations.
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W3.2.3 Mason’s Rule and the Signal-Flow Graph
A compact alternative notation to the block diagram is given by the

�
signal-flow graph introduced by S. J. Mason (1953, 1956). As with the
block diagram, the signal-flow graph offers a visual tool for representing
the causal relationships between the components of the system. The
method consists of characterizing the system by a network of directed
branches and associated gains (transfer functions) connected at nodes.
Several block diagrams and their corresponding signal-flow graphs are
shown in Fig. W3.1. The two ways of depicting a system are equivalent,
and you can use either diagram to apply Mason’s rule (to be defined
shortly).

In a signal-flow graph, the internal signals in the diagram, suchSignal-flow graph
as the common input to several blocks or the output of a summing
junction, are called nodes. The system input point and the system out-
put point are also nodes; the input node has outgoing branches only,
and the output node has incoming branches only. Mason defined a path
through a block diagram as a sequence of connected blocks, the route
passing from one node to another in the direction of signal flow of the
blocks without including any block more than once. A forward path is a
path from the input to output such that no node is included more than
once. If the nodes are numbered in a convenient order, a forward path
can be identified by the numbers that are included. Any closed path that
returns to its starting node without passing through any node more than
once is a loop, and a path that leads from a given variable back to the
same variable is a loop path. The path gain is the product of component
gains (transfer functions) making up the path. Similarly, the loop gain
is the path gain associated with a loop—that is, the product of gains in
a loop. If two paths have a common component, they are said to touch.
Notice particularly in this connection that the input and the output of
a summing junction are not the same and that the summing junction is
a one-way device from its inputs to its output.

Mason’s rule relates the graph to the algebra of the simultane-
ous equations it represents.1 Consider Fig. W3.1c, where the signal
at each node has been given a name and the gains are marked. Then
the block diagram (or the signal-flow graph) represents the system of
equations:

1The derivation is based on Cramer’s rule for solving linear equations by determinants
and is described in Mason’s papers.

38
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Figure W3.1
Block diagrams and corresponding signal-flow graphs

X1(s) = X3(s)+ U(s),

X2(s) = G1(s)X1(s)+ G2(s)X2(s)+ G4(s)X3(s),

Y(s) = 1X3(s).

Mason’s rule states that the input–output transfer function associatedMason’s rule
with a signal-flow graph is given by

G(s) = Y(s)
U(s)

= 1
�

∑
i

Gi�i,

where

Gi = path gain of the ith forward path,

� = the system determinant
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= 1−∑
(all individual loop gains) +∑

(gain products of all possible

two loops that do not touch) −∑
(gain products of all possible

three loops that do not touch) + . . . ,
�i = ith forward path determinant

= value of � for that part of the block diagram that does not touch
the ith forward path.

We will now illustrate the use of Mason’s rule with some examples.

EXAMPLE W3.1 Mason’s Rule in a Simple System

Find the transfer function for the block diagram in Fig. W3.2.

Solution. From the block diagram shown in Fig. W3.2, we have

Forward Path Path Gain

1236 G1 = 1
(

1
s

)
(b1)(1)

12346 G2 = 1
(

1
s

)(
1
s

)
(b2)(1)

123456 G3 = 1
(

1
s

)(
1
s

)(
1
s

)
(b3)(1)

Loop Path Gain
232 l1 = −a1/s

2342 l2 = −a2/s2

23452 l3 = −a3/s3

©
+

++

©
+

+
+

+

1
U(s)

-a1

2

x1c

3

b1

x2c

4

-a2

-a3

b2

x3c

5
b3

6
Y(s)

1
s

1
s

1
s

Figure W3.2
Block diagram for Example W3.1
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and the determinants are

� = 1 −
(
−a1

s
− a2

s2 − a3

s3

)
+ 0,

�1 = 1 − 0,

�2 = 1 − 0,

�3 = 1 − 0.

Applying Mason’s rule, we find the transfer function to be

G(s) = Y(s)
U(s)

= (b1/s)+ (b2/s2)+ (b3/s3)

1 + (a1/s)+ (a2/s2)+ (a3/s3)

= b1s2 + b2s + b3

s3 + a1s2 + a2s + a3
.

Mason’s rule is particularly useful for more complex systems where
there are several loops, some of which do not sum into the same point.

EXAMPLE W3.2 Mason’s Rule in a Complex System

Find the transfer function for the system shown in Fig. W3.3.

Solution. From the block diagram, we find that

Forward Path Path Gain
12456 G1 = H1H2H3

1236 G2 = H4

Loop Path Gain
242 l1 = H1H5 (does not touch l3)
454 l2 = H2H6
565 l3 = H3H7 (does not touch l1)

236542 l4 = H4H7H6H5

H4

H6

H2 ©
+

+
H3

3

5

©
+

+

H7

6
Y©

+

+
4

H1

H5

©
+

+ 2

1
U

Figure W3.3
Block diagram for Example W3.2
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and the determinants are

� = 1 − (H1H5 + H2H6 + H3H7 + H4H7H6H5)+ (H1H5H3H7),

�1 = 1 − 0,

�2 = 1 − H2H6.

Therefore,

G(s) = Y(s)
U(s)

= H1H2H3 + H4 − H4H2H6
1 − H1H5 − H2H6 − H3H7 − H4H7H6H5 + H1H5H3H7

.

Mason’s rule is useful for solving relatively complicated block dia-
grams by hand. It yields the solution in the sense that it provides an
explicit input–output relationship for the system represented by the
diagram. The advantage compared with path-by-path block-diagram
reduction is that it is systematic and algorithmic rather than problem
dependent. Matlab and other control systems computer-aided soft-
ware allow you to specify a system in terms of individual blocks in an
overall system, and the software algorithms perform the required block-
diagram reduction; therefore, Mason’s rule is less important today than
in the past. However, there are some derivations that rely on the con-
cepts embodied by the rule, so it still has a role in the control designer’s
toolbox.
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Routh Special Cases

If only the first element in one of the rows is zero, then we can consider

�

a modified equation with one of the coefficients perturbed by ε > 0 and
applying the test by taking the limit as ε → 0.

EXAMPLE W3.3 Routh’s Test for Special Case I

Consider the polynomial

a(s) = s5 + 3s4 + 2s3 + 6s2 + 6s+ 9.

Determine whether any of the roots are in the RHP.

Solution. In this example, let the coefficient of s3 be 2 + ε. The test
follows from there. The Routh array is

s5: 1 2 6
s4: 3 6 9
s3: ε 3 0
s2: 6ε−9

ε
9 0

s: 3− 3ε2

2ε−3 0 0
s0: 9 0.

There are two sign changes in the first column of the array, which means
there are two poles not in the LHP.1

Another special2 case occurs when an entire row of the Routh arraySpecial case II
is zero. This indicates that there are complex conjugate pairs of roots
that are mirror images of each other with respect to the imaginary axis.
To apply Routh’s test correctly, we follow the ensuing procedure. If
the ith row is zero, we form an auxiliary equation from the previous
(nonzero) row:

a1(s) = β1si+1 + β2si−1 + β3si−3 + · · · . (W3.1)

Here {βi} are the coefficients of the (i + 1)th row in the array. We then
replace the ith row by the coefficients of the derivative of the auxiliary
polynomial and complete the array. However, the roots of the auxiliary
polynomial in Eq. (W3.1) are also roots of the characteristic equation,
and these must be tested separately.

1The actual roots computed with Matlab are at −2.9043, 0.6567 ± 1.2881j, −0.7046 ±
0.9929j.
2Special case II.
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EXAMPLE W3.4 Routh Test for Special Case II

For the polynomial

a(s) = s5 + 5s4 + 11s3 + 23s2 + 28s+ 12,

determine whether there are any roots on the jω axis or in the RHP.

Solution. The Routh array is

s5 : 1 11 28
s4 : 5 23 12
s3 : 6.4 25.6 0
s2 : 3 12
s : 0 0 ← a1(s) = 3s2 + 12

New s : 6 0 ← da1(s)
ds = 6s

s0 : 12.

There are no sign changes in the first column. Hence all the roots have
negative real parts except for a pair on the imaginary axis. We may
deduce this as follows: When we replace the zero in the first column
by ε > 0, there are no sign changes. If we let ε < 0, then there are two
sign changes. Thus, if ε = 0, there are two poles on the imaginary axis,
which are the roots of

a1(s) = 3s2 + 12 = 0,

or
s = ±j2.

This agrees with the fact that the actual roots are at −3, ±2j, −1, and
−1, as computed using the roots command in Matlab.
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System Identification

W3.7.1 A Perspective on System Identification
In order to design controls for a dynamic system, it is necessary to have
a model that will adequately describe the system’s dynamics. The infor-
mation available to the designer for this purpose is typically of three
kinds.

1. Physical model: First, there is the knowledge of physics, chem-
istry, biology, and the other sciences which have over the years devel-
oped equations of motion to explain the dynamic response of rigid and
flexible bodies, electric circuits and motors, fluids, chemical reactions,
and many other constituents of systems to be controlled. The model
based on this knowledge is referred to as a “physical” model. There are
many advantages to this approach, including ease of controller devel-
opment and testing. One disadvantage of this approach is that a fairly
high-fidelity physical model must be developed.

2. Black box model: It is often the case that for extremely com-
plex physical phenomena the laws of science are not adequate to give
a satisfactory description of the dynamic plant that we wish to con-
trol. Examples include the force on a moving airplane caused by a
control surface mounted on a wing, and the heat of combustion of a fos-
sil fuel of uncertain composition. In these circumstances, the designer
turns to data taken from experiments directly conducted to excite the
plant and measure its response. The second approach uses an empir-
ical or heuristic model referred to as the “black box” model. In this
approach, the control engineer injects open-loop commands into the
system and records the sensor response. The process of constructing
models from experimental data is called system identification. Standard
system identification techniques (for example, linear least-squares) are
used to identify a dynamic input/output model. The advantage of this
technique is that the control engineer does not need to have a deep
understanding of how the system physically behaves, but instead can
design a controller solely based on the derived model. There are several
major disadvantages to this approach. First, the control engineer must
have access to working hardware. Another serious disadvantage of this
approach is that it does not provide insight or physical understanding
of how specific hardware modifications will affect the control—usually
hardware modifications require the control engineer to repeat the full
cycle of system identification, control design, and validation. The
advantage of this approach is that we use logic and data to model
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inputs and outputs, and the detailed knowledge of the physics is not
required.

3. Grey box model: The third approach is the use of the combination
of physical and empirical models referred to as “grey box” modeling.

In identifying models for control, our motivation is very different
from that of modeling as practiced in the sciences. In science, one seeks
to develop models of nature as it is; in control, one seeks to develop
models of the plant dynamics that will be adequate for the design of a
controller that will cause the actual dynamics to be stable and to give
good performance. The initial design of a control system typically con-
siders a small signal analysis and is based on models that are linear and
time-invariant (LTI). This is referred to as a “control relevant” model.
Having accepted that the model is to be linear, we still must choose
between several alternative descriptions of linear systems. If we exam-
ine the design methods described in the earlier chapters, we find that
the required plant models may be grouped in two categories: paramet-
ric and nonparametric. For design via root locus or pole assignment,
we require a parametric description such as a transfer function or a
state-variable description from which we can obtain the poles and zeros
of the plant. These equivalent models are completely described by the
numbers that specify the coefficients of the polynomials, the elements of
the state-description matrices, or the numbers that specify the poles and
zeros. In either case, we call these numbers the parameters of the model,
and the category of such models is a parametric description of the plantParametric model
model.

In contrast to parametric models, the frequency-response meth-
ods of Nyquist, Bode, and Nichols require the curves of amplitude
and phase of the transfer function G(jω) = Y(jω)/U(jω) as functions
of ω. Clearly, if we happen to have a parametric description of the
system, we can compute the transfer function and the corresponding
frequency response. However, if we are given the frequency response or
its inverse transform, the impulse response, without parameters (per-
haps obtained from experimental data), we have all we need to design a
lead, lag, notch, or other compensation to achieve a desired bandwidth,
phase margin, or other frequency response performance objective with-
out ever knowing what the parameters are. We call the functional curves
of G(jω) a nonparametric model because, in principle, there is no finiteNonparametric model
set of numbers that describes it exactly.

Because of the large data records necessary to obtain effective mod-
els and the complexity of many of the algorithms used, the use of
computer aids is essential in identification. Developments such as Mat-
lab’s System Identification Toolbox are enormous aids to the practical
use of the system identification techniques. For detailed discussion on
system identification, the reader is referred to Franklin, Powell, and
Workman (1998).
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W3.7.2 Obtaining Models from Experimental Data
There are several reasons for using experimental data to obtain a model
of the dynamic system to be controlled. In the first place, the best
theoretical model built from equations of motion is still only an approx-
imation of reality. Sometimes, as in the case of a very rigid spacecraft,
the theoretical model is extremely good. Other times, as with many
chemical processes such as papermaking or metalworking, the theoret-
ical model is very approximate. In every case, before the final control
design is done, it is important and prudent to verify the theoretical
model with experimental data. Second, in situations for which the the-
oretical model is especially complicated or the physics of the process
is poorly understood, the only reliable information on which to base
the control design is the experimental data. Finally, the system is some-
times subject to online changes that occur when the environment of the
system changes. Examples include when an aircraft changes altitude or
speed, a paper machine is given a different composition of fiber, or a
nonlinear system moves to a new operating point. On these occasions,
we need to “retune” the controller by changing the control parameters.
This requires a model for the new conditions, and experimental data
are often the most effective, if not the only, information available for the
new model.

There are four kinds of experimental data for generating a model:Our sources of
experimental data

1. Transient response, such as comes from an impulse or a step;
2. Frequency-response data, which result from exciting the system with

sinusoidal inputs at many frequencies;
3. Stochastic steady-state information, as might come from flying an

aircraft through turbulent weather or from some other natural
source of randomness; and

4. Pseudorandom-noise data, as may be generated in a digital com-
puter.

Each class of experimental data has its properties, advantages, and
disadvantages.

Transient-response data are quick and relatively easy to obtain.Transient response
They are also often representative of the natural signals to which the
system is subjected. Thus, a model derived from such data can be reli-
able for designing the control system. On the other hand, in order for
the signal-to-noise ratio to be sufficiently high, the transient response
must be highly noticeable. Consequently, the method is rarely suit-
able for normal operations, so the data must be collected as part of
special tests. A second disadvantage is the data do not come in a
form suitable for standard control systems designs, and some parts
of the model, such as poles and zeros, must be computed from the
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data.1 This computation can be simple in special cases or complex in
the general case.

Frequency-response data (see Chapter 6) are simple to obtain, butFrequency response
substantially more time consuming than transient-response informa-
tion. This is especially so if the time constants of the process are
large, as often occurs in chemical processing industries. As with the
transient-response data, it is important to have a good signal-to-noise
ratio, so obtaining frequency-response data can be very expensive. On
the other hand, as we will see in Chapter 6, frequency-response data
are exactly in the right form for frequency-response design methods;
so once the data have been obtained, the control design can proceed
immediately.

Normal operating records from a natural stochastic environmentStochastic steady-state
at first appear to be an attractive basis for modeling systems, since
such records are by definition nondisruptive and inexpensive to obtain.
Unfortunately, the quality of such data is inconsistent, tending to be
worse just when the control is best, because then the upsets are min-
imal and the signals are smooth. At such times, some or even most
of the system dynamics are hardly excited. Because they contribute
little to the system output, they will not be found in the model con-
structed to explain the signals. The result is a model that represents only
part of the system and is sometimes unsuitable for control. In some
instances, as occurs when trying to model the dynamics of the elec-
troencephalogram (brain waves) of a sleeping or anesthetized person
to locate the frequency and intensity of alpha waves, normal records
are the only possibility. Usually they are the last choice for control
purposes.

Finally, the pseudorandom signals that can be constructed usingPseudorandom noise
(PRBS) digital logic have much appeal. Especially interesting for model mak-

ing is the pseudorandom binary signal (PRBS). The PRBS takes on the
value +A or −A according to the output (1 or 0) of a feedback shift
register. The feedback to the register is a binary sum of various states
of the register that have been selected to make the output period (which
must repeat itself in finite time) as long as possible. For example, with a
register of 20 bits, 220 − 1 (over a million) steps are produced before the
pattern repeats. Analysis beyond the scope of this text has revealed that
the resulting signal is almost like a broadband random signal. Yet this
signal is entirely under the control of the engineer who can set the level
(A) and the length (bits in the register) of the signal. The data obtained
from tests with a PRBS must be analyzed by computer and both special-
purpose hardware and programs for general-purpose computers have
been developed to perform this analysis.

1Ziegler and Nichols (1943), building on the earlier work of Callender et al. (1936), use
the step response directly in designing the controls for certain classes of processes. See
Chapter 4 for details.
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W3.7.3 Models from Transient-Response Data
To obtain a model from transient data, we assume a step response
is available. If the transient is a simple combination of elementary
transients, then a reasonable low-order model can be estimated using
hand calculations. For example, consider the step response shown in
Fig. W3.4. The response is monotonic and smooth. If we assume it is
given by a sum of exponentials, we can write

y(t) = y(∞)+ Ae−αt + Be−βt + Ce−γ t + · · · . (W3.2)

Subtracting off the final value and assuming that−α is the slowest pole,
we write

y− y(∞) ∼= Ae−αt,

log10[y− y(∞)] ∼= log10 A− αt log10 e,
∼= log10 A− 0.4343αt. (W3.3)

This is the equation of a line whose slope determines α and inter-
cept determines A. If we fit a line to the plot of log10[y − y(∞)]
(or log10[y(∞) − y] if A is negative), then we can estimate A and
α. Once these are estimated, we plot y − [y(∞) + Ae−αt], which
as a curve approximates Be−βt and on the log plot is equivalent to
log10 B−0.4345βt. We repeat the process, each time removing the slow-
est remaining term, until the data stop is accurate. Then we plot the
final model step response and compare it with data so we can assess the
quality of the computed model. It is possible to get a good fit to the step
response and yet be far off from the true time constants (poles) of the
system. However, the method gives a good approximation for control of
processes whose step responses look like Fig. W3.4.

EXAMPLE W3.5 Determining the Model from Time-Response Data

Find the transfer function that generates the data given in Table W3.1
and plotted in Fig. W3.5.

Solution. Table W3.1 shows, and Fig. W3.5 implies, that the final value
of the data is y(∞) = 1. We know that A is negative because y(∞)
is greater than y(t). Therefore, the first step in the process is to plot
log10[y(∞) − y], which is shown in Fig. W3.6. From the line (fitted by
eye), the values are

Figure W3.4
A step response
characteristic of many
chemical processes

t

y(t)

1.0
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TABLE W3.1 Step Response Data

t y(t) t y(t)

0.1 0.000 1.0 0.510
0.1 0.005 1.5 0.700
0.2 0.034 2.0 0.817
0.3 0.085 2.5 0.890
0.4 0.140 3.0 0.932
0.5 0.215 4.0 0.975

∞ 1.000

Based on Sinha, N. K. and B. Kuszta,
Modeling and Identification of Dynamic
Systems. NewYork: Van Nostrand, 1983.

Figure W3.5
Step response data in
Table W3.1

y(
t)
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log10 |A| = 0.125,

0.4343α = 1.602− 1.167
�t

= 0.435
1
⇒ α ∼= 1.

Thus

A = −1.33,

α = 1.0.

If we now subtract 1 + Aeαt from the data and plot the log of the
result, we find the plot of Fig. W3.7. Here we estimate

log10 B = −0.48,

0.4343β = −0.48− (−1.7)
0.5

= 2.5,
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Figure W3.6
log10[y(∞)− y]
versus t
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Figure W3.7
log10[y − (1+ Ae−αt)]
versus t
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β ∼= 5.8,

B = 0.33.

Combining these results, we arrive at the y estimate

ŷ(t) ∼= 1− 1.33e−t + 0.33e−5.8t. (W3.4)

Equation (W3.4) is plotted as the colored line in Fig. W3.8 and shows a
reasonable fit to the data, although some error is noticeable near t = 0.

From ŷ(t), we compute

Ŷ(s) = 1
s
− 1.33

s+ 1
+ 0.33

s+ 5.8



main_1 — 2019/2/5 — 12:17 — page 52 — #8

52 Appendix W3.7 System Identification

Figure W3.8
Model fits to the
experimental data
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t)
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0.4

0.2
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-0.2

Data

A = -1.33, a = 1, B = 0.33, b = 5.8

A = -1.37, a = 1, B = 0.37, b = 4.3

= (s+ 1)(s+ 5.8)− 1.33s(s+ 5.8)+ 0.33s(s+ 1)
s(s+ 1)(s+ 5.8)

= −0.58s+ 5.8
s(s+ 1)(s+ 5.8)

.

The resulting transfer function is

G(s) = −0.58(s− 10)
(s+ 1)(s+ 5.8)

.

Notice this method has given us a system with a zero in the RHP,
even though the data showed no values of y that were negative. Very
small differences in the estimated value for A, all of which approxi-
mately fit the data, can cause values of β to range from 4 to 6. This
illustrates the sensitivity of pole locations to the quality of the data and
emphasizes the need for a good signal-to-noise ratio.

By using a computer to perform the plotting, we are better able to
iterate the four parameters to achieve the best overall fit. The data pre-
sentation in Figs. W3.6 and W3.7 can be obtained directly by using a
semilog plot. This eliminates having to calculate log10 and the exponen-
tial expression to find the values of the parameters. The equations of
the lines to be fit to the data are y(t) = Aeαt and y(t) = Beβt, which
are straight lines on a semilog plot. The parameters A and α, or B and
β, are iteratively selected so the straight line comes as close as possi-
ble to passing through the data. This process produces the improved fit
shown by the dashed black line in Fig. W3.8. The revised parameters,
A = −1.37, B = 0.37, and β = 4.3 result in the transfer function

G(s) = −0.22s+ 4.3
(s+ 1)(s+ 4.3)

.

The RHP zero is still present, but it is now located at s ∼= +20 and has
no noticeable effect on the time response.
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This set of data was fitted quite well by a second-order model. In
many cases, a higher-order model is required to explain the data and the
modes may not be as well separated.

If the transient response has oscillatory modes, then these can
sometimes be estimated by comparing them with the standard plots of
Fig. 3.18. The period will give the frequency ωd , and the decay from
one period to the next will afford an estimate of the damping ratio. If
the response has a mixture of modes not well separated in frequency,
then more sophisticated methods need to be used. One such is least-Least-squares system

identification squares system identification, in which a numerical optimization routine
selects the best combination of system parameters so as to minimize the
fit error. The fit error is defined to be a scalar cost function

J =
∑

i

(ydata − ymodel)
2, i = 1, 2, 3, · · · , for each data point,

so fit errors at all data points are taken into account in determining the
best value for the system parameters.

W3.7.3.1 Models from Other Data

As mentioned early in Section 3.1.2, we can also generate a model using
frequency-response data, which are obtained by exciting the system with
a set of sinusoids and plotting G(jω). In Chapter 6, we show how such
plots can be used directly for design. Alternatively, we can use the fre-
quency response to estimate the poles and zeros of a transfer function
using straight-line asymptotes on a logarithmic plot.

The construction of dynamic models from normal stochastic oper-
ating records or from the response to a PRBS can be based either on
the concept of cross-correlation or on the least-squares fit of a discrete
equivalent model, both topics in the field of system identification. They
require substantial presentation and background that are beyond the
scope of this text. An introduction to system identification can be found
in Chapter 8 of Franklin et al. (1998), and a comprehensive treatment
is given in Ljüng (1999). Based largely on the work of Professor Ljüng,
the Matlab Toolbox on Identification provides substantial software to
perform system identification and to verify the quality of the proposed
models.

W3.7.4 Obtaining a Pole-Zero Model from
Frequency-Response Data

As we pointed out earlier, it is relatively easy to obtain the frequency-
response of a system experimentally. Sometimes it is desirable to obtain
an approximate model, in terms of a transfer function, directly from
the frequency response. The derivation of such a model can be done
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to various degrees of accuracy. The method described in this section is
usually adequate and is widely used in practice.

There are two ways to obtain a model from frequency-response
data. In the first case, we can introduce a sinusoidal input, measure
the gain (logarithm of the amplitude ratio of output to input) and the
phase difference between output and input, and accept the curves plot-
ted from this data as the model. Using the methods given in previous
sections, we can derive the design directly from this information. In the
second case, we wish to use the frequency data to verify a mathematical
model obtained by other means. To do so, we need to extract an approx-
imate transfer function from the plots, again by fitting straight lines to
the data, estimating break points (that is, finding the poles and zeros),
and using Fig. 6.3 to estimate the damping ratios of complex factors
from the frequency overshoot. The next example illustrates the second
case.

EXAMPLE W3.6 Transfer Function from Measured Frequency Response

Determine a transfer function from the frequency response plotted in
Fig. W3.9, where frequency f is plotted in hertz.

Solution. Drawing an asymptote to the final slope of −2 (or −40 db
per decade), we assume a break point at the frequency where the phase
is −90◦. This occurs at f1 ∼= 1.66 Hz (ω1 = 2π f1 = 10.4 rad/sec). We
need to know the damping ratio in order to subtract out this second-
order pole. For this, the phase curve may be of more help. Since the
phase around the break-point frequency is symmetric, we draw a line
at the slope of the phase curve at f1 to find that the phase asymptote
intersects the 0◦ line at f0 ∼= 0.71 Hz (or 4.46 rad/sec). This corresponds
to f1/f0 ∼= 2.34, which in time corresponds to ζ ∼= 0.5, as seen on the
normalized response curves in Fig. 6.3b. The magnitude curve with the
second-order factor taken out shows an asymptotic amplitude gain of
about 6.0 db, or a factor of 106.0/20 = 2.0. As this is a gain rise, it occurs
because of a lead compensation of the form

s/a+ 1
s/b+ 1

,

where b/a = 2.0. If we remove the second-order terms in the phase
curve, we obtain a phase curve with a maximum phase of about 20◦,
which also corresponds to a frequency separation of about 2. To locate
the center of the lead compensation, we must estimate the point of max-
imum phase based on the lead term alone, which occurs at the geometric
mean of the two break-point frequencies. The lead center seems to occur
at f2 ∼= 0.3 Hz (or ω2 = 1.88 rad/sec).

Thus, we have the relations
ab(1.88)2 = 3.55,

b
a
= 2,
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Figure W3.9
Experimental frequency
response
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from which we can solve

2a2 = 3.55,

a = 1.33,

b = 2.66.

Our final model is given byModel from measured
response

Ĝ(s) = (s/1.33)+ 1
[(s/2.66)+ 1][(s/10.4)2 + (s/10.4)+ 1]

. (W3.5)

The actual data were plotted from

G(s) = (s/2)+ 1
[(s/4)+ 1][(s/10)2 + (s/10)+ 1]

.



main_1 — 2019/2/5 — 12:17 — page 56 — #12

56 Appendix W3.7 System Identification

As can be seen, we found the second-order term quite easily, but the
location of the lead compensation is off in center frequency by a fac-
tor of 4/2.66 ∼= 1.5. However, the subtraction of the second-order term
from the composite curve was not done with great accuracy, rather, by
reading the curves. Again, as with the transient response, we conclude
that by a bit of approximate plotting we can obtain a crude model (usu-
ally within a factor of 1.4 (±3 db) in amplitude and ±10◦ in phase) that
can be used for control design.

Refinements on these techniques with computer aids are rather
obvious, and an interactive program for removing standard first- and
second-order terms and accurately plotting the residual function would
greatly improve the speed and accuracy of the process. It is also com-
mon to have computer tools that can find the parameters of an assumed
model structure by minimizing the sum of squares of the difference
between the model’s frequency response and the experimental frequency
response.

Further Reading for System Identification:
[1] L. Ljung, Perspectives on System Identification, Annual Reviews

in Control, 34, pp. 1–12, Elsevier, 2010.
[2] L. Ljung, System Identification: Theory for the User, 2nd Ed.,

Prentice-Hall, 1999.
[3] G. F. Franklin, J. D. Powell, M. L. Workman, Digital Control of

Dynamic Systems, 3rd Ed. Ellis-Kagle Press, 1998.
[4] M. B. Tischler and R. K. Remple, Aircraft and Rotorcraft System

Identification: Engineering Methods with Flight-Test Examples, AIAA,
2006.

[5] R. Pintelon and J. Schoukens, System Identification: A Fre-
quency Domain Approach, 2nd ed., Wiley-IEEE Press, 2012.

[6] System Identification Toolbox, The Mathworks.
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Amplitude and Time Scaling

The magnitude of the values of the variables in a problem is often very
different, sometimes so much so that numerical difficulties arise. This
was a serious problem years ago when equations were solved using ana-
log computers, and it was routine to scale the variables so all had similar
magnitudes. Today’s widespread use of digital computers for solving
differential equations has largely eliminated the need to scale a problem
unless the number of variables is very large, because computers are now
capable of accurately handling numbers with wide variations in magni-
tude. Nevertheless, it is wise to understand the principle of scaling for
the few cases in which extreme variations in magnitude exist, and scaling
is necessary or the computer word size is limited.

W3.8.1 Amplitude Scaling
There are two types of scaling that are sometimes carried out: ampli-
tude scaling and time scaling, as we have already seen in Section 3.1.4.
Amplitude scaling is usually performed unwittingly by simply picking
units that make sense for the problem at hand. For the ball levitator,
expressing the motion in millimeters and the current in milliamps would
keep the numbers within a range that is easy to work with. Equations of
motion are sometimes developed in the standard SI units such as meters,
kilograms, and amperes, but when computing the motion of a rocket
going into orbit, using kilometers makes more sense. The equations of
motion are usually solved using computer-aided design software, which
is often capable of working in any units. For higher-order systems, it
becomes important to scale the problem so that system variables have
similar numerical variations. A method for accomplishing the best scal-
ing for a complex system is first to estimate the maximum values for
each system variable, then to scale the system so that each variable varies
between −1 and 1.

In general, we can perform amplitude scaling by defining the scaled
variables for each state element. If

x′ = Sxx, (W3.6)

then

ẋ′ = Sxẋ and ẍ′ = Sxẍ. (W3.7)

57
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We then pick Sx to result in the appropriate scale change, substitute
Eqs. (W3.6) and (W3.7) into the equations of motion, and recompute
the coefficients.

EXAMPLE W3.7 Scaling for the Ball Levitator

The linearized equation of motion for the ball levitator (see Exam-
ple 9.2, Chapter 9) is

δẍ = 1667δx+ 47.6δi, (W3.8)

where δx is in units of meters and δi is in units of amperes. Scale the vari-
ables for the ball levitator to result in units of millimeters and milliamps
instead of meters and amps.

Solution. Referring to Eq. (W3.6), we define

δx′ = Sxδx and δi′ = Siδi,

such that both Sx and Si have a value of 1000 in order to convert δx and
δi in meters and amps to δx′ and δi′ in millimeters and milliamps. Sub-
stituting these relations into Eq. (W3.8) and taking note of Eq. (W3.7)
yields

δẍ′ = 1667δx′ + 47.6
Sx

Si
δi′.

In this case, Sx = Si, so Eq. (W3.8) remains unchanged. Had we scaled
the two quantities by different amounts, there would have been a change
in the last coefficient in the equation.

W3.8.2 Time Scaling
The unit of time when using SI units or English units is seconds.
Computer-aided design software is usually able to compute results accu-
rately no matter how fast or slow the particular problem at hand.
However, if a dynamic system responds in a few microseconds, or if
there are characteristic frequencies in the system on the order of several
megahertz, the problem may become ill-conditioned, so that the numer-
ical routines produce errors. This can be particularly troublesome for
high-order systems. The same holds true for an extremely slow system.
It is therefore useful to know how to change the units of time should
you encounter an ill-conditioned problem.

We define the new scaled time to be

τ = ωot, (W3.9)

such that, if t is measured in seconds and ωo = 1000, then τ will be
measured in milliseconds. The effect of the time scaling is to change the
differentiation so

ẋ = dx
dt
= dx

d(τ/ωo)
= ωo

dx
dτ

, (W3.10)
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and

ẍ = d2x
dt2 = ω2

o
d2x
dτ 2 . (W3.11)

EXAMPLE W3.8 Time Scaling an Oscillator

The equation for an oscillator was derived in Example 2.6. For a case
with a very fast natural frequency ωn = 15,000 rad/sec (about 2 kHz),
Eq. (2.23) can be rewritten as

θ̈ + 15,0002 · θ = 106 · Tc.

Determine the time-scaled equation so that the unit of time is millisec-
onds.

Solution. The value of ωo in Eq. (W3.9) is 1000. Equation (W3.11)
shows that

d2θ

dτ 2 = 10−6 · θ̈ ,

and the time-scaled equation becomes

d2θ

dτ 2 + 152 · θ = Tc.

In practice, we would then solve the equation

θ̈ + 152 · θ = Tc (W3.12)

and label the plots in milliseconds instead of seconds.

W3.8.3 Time and Amplitude Scaling in State-Space
We have already discussed time and amplitude scaling in Chapter 3.
We now extend the ideas to the state-variable form. Time scaling with
τ = ωot replaces Eq. (7.3) with

dx
dτ
= 1
ωo

Ax+ 1
ωo

Bu = Âx+ B̂u. (W3.13)

Amplitude scaling of the state corresponds to replacing x with z =
D−1

x x, where Dx is a diagonal matrix of scale factors. Input scaling
corresponds to replacing u with v = D−1

u u. With these substitutions,

Dxż = 1
ωo

ADxz+ 1
ωo

BDuv. (W3.14)

Then

ż = 1
ωo

D−1
x ADxz+ 1

ωo
D−1

x BDuv = Âz+ B̂v. (W3.15)

Equation (W3.15) compactly expresses the time- and amplitude-scaling
operations. Regrettably, it does not relieve the engineer of the responsi-
bility of actually thinking of good scale factors so scaled equations are
in good shape.
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EXAMPLE W3.9 Time Scaling an Oscillator

The equation for an oscillator was derived in Example 2.6. For a case
with a very fast natural frequency ωn = 15,000 rad/sec (about 2 kHz),
Eq. (2.23) can be rewritten as

θ̈ + 15,0002 · θ = 106 · Tc.

Determine the time-scaled equation so the unit of time is milliseconds.

Solution. In state-variable form with a state vector x = [θ θ̇ ]T , the
unscaled matrices are

A =
[

0 1
−15,0002 0

]
and B =

[
0

106

]
.

Applying Eq. (W3.13) results in

Â =
[

0 1
1000

− 15,0002

1000 0

]
and B̂ =

⎡
⎣ 0

103

⎤
⎦ ,

which yields state-variable equations that are scaled.
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Appendix W4.1.4.1
The Filtered Case

Thus far, the analysis has been based on the simplest open- and closed-
loop structures. A more general case includes a dynamic filter on the
input and also dynamics in the sensor. The filtered open-loop structure
is shown in Fig. W4.1 having the transfer function Tol = GDolF . In
this case, the open-loop controller transfer function has been simply
replaced by DolF , and the discussion given for the unfiltered open-loop
case is easily applied to this change.

For the filtered feedback case shown in Fig. W4.2, the changes are
more significant. In that case, the transform of the system output is
given by

Y = GDclF
1 + GDclH

R + G
1 + GDclH

W − HGDcl

1 + GDclH
V . (W4.1)

As is evident from this equation, the sensor dynamics, H, is part of
the loop transfer function and enters into the question of stability with
DclH replacing the Dcl of the unity feedback case. In fact, if F = H,
then with respect to stability, tracking, and regulation, the filtered case
is identical to the unity case with DclH replacing Dcl . On the other hand,
the filter transfer function F can play the role of the open-loop con-
troller except that here the filter F would be called on to modify the

Y(s)

W(s)

U(s) Plant

G(s)+

+
Controller

Dol(s)

Rf (s)R(s) Filter

F(s) ©

Figure W4.1
Filtered open-loop system
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Figure W4.2
Filtered closed-loop. R = reference, U = control, Y = output, V = sensor noise
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entire loop transfer function, GDcl
1+GDclH

, rather than simply GDol . There-
fore, the filtered closed-loop structure can realize the best properties of
both the open-loop and the unity feedback closed-loop cases. The con-
troller, Dcl , can be designed to effectively regulate the system for the
disturbance W and the sensor noise V , while the filter F is designed to
improve the tracking accuracy. If the sensor dynamics H are accessible
to the designer, this term also can be designed to improve the response
to the sensor noise. The remaining issue is sensitivity.

Using the formula given in Eq. (4.18), with changes in the parame-
ter of interest, we can compute

STcl
F = 1.0, (W4.2)

STcl
G = 1

1 + GDclH
, (W4.3)

STcl
H = − GDclH

1 + GDclH
. (W4.4)

Of these, the most interesting is the last. Notice with respect to H, the
sensitivity approaches unity as the loop gain grows. Therefore it is par-
ticularly important that the transfer function of the sensor be not only
low in noise but also very stable in gain. Money spent on the sensor is
money well spent!

EXAMPLE W4.1 If S is the sensitivity of the filtered feedback system to changes in the
plant transfer function, and T is the transfer function from reference to
output, compute the sum of S + T . Show that S + T = 1 if F = H.

(a) Compute the sensitivity of the filtered feedback system shown in
Fig. W4.2 with respect to changes in the plant transfer function,
G.

(b) Compute the sensitivity of the filtered feedback system shown
in Fig. W4.2 with respect to changes in the controller transfer
function, Dcl .

(c) Compute the sensitivity of the filtered feedback system shown in
Fig. W4.2 with respect to changes in the filter transfer function, F .

(d) Compute the sensitivity of the filtered feedback system shown in
Fig. W4.2 with respect to changes in the sensor transfer function,
H. If S is the sensitivity of the filtered feedback system to changes
in the plant transfer function and T is the transfer function from
reference to output, compute the sum of S+T . Show that S+T = 1
if F = H.

Solution. To answer the first question, we need the answer to part (a),
so let’s start there.
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(a) Applying the formula for sensitivity of T to changes in G:

T = FDclG
1 + DclGH

,

S = G
1 + DclGH

FDclG
(1 + DclGH)FDcl − FDclG(DclH)

(1 + DclGH)2

= 1
1 + DclGH

.

Now

S + T = 1
1 + DclGH

+ FDclG
1 + DclGH

= 1 + FDclG
1 + DclGH

= 1 if F = H. (W4.5)

(b) Applying the formula for sensitivity of T to changes in Dcl :

SD
T = Dcl

1 + DclGH
FDclG

(1 + DclGH)FG − FDclG(GH)

(1 + DclGH)2

= 1
1 + DclGH

.

This is not surprising as Dcl and G are in series.
(c) Applying the formula for sensitivity of T to changes in F :

SF
T = F

1 + DclGH
FDclG

(1 + DclGH)(DclG)

(1 + DclGH)2

1 + DclGH
1 + DclGH

= 1.

In this case, the F term is in the open loop, so it has a sensitivity of
unity.

(d) Applying the formula for sensitivity of T to changes in H,

SH
T = H

1 + DclGH
FDclG

(1 + DclGH)0 − FDclG(DclG)

(1 + DclGH)2

= − DclGH
(1 + DclGH)

.
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Appendix W4.2.2.1
Truxal’s Formula for the Error
Constants

Truxal (1955) derived a formula for the velocity constant of a Type 1 sys-
tem in terms of the closed-loop poles and zeros, which is a formula that
connects the steady-state error to the system’s dynamic response. Since
control design often requires a trade-off between these two characteris-
tics, Truxal’s formula can be useful to know. Its derivation is quite direct.
Suppose the closed-loop transfer function T (s) of a Type 1 system is

T (s) = K
(s− z1)(s− z2) · · · (s− zm)

(s− p1)(s− p2) · · · (s− pn)
. (W4.6)

Since the steady-state error in response to a step input in a Type 1 system
is zero, the DC gain is unity; thus,

T (0) = 1. (W4.7)

The system error is given by

E(s) � R(s)− Y(s) = R(s)
[

1− Y(s)
R(s)

]
= R(s)[1− T (s)]. (W4.8)

The system error due to a unit ramp input is given by

E(s) = 1− T (s)
s2 . (W4.9)

Using the Final Value Theorem, we get

ess = lim
s→0

1− T (s)
s

. (W4.10)

Using L’Hôpital’s rule, we rewrite Eq. (W4.10) as

ess = − lim
s→0

dT
ds

, (W4.11)

or

ess = − lim
s→0

dT
ds
= 1

Kv
. (W4.12)

Equation (W4.12) implies that 1/Kv is related to the slope of the transfer
function at the origin, which is a result shown in Section 6.1.2. Using
Eq. (W4.7), we can rewrite Eq. (W4.12) as

ess = − lim
s→0

dT
ds

1
T , (W4.13)

or

ess = − lim
s→0

d
ds

[ln T (s)]. (W4.14)
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Substituting Eq. (W4.6) into Eq. (W4.14), we get

ess = − lim
s→0

d
ds

{
ln

[
K

∏m
i=1(s− zi)∏n
i=1(s− pi)

]}
, (W4.15)

= − lim
s→0

d
ds

[
ln K +

m∑
i=1

ln(s− zi)−
m∑

i=1

ln(s− pi)

]
, (W4.16)

or
1

Kv
= −d ln T

ds

∣∣∣∣
s=0
=

n∑
i=1

− 1
pi
+

m∑
i=1

1
zi

. (W4.17)

We observe from Eq. (W4.17) that Kv increases as the closed-loop
poles move away from the origin. Similar relationships exist for other
error coefficients, and these are explored in the problems.

EXAMPLE W4.2 Truxal’s Formula

A third-order Type 1 system has closed-loop poles at −2± 2j and −0.1.Truxal’s formula
The system has only one closed-loop zero. Where should the zero be if
a Kv = 10 sec−1 is desired?

Solution. From Truxal’s formula, we have

1
Kv
= − 1
−2+ 2j

− 1
−2− 2j

− 1
−0.1

+ 1
z

,

or

0.1 = 0.5+ 10+ 1
z

,

1
z
= 0.1− 0.5− 10

= −10.4.

Therefore, the closed-loop zero should be at z = 1/− 10.4 = −0.096.
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Appendix W4.5
Introduction to Digital
Control

As a result of the revolution in the cost-effectiveness of digital com-
puters, there has been an increasing use of digital logic in embedded
applications such as controllers in feedback systems. A digital controller
gives the designer much more flexibility to make modifications to the
control law after the hardware design is fixed, because the formula for
calculating the control signal is in the software rather than the hard-
ware. In many instances, this means that the hardware and software
designs can proceed almost independently, saving a great deal of time.
Also, it is relatively easy to include binary logic and nonlinear opera-
tions as part of the function of a digital controller as compared to an
analog controller. Special processors designed for real-time signal pro-
cessing and known as digital signal processors (DSPs) are particularly
well suited for use as real-time controllers. Chapter 8 includes a more
extensive introduction to the math and concepts associated with the
analysis and design of digital controllers and digital control systems.
However, in order to be able to compare the analog designs of the next
three chapters with reasonable digital equivalents, we give here a brief
introduction to the most simple techniques for digital designs.

A digital controller differs from an analog controller in that the sig-
nals must be sampled and quantized.1 A signal to be used in digital logic
needs to be sampled first and then the samples need to be converted by
an analog-to-digital converter or A/D2 into a quantized digital number.
Once the digital computer has calculated the proper next control sig-
nal value, this value needs to be converted back into a voltage and held
constant or otherwise extrapolated by a digital-to-analog converter or
D/A3 in order to be applied to the actuator of the process. The con-
trol signal is not changed until the next sampling period. As a result
of sampling, there are strict limits on the speed and bandwidth of a
digital controller. Discrete design methods that tend to minimize these
limitations are described in Chapter 8. A reasonable rule of thumb
for selecting the sampling period is that, during the rise-time of the

1A controller that operates on signals that are sampled but not quantized is called discrete,
while one that operates on signals that are both sampled and quantized is called digital.
2Pronounced “A to D.”
3Often spelled DAC and pronounced as one word to rhyme with quack.
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response to a step, the input to the discrete controller should be sam-
pled approximately six times. By adjusting the controller for the effects
of sampling, the sample period can be as large as two to three times
per rise time. This corresponds to a sampling frequency that is 10 to
20 times the system’s closed-loop bandwidth. The quantization of the
controller signals introduces an equivalent extra noise into the system;
to keep this interference at an acceptable level, the A/D converter usu-
ally has an accuracy of 10 to 12 bits, although inexpensive systems have
been designed with only 8 bits. For a first analysis, the effects of the
quantization are usually ignored, as they will be in this introduction. A
simplified block diagram of a system with a digital controller is shown in
Fig. W4.3.

For this introduction to digital control, we will describe a simplified
technique for finding a discrete (sampled but not quantized) equivalent
to a given continuous controller. The method depends on the sampling
period, Ts, being short enough that the reconstructed control signal
is close to the signal that the original analog controller would have
produced. We also assume the numbers used in the digital logic have
enough accurate bits so the quantization implied in the A/D and D/A
processes can be ignored. While there are good analysis tools to deter-
mine how well these requirements are met, here we will test our results
by simulation, following the well-known advice that “the proof of the
pudding is in the eating.”

Finding a discrete equivalent to a given analog controller is equiv-
alent to finding a recurrence equation for the samples of the control,
which will approximate the differential equation of the controller. The
assumption is we have the transfer function of an analog controller and
wish to replace it with a discrete controller that will accept samples
of the controller input e(kTs) from a sampler and, using past val-
ues of the control signal u(kTs) and present and past samples of the
input e(kTs), will compute the next control signal to be sent to the
actuator. As an example, consider a PID controller with the transfer
function

U(s) = (kP + kI

s
+ kDs)E(s), (W4.18)

+

-
R Y

e(kT) u(kT)
A/D

T

Digital controller

Dd (z)
© D/A

U Plant

G

Clock

Sensor

H

Figure W4.3
Block diagram of a digital controller
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which is equivalent to the three terms of the time-domain expression

u(t) = kPe(t)+ kI

∫ t

0
e(τ )dτ + kD ė(t), (W4.19)

= uP + uI + uD. (W4.20)

Based on these terms and the fact the system is linear, the next con-
trol sample can be computed term-by-term. The proportional term is
immediate:

uP(kTs + Ts) = kPe(kTs + Ts). (W4.21)

The integral term can be computed by breaking the integral into two
parts and approximating the second part, which is the integral over one
sample period, as follows.

uI (kTs + Ts) = kI

∫ kTs+Ts

0
e(τ )dτ , (W4.22)

= kI

∫ kTs

0
e(τ )dτ + kI

∫ kTs+Ts

kTs

e(τ )dτ , (W4.23)

= uI (kTs)+ {area under e(τ ) over one period}, (W4.24)

∼= uI (kTs)+ kI
Ts

2
{e(kTs + Ts)+ e(kTs)}. (W4.25)

In Eq. (W4.25), the area in question has been approximated by that of
the trapezoid formed by the base Ts and vertices e(kTs+Ts) and e(kTs),
as shown by the dashed line in Fig. W4.4.

The area also can be approximated by the rectangle of amplitude
e(kTs) and width Ts shown by the solid blue in Fig. W4.4 to give
uI (kTs + Ts) = uI (kTs)+ kI Tse(kTs). These and other possibilities are
considered in Chapter 8.

In the derivative term, the roles of u and e are reversed from inte-
gration and the consistent approximation can be written down at once
from Eqs. (W4.25) and (W4.19) as

Ts

2
{uD(kTs + Ts)+ uD(kTs)} = kD{e(kTs + Ts)− e(kTs)}. (W4.26)

As with linear analog transfer functions, these relations are greatly sim-
plified and generalized by the use of transform ideas. At this time, the

Figure W4.4
Graphical
interpretation of
numerical integration

x
.

ti

x
. = f (x, u)

x
. dt

x
. (ti)

tti + 1
0

t

0
µ
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discrete transform will be introduced simply as a prediction operator
z much as if we described the Laplace transform variable, s, as a dif-
ferential operator.4 Here we define the operator z as the forward shift
operator in the sense that if U(z) is the transform of u(kTs) then zU(z)
will be the transform of u(kTs + Ts). With this definition, the integral
term can be written as

zUI (z) = UI (z)+ kI
Ts

2
[zE(z)+ E(z)] , (W4.27)

UI (z) = kI
Ts

2
z+ 1
z− 1

E(z), (W4.28)

and from Eq. (W4.26), the derivative term becomes the inverse as

UD(z) = kD
2

Ts

z− 1
z+ 1

E(z). (W4.29)

The complete discrete PID controller is thus described by

U(z) =
(

kP + kI
Ts

2
z+ 1
z− 1

+ kD
2

Ts

z− 1
z+ 1

)
E(z). (W4.30)

Comparing the two discrete equivalents of integration and differentia-
tion with the corresponding analog terms, it is seen that the effect of the
discrete approximation in the z domain is as if everywhere in the ana-
log transfer function the operator s has been replaced by the composite
operator 2

Ts

z−1
z+1 . This is the trapezoid rule5 of discrete equivalents and

is usually referred to as Tustin’s Method.Trapezoid rule or Tustin’s
Method The discrete equivalent to Dc(s) is

Dd (z) = Dc

(
2

Ts

z− 1
z+ 1

)
. (W4.31)

EXAMPLE W4.3 Discrete Equivalent

Find the discrete equivalent to the analog controller having transfer
function

Dc(s) = U(s)
E(s)

= 11s+ 1
3s+ 1

, (W4.32)

using the sample period Ts = 1.

Solution. The discrete operator is 2(z−1)
z+1 and thus the discrete transfer

function is

Dd(z) = U(z)
E(z)

= Dc(s)|
s= 2

Ts

z− 1
z+ 1

,
(W4.33)

=
11

[
2(z−1)

z+1

]
+ 1

3
[

2(z−1)
z+1

]
+ 1

. (W4.34)

4This is defined as the z-transform in Chapter 8.
5The formula is called Tustin’s method after the English engineer who used the technique
to study the responses of nonlinear circuits.
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Clearing fractions, the discrete transfer function is

Dd(z) = U(z)
E(z)

= 23z− 21
7z− 5

. (W4.35)

Converting the discrete transfer function to a discrete difference equa-
tion using the definition of z as the forward shift operator is done as
follows. First we cross-multiply in Eq. (W4.35) to obtain

(7z− 5)U(z) = (23z− 21)E(z), (W4.36)

and interpreting z as a shift operator, this is equivalent to the difference
equation6

7u(k + 1)− 5u(k) = 23e(k + 1)− 21e(k), (W4.37)

where we have replaced kTs + Ts with k + 1 to simplify the notation.
To compute the next control at time kTs + Ts, therefore, we solve the
difference equation

u(k+ 1) = 5
7

u(k)+ 23
7

e(k+ 1)− 21
7

e(k). (W4.38)

Now let’s apply these results to a control problem. Fortunately,
Matlab provides us with the Simulink capability to simulate both con-
tinuous and discrete systems allowing us to compare the responses of
the systems with continuous and discrete controllers.

EXAMPLE W4.4 Equivalent Discrete Controller for Speed Control

A motor speed control is found to have the plant transfer function

Y
U
= 45
(s+ 9)(s+ 5)

. (W4.39)

A PI controller designed for this system has the transfer function

Dc(s) = U
E
= 1.4

s+ 6
s

. (W4.40)

The closed-loop system has a rise time of about 0.2 sec, and an over-
shoot of about 20%. Design a discrete equivalent to this controller and
compare the step responses and control signals of the two systems: (a)
Compare the responses if the sample period is 0.07, which is about three
samples per rise time. (b) Compare the responses with a sample period
of Ts = 0.035 sec, which corresponds to about six samples per rise time.

6The process is entirely similar to that used in Chapter 3 to find the ordinary differential
equation to which a rational Laplace transform corresponds.
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Step

+-

+-

PI Control s+6
s

PI Control

Discrete
 z-1

Slider Kc
1.4

Mux

Tau 1

9
s+9

Tau 2

5
s+5

Mux 1
Control Output

Slider Kd
1.4

Tau 1

9
s+9

Tau 2

5
s+5

1.21z-0.79

Figure W4.5
Simulink block diagram to compare continuous and discrete controllers
Source: Reprinted with permission of The MathWorks, Inc.

Solution. (a) Using the substitution given by Eq. (W4.31), the discrete
equivalent for Ts = 0.07 sec is given by replacing s by s ← 2

0.07
z−1
z+1 in

Dc(s) as

Dd(z) = 1.4

2
0.07

z− 1
z+ 1

+ 6

2
0.07

z− 1
z+ 1

, (W4.41)

= 1.4
2(z− 1)+ 6 ∗ 0.07(z+ 1)

2(z− 1)
, (W4.42)

= 1.4
1.21z− 0.79
(z− 1)

. (W4.43)

Based on this expression, the equation for the control is (the sample
period is suppressed)

u(k+ 1) = u(k)+ 1.4 ∗ [1.21e(k + 1)− 0.79e(k)]. (W4.44)

(b) For Ts = 0.035 sec, the discrete transfer function is

Dd(z) = 1.4
1.105z− 0.895

z− 1
, (W4.45)

for which the difference equation is

u(k+ 1) = u(k)+ 1.4[1.105 e(k + 1)− 0.895 e(k)].

A Simulink block diagram for simulating the two systems is given
in Fig. W4.5, and plots of the step responses are given in Fig. W4.6a.
The respective control signals are plotted in Fig. W4.6b. Notice the dis-
crete controller for Ts = 0.07 sec results in a substantial increase in the
overshoot in the step response, while with Ts = 0.035 sec, the digital
controller matches the performance of the analog controller fairly well.

For controllers with many poles and zeros, making the continuous-
to-discrete substitution called for in Eq. (W4.31) can be very tedious.
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0 0

0.5

1.0

1.5

2.0

2.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(a) (b)

Time (sec) Time (sec)

Digital controller (Ts = 0.07 sec)

Continuous controller

Discrete controller (Ts = 0.035 sec)
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Discrete controller (Ts = 0.035 sec)

Figure W4.6
Comparison plots of a speed control system with continuous and discrete controllers: (a) output
responses and (b) control signals

Fortunately, Matlab provides a command that does all the work. If one
has a continuous transfer function given by Dc(s) = numD

denD represented
in Matlab as sysDc = tf(numD,denD), then the discrete equivalent with
sampling period Ts is given by

sysDd = c2d(sysDc,Ts,'t'). (W4.46)

In this expression, of course, the polynomials are represented in Mat-
lab form. The last parameter in the c2d function given by ‘t’ calls for
the conversion to be done using Tustin’s method. The alternatives can
be found by asking Matlab for help c2d. For example, to compute the
polynomials for Ts = 0.07 sec for Example W4.4, the commands would
be

numD= [1 6];
denD= [1 0];
sysDc= tf(numD,denD)
sysDd= c2d( sysDc,0.07,'t')
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Sensitivity of Time Response to
Parameter Change

We have considered the effects of errors on the steady-state gain of a
dynamic system and showed how feedback control can reduce these
errors. Since many control specifications are in terms of the step
response, the sensitivity of the time response to parameter changes is
sometimes very useful to explore. For example, by looking at the sensi-
tivity plot, we can tell if increasing a particular parameter will increase
or decrease the overshoot of the response.1 The following analysis is
also a good exercise in small-signal linearization.

To consider the sensitivity of the output y(t, θ) of a system having
a parameter of interest, θ , we compute the effect of a perturbation in
the parameter, δθ , on the nominal response by using the Taylor’s series
expansion

y(t, θ + δθ) = y(t, θ)+ ∂y
∂θ
δθ + · · · . (W4.47)

The first-order approximation of the parameter perturbation effect is
the term

δy(t) = ∂y
∂θ
δθ . (W4.48)

This function can be generated from the system itself as shown by
Perkins et al., 1991. We assume the response depends linearly on the
parameter, and therefore that the overall transfer function T(s, θ) is
composed of component transfer functions that can be defined to bring
out the dependence on the parameter explicitly. A block diagram of the
transfer function in terms of the components Tij (s) can be expressed as
shown in Fig. W4.7, where we have labeled the parameter as θ and its

Figure W4.7
Block diagram showing
the dependence of
output Y on parameter θ

T11 ©
+

+
+

+
Y

T12
X Z V

u T21

T22

©

R

1As we see in Chapter 5, the development of the Matlab root locus interface rltool gives
the designer a computer aid to this result.
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input signal as Z. In terms of this block diagram, the equations relating
Y and Z to the reference input can be written immediately.

Y = T11R + T21θZ, (W4.49)

Z = T12R + T22θZ. (W4.50)

The perturbed equations are

Y + δY = T11R + T21(θ + δθ)(Z + δZ), (W4.51)

Z + δZ = T12R + T22(θ + δθ)(Z + δZ). (W4.52)

Multiplying these out and ignoring the small term δθδZ, the expressions
for the perturbations in Y and Z are given by

δY = T21(Zδθ + θδZ), (W4.53)

δZ = T22(Zδθ + θδZ). (W4.54)

The solutions to these equations can be best presented as a block dia-

gram, shown in Fig. W4.8a. The output of this figure is δY = ∂y
∂θ
δθ ,

and we notice the input Z is multiplied by a gain of δθ . Therefore, if we

drop the block δθ , the output will be simply
∂y
∂θ

as shown in Fig. W4.8b.

Finally, to compute the sensitivity as the variation to a percent change

in the parameter, which is
∂y
∂ ln θ

=
∂y(t, θ)
∂θ
∂ ln θ
∂θ

= θ
∂y
∂θ

, we need only shift

the input Z from the output side of the θ block to its input, as shown in
Fig. W4.8c. We are now in a position to give the final block diagram of
the system as it is to be implemented, as shown in Fig. W4.9.

In this figure, it is clear that, to compute the sensitivity of the output
to a parameter, one needs to simulate two copies of the system. The
input to the first system is the reference input of interest, and the input
to the second system is at the input to the parameter of interest of the
variable Z taken from the input to the parameter in the original system.
The transfer function from the reference input to the output sensitivity
is readily computed to be

T12θT21

(1 − θT22)
2 . (W4.55)

From this function, it is clear that:

Response sensitivity To keep the sensitivity of the output signal to a parameter
change low, it is important to have feedback with high gain
around the parameter in question.
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Figure W4.8
Block diagrams showing
the generation of (a) δY

and δZ; (b)
∂y

∂θ
; and (c)

θ
∂y

∂θ
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+

+
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Figure W4.9
Block diagram showing
the computation of

θ
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Figure W4.10
Block diagram showing
the computation of the
sensitivity of the output
of the speed control
example
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EXAMPLE W4.5 Time-Domain Sensitivity

Compute the sensitivity of the output of the speed control example
shown in the upper portion of Fig. W4.10 with respect to the control
gain, Kcl. Take the nominal values to be Kcl = 9, τ = 0.01 sec, and
A = 1 rad/volt-sec.
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Solution. The required block diagram for the computation is given in
Fig. W4.10 based on Fig. W4.9. In Matlab, we will construct the sev-

eral transfer functions with Tij = nij

dij
and implement Eq. (W4.55). For

comparison, we compute the nominal response from Fig. W4.7 and add
10% of the sensitivity to the nominal response. The instructions to do
the computation in Matlab are

% script to compute sensitivity for Fig. W4.10
% First input the data for the component transfer functions Tij
% and the nominal parameter, Kcl for this problem
Kcl=9; tau=0.01;
n11=0; d11=1;
n12=1; d12=1;
n22=[0 -1]; d22= [tau 1];
n21=1; d21=[tau 1];
% Now compute the numerator and denominator polynomials of the
transfer functions
% using the convolution function conv to multiply the polynomials
% and put them into system transfer function forms with the Matlab
function tf.
% The over-all transfer function is
% Y/R =n11/d11 + (n12*n21*d22)/(d12*d21*[d22-Kcl*n22]) = sysy
% The transfer function from the reference input to the sensitivity is
% Kcl*(dy/dKcl)/R = sysdy
%Now define the numerators and denominators of several intermediate
transfer functions
n1=Kcl*conv(n21,n12);
d1=conv(d21,d12);
n2=d22;
d2=[d22-Kcl*n22];
ny=conv(n1,n2);
dy=conv(d1,d2);
% Now put these together to form two intermediate transfer functions
sysy1 = tf(ny,dy);
sysy2 = tf(n11,d11);
% Now construct the final transfer functions
% The overall transfer function Y/R
sysy=sysy1+sysy2;
% The sensitivity transfer function
ndy=conv(ny,n2);
ddy=conv(dy,d2);
sysdy=tf(ndy,ddy);
% Now use these to compute the step responses and
% plot the output, the sensitivity and a perturbed response
[y,t]=step(sysy);
[yd,t]=step(sysdy);
plot(t,[y yd y+.1*yd]);
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Figure W4.11
Plots of the output, the
sensitivity, and the
result of a 10% change
in the parameter value
for the speed control
example
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These instructions are constructed to compute the sensitivity for
any system, given the several transfer functions. The script input is for
the specific example. Plots of the output, its sensitivity, and the result of
a 10% change in the parameter value are given in Fig. W4.11.
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Appendix W5.4.4
Analog and Digital
Implementations

Lead compensation can be physically realized in many ways. In analog
electronics, a common method is to use an operational amplifier, an
example of which is shown in Fig. W5.1. The transfer function of the
circuit in Fig. W5.1 is readily found by the methods of Chapter 2 to be

Dlead(s) = −a
s + z
s + p

, (W5.1)

where
a = p

z
, if Rf = R1 + R2,

z = 1
R1C

,

p = R1 + R2

R2
· 1

R1C
.

If a design for Dc(s) is complete and a digital implementation is
desired, then the technique of Appendix W4.5 can be used by first select-
ing a sampling period Ts and then making substitution of 2

Ts

z−1
z+1 for s.

For example, consider the lead compensation Dc(s) = s+2
s+13 . Then, since

the rise time is about 0.3, a sampling period of six samples per rise time
results in the selection of Ts = 0.05 sec. With the substitution of 2

0.05
z−1
z+1

for s into this transfer function, the discrete transfer function is

U(z)
E(z)

= 40 z−1
z+1 + 2

40 z−1
z+1 + 13

= 1.55z − 1.4
1.96z − 1

. (W5.2)

Clearing fractions and using the fact that operating on the time
functions zu(kTs) = u(kTs + Ts), we see that Eq. (W5.2) is equivalent
to the formula for the controller given by

Figure W5.1
Possible circuit of a lead
compensation

- V0Vin

Rf
C

R2R1

78



main_1 — 2019/2/5 — 13:59 — page 79 — #2

Appendix W5.4.4 Analog and Digital Implementations 79

u(kTs + Ts) = 1
1.96

u(kTs) + 1.55
1.96

e(kTs + Ts) − 1.4
1.96

e(kTs). (W5.3)

The Matlab commands to generate the discrete equivalent controller are

sysC=tf([1 2],[1 13]);
sysD=c2D(sysC,0.05,‘tustin’)

Fig. W5.2 shows the Simulink diagram for implementing the dig-
ital controller. The result of the simulation is contained in Fig. W5.3,
which shows the comparison of analog and digital control outputs, and
Fig. W5.4, which shows the analog and digital control outputs.
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Figure W5.2
Simulink diagram for comparison of analog and digital control
Source: Reprinted with permission of The MathWorks, Inc.
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Figure W5.4
Comparison of analog
and digital control time
histories
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Possible circuit of lag
compensation
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As with lead compensation, lag or notch compensation can be
implemented using a digital computer and following the same proce-
dure. However, they too can be implemented using analog electronics,
and a circuit diagram of a lag network is given in Fig. W5.5. The transfer
function of this circuit can be shown to be

Dc(s) = −a
s + z
s + p

,

where

a = R2

Ri
,

z = R1 + R2

R1R2C
,

p = 1
R1C

.

Usually Ri = R2, so the high-frequency gain is unity, or a = 1, and the
low-frequency increase in gain to enhance Kv or other error constant is
set by k = a z

p = R1+R2
R2

.
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Appendix W5.6.3
Root Locus with Time Delay

Time delays often arise in control systems, both from delays in the pro-
cess itself and from delays in the processing of sensed signals. Chemical
plants often have processes with a time delay representing the time mate-
rial takes to be transported via pipes or other conveyer. In measuring
the attitude of a spacecraft en route to Mars, there is a significant time
delay for the sensed quantity to arrive back on Earth due to the speed
of light. There is also a small time delay in any digital control system
due to the cycle time of the computer and the fact that data is pro-
cessed at discrete intervals. Time delay always reduces the stability ofTime delays always reduce

the stability of a system a system; therefore, it is important to be able to analyze its effect. In
this section, we will discuss how to use the root locus for such analysis.
Although an exact method of analyzing time delay is available in the
frequency-response methods described in Chapter 6, knowing several
different ways to analyze a design provides the control designer with
more flexibility and an ability to check the candidate solutions.

Consider the problem of designing a control system for the tem-
perature of the heat exchanger described in Chapter 2. The transfer
function between the control As and the measured output tempera-
ture Tm is described by two first-order terms plus a time delay Td ofAn example of a root locus

with time delay 5 sec. The time delay results because the temperature sensor is physi-
cally located downstream from the exchanger, so there is a delay in its
reading. The transfer function is

G(s) = e−5s

(10s+ 1)(60s+ 1)
, (W5.4)

where the e−5s term arises from the time delay.1

The corresponding root-locus equations with respect to propor-
tional gain K are

1+ KG(s) = 0,

1+ K
e−5s

(10s+ 1)(60s+ 1)
= 0,

600s2 + 70s+ 1+ Ke−5s = 0. (W5.5)

How would we plot the root locus corresponding to Eq. (W5.5)? Since it
is not a polynomial, we cannot proceed with the methods used in previ-
ous examples. So we reduce the given problem to one we have previously

1Time delay is often referred to as “transportation lag” in the process industries.
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solved by approximating the nonrational function e−5s with a rational
function. Since we are concerned with control systems, and hence typi-
cally with low frequencies, we want an approximation that will be good
for small s.2 The most common means for finding such an approxima-
tion is attributed to H. Padé. It consists of matching the series expansion
of the transcendental function e−5s with the series expansion of a ratio-
nal function whose numerator is a polynomial of degree p and whose
denominator is a polynomial of degree q. The result is called a (p, q)Padé approximant
Padé approximant3 to e−5s. We will initially compute the approximants
to e−s, and in the final result, we will substitute Tds for s to allow for
any desired delay.

The resulting (1, 1) Padé approximant (p = q = 1) is

e−Td s ∼= 1− (Tds/2)
1+ (Tds/2)

. (W5.6)

If we assume p = q = 2, we have five parameters and a better match
is possible. In this case, we have the (2, 2) approximant, which has the
transfer function

e−Td s ∼= 1− Tds/2+ (Tds)2/12
1+ Tds/2+ (Tds)2/12

. (W5.7)

The comparison of these approximants can be seen from their pole–zero
configurations as plotted in Fig. W5.6. The locations of the poles are in
the LHP and the zeros are in the RHP at the reflections of the poles.

Figure W5.6
Poles and zeros of the
Padé approximants to
e−s, with superscripts
identifying the
corresponding
approximants; for
example, x1 represents
the (1,1) approximant
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2The nonrational function e−5s is analytic for all finite values of s and so may be approx-
imated by a rational function. If nonanalytic functions such as

√
s were involved, great

caution would be needed in selecting an approximation that is valid near s = 0.
3The (p, p) Padé approximant for a delay of T sec is most commonly used and is computed
by the Matlab command [num,den] = pade(T, P).



main_1 — 2019/2/5 — 15:27 — page 83 — #3

Appendix W5.6.3 Root Locus with Time Delay 83

In some cases, a very crude approximation is acceptable. For small
delays, the (0, 1) approximant can be used, which is simply a first-order
lag given by

e−Td s ∼= 1
1+ Tds

. (W5.8)

To illustrate the effect of a delay and the accuracy of the differentContrasting methods of
approximating delay approximations, root loci for the heat exchanger are drawn in Fig. W5.7

for four cases. Notice for low gains and up to the point where the loci
cross the imaginary axis, the approximate curves are very close to exact.
However, the (2, 2) Padé curve follows the exact curve much further
than does the first-order lag, and its increased accuracy would be useful
if the delay were larger. All analyses of the delay show its destabilizing
effect and how it limits the achievable response time of the system.

While the Padé approximation leads to a rational transfer function,
in theory, it is not necessary for plotting a root locus. A direct appli-
cation of the phase condition can be used to plot portions of an exact
locus of a system with time delay. The phase-angle condition does not
change if the transfer function of the process is nonrational, so we still
must search for values of s for which the phase is 180◦ + 360◦l. If we
write the transfer function as

G(s) = e−Td sḠ(s),

the phase of G(s) is the phase of Ḡ(s)minus Tdω for s = σ+jω. Thus we
can formulate a root-locus problem as searching for locations where the
phase of Ḡ(s) is 180◦+Tdω+360◦(l−1). To plot such a locus, we would
fix ω and search along a horizontal line in the s-plane until we found a
point on the locus, then raise the value of ω, change the target angle,
and repeat. Similarly, the departure angles are modified by Tdω, where
ω is the imaginary part of the pole from which the departure is being
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Figure W5.7
Root loci for the heat exchanger with and without time delay
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computed. Matlab does not provide a program to plot the root locus of
systems with delay, so we must be satisfied here with Padé approximants.
Since it is possible to plot the frequency response (or Bode plot) of delay
exactly and easily, if the designer feels that the Padé approximant is not
satisfactory, the expedient approach is to use the frequency-response
design methods described in Chapter 6.
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Appendix W6.7.2
Digital Implementation of
Example 6.15

EXAMPLE W6.1 Lead Compensation for a DC Motor

As an example of designing a lead compensator, let us repeat the design
of compensation for the DC motor with the transfer function

G(s) = 1
s(s+ 1)

,

that was carried out in Section 5.4.1. This also represents the model of
a satellite-tracking antenna (see Fig. 3.60). This time we wish to obtain
a steady-state error of less than 0.1 for a unit-ramp input. Furthermore,
we desire an overshoot of Mp < 25%.

1. Determine the lead compensation satisfying the specifications.
2. Determine the digital version of the compensation with Ts =

0.05 sec.
3. Compare the step and ramp responses of both implementations.

Solution.

1. The steady-state error is given by

ess = lim
s→0

s
[

Dc

1+ KDc(s)G(s)

]
R(s), (W6.1)

where R(s) = 1/s2 for a unit ramp, so Eq. (W6.1) reduces to

ess = lim
s→0

{
1

s+ KDc(s)[1/(s+ 1)]

}
= 1

KDc(0)
.

Therefore, we find that KDc(0), which is the steady-state gain of
the compensation, cannot be less than 10 (Kv ≥ 10) if it is to
meet the error criterion, so we pick K = 10. To relate the over-
shoot requirement to PM, Fig. 6.37 shows that a PM of 45◦ should
suffice. The frequency response of KG(s) in Fig. W6.1 shows that
the PM = 20◦ if no phase lead is added by compensation. If it
were possible to simply add phase without affecting the magni-
tude, we would need an additional phase of only 25◦ at the KG(s)
crossover frequency of ω = 3 rad/sec. However, maintaining the
same low-frequency gain and adding a compensator zero would

85
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Figure W6.1
Frequency response for
lead-compensation
design
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increase the crossover frequency; hence, more than a 25◦ phase
contribution will be required from the lead compensation. To be
safe, we will design the lead compensator so that it supplies a max-
imum phase lead of 40◦. Fig. 6.53 shows 1/α = 5 will accomplish
that goal. We will derive the greatest benefit from the compensation
if the maximum phase lead from the compensator occurs at the
crossover frequency. With some trial and error, we determine that
placing the zero at ω = 2 rad/sec and the pole at ω = 10 rad/sec
causes the maximum phase lead to be at the crossover frequency.
The compensation, therefore, is

KDc(s) = 10
s/2+ 1
s/10+ 1

.

The frequency-response characteristics of L(s) = KDc(s)G(s) in
Fig. W6.1 can be seen to yield a PM of 53◦, which satisfies the
design goals.
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Figure W6.2
Root locus for lead-
compensation design
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The root locus for this design, originally given as Fig. 5.24,
is repeated here as Fig. W6.2, with the root locations marked
for K = 10. The locus is not needed for the frequency-response
design procedure; it is presented here only for comparison with the
root locus design method presented in Chapter 5. The entire pro-
cess can be expedited by the use of Matlab’s sisotool design tool,
which simultaneously provides the root locus and the Bode plot
through an interactive GUI interface. For this example, the Matlab
statements

G=tf(1,[1 1 0]);
Dc=tf(10*[1/2 1],[1/10 1]);
sisotool(G,Dc)

will provide the plots as shown in Fig. W6.3. It also can be used to
generate the Nyquist and time-response plots if desired.

2. To find the discrete equivalent of Dc(s), we use the trapezoidal rule
given by Eq. (W4.31). That is,

Dd(z) =
2

Ts

z−1
z+1/2+ 1

2
Ts

z−1
z+1/10+ 1

, (W6.2)

which, with Ts = 0.05 sec, reduces to

Dd(z) = 4.2z− 3.8
z− 0.6

. (W6.3)

This same result can be obtained by the Matlab statements

sysDc = tf([0.5 1],[0.1 1]);
sysDd = c2d(sysDc, 0.05, ‘tustin’).

Because
U(z)
E(z)

= KDd(z), (W6.4)

the discrete control equation that results is

u(k + 1) = 0.6u(k)+ 10(4.2e(k + 1)− 3.8e(k)). (W6.5)
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Figure W6.3
SISOTOOL graphical interface for Example W6.1
Source: Reprinted with permission of The MathWorks, Inc.
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Figure W6.5
Lead-compensation
design: (a) step
response; (b) ramp
response

Digital controller

Digital controller

Continuous controller

Continuous controller

Input ramp

1.2

y

y

0.8

0.4

2

1.5

1

0.5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0
0 0.5 1 1.5 2 2.5 3

Time (sec)

(a)

Time (sec)

(b)

3.5 4 4.5 5

3. The Simulink block diagram of the continuous and discrete ver-
sions of Dc(s) controlling the DC motor is shown in Fig. W6.4.
The step responses of the two controllers are plotted together in
Fig. W6.5a and are reasonably close to one another; however,
the discrete controller does exhibit slightly increased overshoot,
as is often the case. Both overshoots are less than 25%, and thus
meet the specifications. The ramp responses of the two controllers,
shown in Fig. W6.5b, are essentially identical, and both meet the
0.1 specified error.
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Appendix W6.8.1
Time Delay via the Nyquist
Diagram

EXAMPLE W6.2 Nyquist Plot for a System with Time Delay

Consider the system with

KG(s) = Ke−Td s

s
,

where Td = 1 sec. Determine the range of K for which the system is
stable.

Solution. Because the Bode plotting rules do not apply for the phase
of a time-delay term, we will use an analytical approach to determine
the key features of the frequency response plot. As just discussed, the
magnitude of the frequency response of the delay term is unity, and its
phase is −ω radians. The magnitude of the frequency response of the
pure integrator is 1/ω with a constant phase of −π/2. Therefore,

G( jω) = 1
ω

e−j(ω+π/2)

= 1
ω
(− sinω − j cosω). (W6.6)

Using Eq. (W6.6) and substituting in different values of ω, we can
generate the Nyquist plot, which is the spiral shown in Fig. W6.6.

Let us examine the shape of the spiral in more detail. We pick a
Nyquist path with a small detour to the right of the origin. The effect
of the pole at the origin is the large arc at infinity with a 180◦ sweep,
as shown in Fig. W6.6. From Eq. (W6.6), for small values of ω > 0,
the real part of the frequency response is close to −1 because sinω ∼= ω
and Re[G( jω)] ∼= −1. Similarly, for small values of ω > 0, cosω ∼= 1
and Im[G( jω)] ∼= −1/ω—that is, very large negative values, as shown
in Fig. W6.6. To obtain the crossover points on the real axis, we set the
imaginary part equal to zero:

cosω
ω
= 0. (W6.7)

The solution is then

ω0 = (2n+ 1)π
2

, n = 0, 1, 2, . . . . (W6.8)
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Figure W6.6
Nyquist plot for
Example W6.2
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After substituting Eq. (W6.8) back into Eq. (W6.6), we find that

G( jω0) = (−1)n

(2n+ 1)

(
2
π

)
, n = 0, 1, 2, . . . .

So the first crossover of the negative real axis is at−2/π , corresponding
to n = 0. The first crossover of the positive real axis occurs for n = 1
and is located at 2/3π . As we can infer from Fig. W6.6, there are an
infinite number of other crossings of the real axis. Finally, for ω = ∞,
the Nyquist plot converges to the origin. Note that the Nyquist plot for
ω < 0 is the mirror image of the one for ω > 0.

The number of poles in the RHP is zero (P = 0), so for closed-loop
stability, we need Z = N = 0. Therefore, the Nyquist plot cannot be
allowed to encircle the −1/K point. It will not do so as long as

− 1
K
< − 2

π
, (W6.9)

which means that, for stability, we must have 0 < K < π/2.
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Appendix W6.9.2
The Inverse Nyquist Diagram

The inverse Nyquist plot is simply the reciprocal of the Nyquist plot
described in Section 6.3 and used in Section 6.4 for the definition and
discussion of stability margins. It is obtained most easily by computing
the inverse of the magnitude from the Bode plot and plotting that quan-
tity at an angle in the complex plane, as indicated by the phase from the
Bode plot. It can be used to find the PM and GM in the same way that
the Nyquist plot was used. When |G(jω)| = 1, |G−1(jω)| = 1 also, so
the definition of PM is identical on the two plots. However, when the
phase is −180◦ or +180◦, the value of |G−1(jω)| is the GM directly; no
calculation of an inverse is required, as was the case for the Nyquist plot.

The inverse Nyquist plot for the system in Fig. 6.24 (see Exam-
ple 6.9) is shown in Fig. W6.7 for the case where K = 1 and the system is
stable. Note GM = 2 and PM ∼= 20◦. As an example of a more complex
case, Fig. W6.8 shows an inverse Nyquist plot for the sixth-order case
whose Nyquist plot was shown in Fig. 6.41, and whose Nichols chart
was shown in Fig. 6.83. Note here GM = 1.2 and PM ∼= 35◦. Had the
two crossings of the unit circle not occurred at the same point, the cross-
ing with the smallest PM would have been the appropriate one to use.

Figure W6.7
Inverse Nyquist plot for
Example 6.9
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Figure W6.8
Inverse Nyquist plot of
the system whose
Nyquist plot is in
Fig. 6.41
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Appendix W7.8
Digital Implementation
of Example 7.31

EXAMPLE W7.1 Redesign of the DC Servo Compensator

For Example 7.31, derive an equivalent discrete controller with a sam-
pling period of Ts = 0.1 sec (10 times the fastest pole), and compare
the continuous and digital control outputs and control efforts. Ver-
ify the design by plotting the step response and commenting on the
comparison of the continuous and discrete responses.

Solution. The discrete equivalent for the controller is obtained from
Matlab with the c2d command, as in

nc=94.5*conv([1 7.98],[1 2.52]); % form controller numerator
dc=conv([1 8.56 59.5348],[1 10.6]); % form controller denominator
sysDc=tf(nc,dc); % form controller system description
ts=0.1;% sampling time of 0.1 sec
sysDd=c2d(sysDc,ts,'zoh'); % convert controller to discrete time

The resulting controller has the discrete transfer functionDiscrete controller

Dd(z) = 5.9157(z + 0.766)(z + 0.4586)

(z − 0.522 ± 0.3903j)(z + 0.3465)
.

The equation for the control law (with the sample period suppressed for
clarity) is

u(k + 1) = 1.3905u(k) − 0.7866u(k − 1) + 0.1472u(k − 2)

+ e(k) − 7.2445e(k − 2) + 2.0782e(k − 2).

A Simulink diagram for simulating both the continuous and discreteSimulink simulation
systems is shown in Fig. W7.1. A comparison of the continuous and
discrete step responses and control signals is shown in Fig. W7.2. Better
agreement between the two responses can be obtained if the sampling
period is reduced.
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Figure W7.1
Simulink block diagram to compare continuous and discrete controllers
Source: Reprinted with permission of The MathWorks, Inc.

Figure W7.2
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Appendix W7.9
Digital Implementation
of Example 7.33

EXAMPLE W7.2 Servomechanism

For Example 7.33, derive an equivalent discrete controller with a sam-
pling period of Ts = 0.1 sec (20 × ωn = 20 × 0.05 = 0.1 sec),
and compare the continuous and digital control outputs, as well as
the control efforts. Verify the design by plotting the step response
and commenting on the comparison of the continuous and discrete
responses.

Solution. The discrete equivalent for the controller is obtained from
Matlab by using the c2d command, as inMatlab c2d

nc=conv([1 1],[8.32 0.8]); % controller numerator
dc=conv([1 4.08],[1 0.0196]); % controller denominator
sysDc=tf(nc,dc); % form controller system description
ts=0.1; % sampling time of 0.1 sec
sysDd=c2d(sysDc,ts,'zoh'); % convert to discrete time controller

The discrete controller has the discrete transfer function

Dd(z) = 8.32z2 − 15.8855z + 7.5721
z2 − 1.6630z + 0.6637

= 8.32(z − 0.9903)(z − 0.9191)
(z − 0.998)(z − 0.6665)

.

The equation for the control law (with sample period suppressed
for clarity) is

u(k + 1) = 1.6630u(k)+ 0.6637u(k − 1)+ 8.32e(k + 1)

− 15.8855e(k)+ 7.5721e(k − 1).

A Simulink diagram for simulating both the continuous and discreteSimulink simulation
systems is shown in Fig. W7.3. A comparison of the continuous and
discrete step responses and control signals is shown in Fig. W7.4. Better
agreement between the two responses was achieved because the sample
rate was 20 times the bandwidth for this example.
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Simulink block diagram to compare continuous and discrete controllers
Source: Reprinted with permission of The MathWorks, Inc.
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Appendix W7.14
Solution of State Equations

In this section, we consider the solution of state variable equations. This
material is not necessary to understand the design of pole placement
but will give a deeper insight into the method of state variables. It is
instructive to consider first the unforced, or homogenous, system, which
has the form

ẋ = A(t)x, x(0) = x0. (W7.1)

If the elements of A(t) are continuous functions of time, then the above
equation has a unique solution for any initial state vector x0. There is
a useful representation for the solution of this equation in terms of a
matrix, called the transition matrix. Let φi(t, t0) be the solution to the
special initial condition

x(0) = ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
← ith row

(W7.2)

If x(t0) is the actual initial condition at t0, then we can express it in the
decomposed form

x(t0) = x01e1 + x02e2 + · · · + x0nen. (W7.3)

Because Eq. (W7.1) is linear, the state x(t) also can be expressed as a
sum of the solutions to the special initial condition φi, as

x(t) = x01φ1(t, t0)+ x02φ2(t, t0)+ · · · + x0nφn(t, t0), (W7.4)

or in matrix notation, as

x(t) = [ φ1(t, t0), φ2(t, t0), · · · , φn(t, t0)
]
⎡
⎢⎢⎢⎣

x01
x02

...
x0n

⎤
⎥⎥⎥⎦ . (W7.5)

So we can define the transition matrix1 to be

�(t, t0) =
[
φ1(t, t0), φ2(t, t0), · · · , φn(t, t0)

]
, (W7.6)

1This is also referred to as the fundamental matrix of the differential equation.
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and write the solution as

x(t) = �(t, t0)x(t0), (W7.7)

where as the name implies, the transition matrix provides the transition
between the state at time t0 to the state at time t. Furthermore, from
Eq. (W7.7), we have

d
dt

[x(t)] = d
dt

[�(t, t0)] x(t0), (W7.8)

and from Eqs. (W7.1) and (W7.8), we have

d
dt

x(t) = Ax(t) = A�(t, t0)x(t0). (W7.9)

Therefore
d
dt

[�(t, t0)] = A�(t, t0), (W7.10)

and also
�(t, t) = I. (W7.11)

The transition matrix can be shown to have many interesting properties.
Among them are the following:

1. �(t2, t0) = �(t2, t1)�(t1, t0); (W7.12)

2. �−1(t, τ) = �(τ , t); (W7.13)

3.
d
dt

�(t, τ) = −�(t, τ)A(τ ); (W7.14)

4. det �(t, t0)= e

t∫
t0

traceA(τ )dτ
. (W7.15)

The second property implies that �(t, τ) is always invertible. What this
means is that the solution is always unique so, given a particular value
of state at time τ , we can not only compute the future states from �(t, τ)
but also past values �−1(t, τ).

For the inhomogenous case, with a forcing function input u(t), the
equation is

ẋ(t) = A(t)x(t)+ B(t)u(t), (W7.16)

and the solution is

x(t) = �(t, t0)x0+
t∫

t0

�(t, τ)B(τ )u(τ )dτ . (W7.17)

We can verify this by substituting the supposed solution, Eq. (W7.17),
into the differential equation, Eq. (W7.16), as

d
dt

x(t) = d
dt

�(t, t0)x0 + d
dt

t∫

t0

�(t, τ)B(τ )u(τ )dτ . (W7.18)
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The second term from calculus (using the Leibnitz formula) is

d
dt

t∫

t0

�(t, τ)B(τ )u(τ )dτ =
t∫

t0

A(t)�(t, τ)B(τ )u(τ )dτ +�(t, t)B(t)u(t).

(W7.19)
Using the basic relations, we have

d
dt

x(t) = A(t)�(t, t0)x0 + A(t)

t∫

t0

�(t, τ)B(τ )u(τ )dτ

+ B(t)u(t), (W7.20)

= A(t)x(t)+ B(t)u(t), (W7.21)

which shows that the proposed solution satisfies the system equation.
For the time-invariant case

�(t, t0) = eA(t−t0)= �(t− t0), (W7.22)

where

eAt =
(

I+ At+ A2t2

2!
+ · · ·

)
=
∞∑

k=0

Aktk

k!
, (W7.23)

is an invertible n × n exponential matrix, and by letting t = 0, we see
that

e0 = I. (W7.24)

The state solution is now

x(t) = eA(t−t0)x0 +
t∫

t0

eA(t−τ)Bu(τ )dτ , (W7.25)

and

y(t) = Cx(t) = CeA(t−t0)x0 + C

t∫

t0

eA(t−τ)Bu(τ )dτ +Du(t). (W7.26)

Suppose x(t0) = x0 ≡ 0, then the output is given by the convolution
integral

y(t) =
t∫

t0

h(t− τ)Bu(τ )dτ , (W7.27)

where h(t) is the impulse response. In terms of the state variables
matrices,

h(t) = CeAtB+Dδ(t). (W7.28)

While there is no uniformly best way to compute the transition
matrix, there are several methods that can be used to compute accurate
approximations to it (See Moler, 2003; Franklin, Powell, and Workman,
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1998). Three of these methods are matrix exponential series, inverse
Laplace transform, and diagonalization of the system matrix. In the
first technique, we use Eq. (W7.23):

eAt �= I+ At+ A2t2

2!
+ A3t3

3!
+ · · · , (W7.29)

and the series should be computed in a reliable fashion. For the second
method, we notice if we define

�(s) = (sI− A)−1, (W7.30)

then we can compute �(s) from the A matrix and matrix algebra. Given
this matrix, we can use the inverse Laplace Transform to compute

�(t) = L−1 {�(s)} , (W7.31)

= L−1
{
(sI− A)−1

}
. (W7.32)

The last method we mentioned operates on the system matrix. If the sys-
tem matrix can be diagonalized, that is, if we can find a transformation
matrix T so that

� = T−1AT, (W7.33)

where A is reduced to the similar but diagonal matrix

� = diag {λ1, λ2, · · · , λn} , (W7.34)

then from the series, Eq. (W7.23), we need only compute scalar
exponentials, since

eAt = T−1diag
{
eλ1t, eλ2t, · · · , eλnt}T. (W7.35)
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Appendix W8.7
Discrete State-Space Design
Methods

We have seen in previous chapters that a linear, constant-coefficient
continuous system can be represented by a set of first-order matrix
differential equations of the form

ẋ = Ax+ Bu, (W8.1)

where u is the control input to the system. The output equation can be
expressed as

y = Cx+Du. (W8.2)
The solution to these equations (see Franklin et al., 1998) is

x(t) = eA(t−t0)x(t0)+
∫ t

t0

eA(t−τ)Bu(τ ) dτ . (W8.3)

It is possible to use Eq. (W8.3) to obtain a discrete state-space repre-
sentation of the system. Because the solution over one sample period
results in a difference equation, we can alter the notation a bit (letting
t = kT + T and t0 = kT) to arrive at a particularly useful version of
Eq. (W8.3):

x(kT + T) = eAT x(kT)+
∫ kT+T

kT
eA(kT+T−τ)Bu(τ ) dτ . (W8.4)

This result is not dependent on the type of hold, because u is speci-
fied in terms of its continuous time history u(τ ) over the sample interval.
To find the discrete model of a continuous system where the input u(t)
is the output of a ZOH, we let u(τ ) be a constant throughout the sample
interval—that is,

u(τ ) = u(kT), kT ≤ τ < kT + T .

To facilitate the solution of Eq. (W8.4) for a ZOH, we let

η = kT + T − τ ,

which converts Eq. (W8.4) to

x(kT + T) = eAT x(kT)+
(∫ T

0
eAη dη

)
Bu(kT).

If we let
� = eAT

and

� =
(∫ T

0
eAη dη

)
B, (W8.5)
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Eqs. (W8.4) and (W8.2) reduce to difference equations in standard form:Difference equations in
standard form

x(k+ 1) = �x(k)+ �u(k), (W8.6)

y(k) = Cx(k)+Du(k). (W8.7)

Here x(k + 1) is a shorthand notation for x(kT + T), x(k) for x(kT),
and u(k) for u(kT). The series expansion

� = eAT = I+ AT + A2T2

2!
+ A3T3

3!
+ · · ·

also can be written as

� = I+ AT�, (W8.8)

where

� = I+ AT
2!
+ A2T2

3!
+ · · · .

The � integral in Eq. (W8.5) can be evaluated term by term to give

� =
∞∑

k=0

AkTk+1

(k+ 1)!
B

=
∞∑

k=0

AkTk

(k+ 1)!
TB

= �TB. (W8.9)

We evaluate � by a series in the form

� ∼= I+ AT
2

{
I+ AT

3

[
I+ · · · AT

N − 1

(
I+ AT

N

)]}
,

which has better numerical properties than the direct series. We then
find � from Eq. (W8.9) and � from Eq. (W8.8). For a discussion of
various methods of numerical determination of � and �, see Franklin
et al. (1998) and Moler and van Loan (1978, 2003). The evaluation ofMatlab c2d
the � and � matrices in practice is carried out by the c2d function in
Matlab.

To compare this method of representing the plant with the dis-
crete transfer function, we can take the z-transform of Eqs. (W8.6) and
(W8.7) with D = 0 to obtain

(zI−�)X(z) = �U(z), (W8.10)

Y(z) = CX(z). (W8.11)

Therefore,
Y(z)
U(z)

= G(z) = C(zI−�)−1�. (W8.12)
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EXAMPLE W8.1 Discrete State-Space Representation of 1/s2 Plant

Use the relation in this section to verify that the discrete model of
the 1/s2 plant preceded by a ZOH is that given in the solution to
Example 8.4.

Solution. The � and � matrices can be calculated using Eqs. (W8.8)
and (W8.9). Example 7.1 (with I = 1) showed that the values for A and
B are

A =
[

0 1
0 0

]
, B =

[
0
1

]
.

Because A2 = 0 in this case, we have

� = I+ AT + A2T2

2!
+ · · ·

=
[

1 0
0 1

]
+
[

0 1
0 0

]
T =

[
1 T
0 1

]
,

� =
(

I+ A
T
2!

)
TB

=
([

T 0
0 T

]
+
[

0 1
0 0

]
T2

2

)[
0
1

]
=
[

T2/2
T

]
.

Hence, using Eq. (W8.12), we obtain

G(z) = Y(z)
U(z)

= [1 0]
(

z
[

1 0
0 1

]
−
[

1 T
0 1

])−1 [ T2/2
T

]

= T2

2

[
z+ 1
(z− 1)2

]
. (W8.13)

This is the same result we obtained using Eq. (8.41) and the z-transform
tables in Example 8.5.

Note to compute Y/U , we find the denominator of Eq. (W8.13) is
det(zI−�), which was created by the matrix inverse in Eq. (W8.12). This
determinant is the characteristic polynomial of the transfer function,
and the zeros of the determinant are the poles of the plant. We have
two poles at z = 1 in this case, corresponding to two integrations in this
plant’s equations of motion.

We can further explore the question of poles and zeros and the
state-space description by considering again the transform formulas
[Eqs. (W8.10) and (W8.11)]. One way to interpret transfer-function
poles from the perspective of the corresponding difference equation is
that a pole is a value of z such that the equation has a nontrivial solution
when the forcing input is zero. From Eq. (W8.10), this interpretation
implies that the linear equations

(zI−�)X(z) = 0,
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have a nontrivial solution. From matrix algebra the well-known require-
ment for a nontrivial solution is that det(zI−�) = 0. Using the system
in Example W8.1, we get

det(zI−�) = det
([

z 0
0 z

]
−
[

1 T
0 1

])

= det
[

z− 1 −T
0 z− 1

]

= (z− 1)2 = 0,

which is the characteristic equation, as we have seen. In Matlab, the
poles of the system are found by P = eig(Phi).

Along the same line of reasoning, a system zero is a value of z such
that the system output is zero even with a nonzero state-and-input com-
bination. Thus, if we are able to find a nontrivial solution for X(z0)

and U(z0) such that Y(z0) is identically zero, then z0 is a zero of the
system. In combining Eqs. (W8.10) and (W8.11), we must satisfy the
requirement that

[
zI−� −�

C 0

] [
X(z)
U(z)

]
= 0.

Once more the condition for the existence of nontrivial solutions is that
the determinant of the square coefficient system matrix be zero. For
Example W8.1, the calculation is

det

⎡
⎣

z− 1 −T −T2/2
0 z− 1 −T
1 0 0

⎤
⎦ = det

[ −T −T2/2
z− 1 −T

]

= T2 + T2

2
(z− 1)

= T2

2
z+ T2

2

= T2

2
(z+ 1).

Thus we have a single zero at z = −1, as we have seen from the transfer
function. In Matlab, the zeros are found by Z=tzero(Phi,Gam,C,D).

Much of the algebra for discrete state-space control design is the
same as for the continuous-time case discussed in Chapter 7. The poles
of a discrete system can be moved to desirable locations by linear state-
variable feedback

u = −Kx,

such that

det(zI−�+ �K) = αc(z), (W8.14)
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provided that the system is controllable. The system is controllable if the
controllability matrix

C = [� �� �2� . . . �n−1�]

is full rank.
A discrete full-order estimator has the form

x̄(k+ 1) = �x̄(k)+ �u(k)+ L[y(k)− Cx̄(k)],

where x̄ is the state estimate. The error equation,

x̃(k+ 1) = (�− LC)x̃(k),

can be given arbitrary dynamics αe(z), provided the system is observ-
able, which requires that the observability matrix

O =

⎡
⎢⎢⎢⎢⎢⎣

C
C�

C�2

...
C�n−1

⎤
⎥⎥⎥⎥⎥⎦

be full rank.
As was true for the continuous-time case, if the open-loop transfer

function is

G(z) = Y(z)
U(z)

= b(z)
a(z)

,

then a state-space compensator can be designed such that

Y(z)
R(z)

= Ksγ (z)b(z)
αc(z)αe(z)

,

where r is the reference input. The polynomials αc(z) and αe(z) are
selected by the designer using exactly the same methods discussed in
Chapter 7 for continuous systems. αc(z) results in a control gain K such
that det(zI − � + �K) = αc(z), and αe(z) results in an estimator gain
L such that det(zI − � + LC) = αe(z). If the estimator is structured
according to Fig. 7.48a, the system zeros γ (z) will be identical to the
estimator poles αe(z), thus removing the estimator response from the
closed-loop system response. However, if desired, we can arbitrarily
select the polynomial γ (z) by providing suitable feed-forward from the
reference input. Refer to Franklin et al. (1998) for details.

EXAMPLE W8.2 State-Space Design of a Digital Controller

Design a digital controller for a 1/s2 plant to meet the specifications
given in Example 8.2. Use state-space design methods, including the use
of an estimator, and structure the reference input in two ways: (a) Use
the error command shown in Fig. 7.47b, and (b) use the state command
shown in Fig. 7.15 and Fig. 7.47a.
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Solution. We find the state-space model of the 1/s2 plant preceded by
a ZOH using the Matlab statements

sysSSc = ss([0 1;0 0], [0; 1], [1 0], 0];
T = 1;
sysSSd = c2d(sysSSc, T);
[Phi,Gam,C] = ssdata(sysSSd);

Using discrete analysis for Example 8.4, we find that the desired z-
plane roots are at z = 0.78± 0.18j. Solving the discrete pole-placement
problem involves placing the eigenvalues of � − �K, as indicated by
Eq. (W8.14). Likewise, the solution of the continuous pole-placement
problem involves placing the eigenvalues of A − BK, as indicated by
Eq. (7.69). Because these two tasks are identical, we use the same func-
tion in Matlab for the continuous and discrete cases. Therefore, the
control feedback matrix K is found by

pc = [0.78 + 0.18*j; 0.78 - 0.18*j];
K = acker(Phi,Gam,pc);

which yields
K = [0.0808 0.3996].

To ensure the estimator roots are substantially faster than the control
roots (so the estimator roots will have little effect on the output), we
choose them to be at z = 0.2 ± 0.2j. Therefore, the estimator feedback
matrix L is found by

pe = [0.2 + 0.2*j; 0.2 - 0.2*j];
L = acker(Phi, C, pe);

which yields

L =
[

1.6
0.68

]
.

The equations of the compensation for r = 0 (regulation to xT = [0 0])
are then

x̄(k + 1) = �x̄(k)+ �u(k)+ L[y(k)− Cx̄(k)], (W8.15)

u(k) = −Kx̄(k). (W8.16)

1. For the error command structure where the compensator is placed
in the feedforward path, as shown in Fig. 7.47b in the book, y(k)
from Eq. (W8.15) is replaced with y(k)− r, so the state description
of the plant plus the estimator (a fourth-order system whose state
vector is [x x̄]T ) is

A = [Phi - Gam*K; L*C Phi - Gam*K - L*C];
B = [0; 0; -L];
C = [1 0 0 0];
D = 0;
step(A,B,C,D).
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Figure W8.1
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The resulting step response in Fig. W8.1 shows a response
similar to that of the step responses in Fig. 8.21 in the text.

2. For the state command structure described in Section 7.9 in the
text, we wish to command the position element of the state vector
so

Nx =
[

1
0

]
,

and the 1/s2 plant requires no steady control input for a con-
stant output y. Therefore Nu = 0. To analyze a system with this
command structure, we need to modify matrix B from the preced-
ing Matlab statement to properly introduce the reference input r
according to Fig.7.15. The Matlab statement

B = [Gam*K*Nx; Gam*K*Nx];

channels r into both the plant and estimator equally, thus not
exciting the estimator dynamics. The resulting step response in
Fig. W8.1 shows a substantial reduction in the overshoot with this
structure. In fact, the overshoot is now about 5%, which is expected
for a second-order system with ζ ∼= 0.7. The previous designs
all had considerably greater overshoot because of the effect of the
extra zero and pole.

SUMMARY OF STATE-SPACE DESIGN

• The continuous state-space form of a differential equation,

ẋ = Ax+ Bu,

y = Cx+Du,
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has a discrete counterpart in the difference equations

x(k+ 1) = �x(k)+ �u(k),

y(k) = Cx(k)+Du(k),

where

� = eAT

� =
(∫ T

0
eAη dη

)
B.

These matrices can be computed in Matlab by [Phi, Gam] =
c2d(A,B,C,D) and used in state-space discrete design methods.

• The pole placement and estimation ideas are identical in the
continuous and discrete domains.

PROBLEMS

W8.1 In Problem 8.11, we dealt with an experiment in magnetic levitation
described by Eq. (8.54) that reduces to

ẍ = 1000x+ 20i.

Let the sampling time be 0.01 sec.

(a) Use pole placement to design a controller for the magnetic levita-
tor so that the closed-loop system meets the following specifications:
settling time, ts ≤ 0.25 sec, and overshoot to an initial offset in x
that is less than 20%.

(b) Plot the step response of x, x̃, and i to an initial displacement in x.
(c) Plot the root locus for changes in the plant gain, and mark the pole

locations of your design.
(d) Introduce a command reference input r (as discussed in Section 7.9)

that does not excite the estimate of x. Measure or compute the
frequency response from r to the system error r − x and give the
highest frequency for which the error amplitude is less than 20% of
the command amplitude.

W8.2 Servomechanism for Antenna Elevation Control: Suppose it is desired to
control the elevation of an antenna designed to track a satellite. A photo
of such a system is shown in Fig. W8.2, and a schematic diagram is
depicted in Fig. W8.3. The antenna and drive parts have a moment of
inertia J and damping B, arising to some extent from bearing and aero-
dynamic friction, but mostly from the back emf of the DC drive motor.
The equation of motion is

J θ̈ + Bθ̇ = Tc + Td ,

where

Tc = net torque from the drive motor, (W8.17)

Td = disturbance torque due to wind. (W8.18)
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Figure W8.2
Satellite-tracking
antenna (Courtesy
Space Systems/Loral)

Figure W8.3
Schematic diagram of
satellite-tracking
antenna

u

If we define
B
J
= a, u = Tc

B
, and wd =

Td
B

,

the equation simplifies to

1
a
θ̈ + θ̇ = u+ wd .

After using the Laplace transformation, we obtain

θ(s) = 1
s(s/a+ 1)

[u(s)+ wd(s)],

or with no disturbance,

θ(s)
u(s)
= 1

s(s/a+ 1)
= G2(s).
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With u(k) applied through a ZOH, the transfer function for an equiva-
lent discrete-time system is

G2(z) = θ(z)
u(z)
= K

z+ b

(z− 1)(z− e−aT )
,

where

K = aT − 1+ e−aT

a
, b = 1− e−aT − aTe−aT

aT − 1+ e−aT .

(a) Let a = 0.1 and x1 = θ̇ , and write the continuous-time state
equations for the system.

(b) Let T = 1 sec, and find a state feedback gain K for the equivalent
discrete-time system that yields closed-loop poles corresponding to

the following points in the s-plane: s = −1/2 ± j
√

3
2 . Plot the step

response of the resulting design.
(c) Design an estimator: Select L so αe(z) = z2.
(d) Using the values for K and L computed in parts (b) and (c) as

the gains for a combined estimator/controller, introduce a reference
input that will leave the state estimate undisturbed. Plot the response
of the closed-loop system due to a step change in the reference input.
Also plot the system response to a step wind-gust disturbance.

(e) Plot the root locus of the closed-loop system with respect to the plant
gain, and mark the locations of the closed-loop poles.

W8.3 Tank Fluid Temperature Control: The temperature of a tank of fluid with
a constant inflow and outflow rate is to be controlled by adjusting the
temperature of the incoming fluid. The temperature of the incoming
fluid is controlled by a mixing valve that adjusts the relative amounts of
hot and cold supplies of the fluid (see Fig. W8.4). The distance between
the valve and the point of discharge into the tank creates a time delay
between the application of a temperature change at the mixing valve and
the discharge of the flow with the changed temperature into the tank.
The differential equation governing the tank temperature is

Ṫe = 1
cM

(qin − qout),

where

Te = tank temperature,

c = specific heat of the fluid,

Figure W8.4
Tank temperature
control
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M = fluid mass contained in the tank,

qin = cṁinTei,

qout = cṁoutTe,

ṁ = mass flow rate (ṁin = ṁout),

Tei = temperature of fluid entering tank.

However, the temperature at the input to the tank at time t is equal to
the control temperature τd seconds in the past. This relationship may be
expressed as

Tei(t) = Tec(t− τd),
where

τd = delay time,

Tec = temperature of fluid immediately after the control valve and
directly controllable by the valve.

Combining constants, we obtain

Ṫe(t)+ aTe(t) = aTec(t− τd),
where

a = ṁ
M

.

The transfer function of the system is thus

Te(s)
Tec(s)

= e−τds

s/a+ 1
= G3(s).

To form a discrete transfer function equivalent to G3 preceded by a
ZOH, we must compute

G3(z) = Z
{(

1− e−sT

s

)(
e−τd s

s/a+ 1

)}
.

We assume for some integer l, τd = lT −mT , where 0 ≤ m < 1. Then

G3(z) = Z
{(

1− e−sT

s

)(
e−lsT emsT

s/a+ 1

)}

= (1− z−1)z−lZ
{

emsT

s(s/a+ 1)

}

= (1− z−1)z−lZ
{

emsT

s
− emsT

s+ a

}

= z− 1
z

(
1

zl

)
Z{1(t+mT)− e−a(t+mT)1(t+mT)}

= z− 1
z

(
1

zl

)(
z

z− 1
− e−amT z

z− e−aT

)

= 1

zl

[
(1− e−amT )z+ e−amT − e−aT

z− e−aT

]
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=
(

1− e−amT

zl

)(
z+ α

z− e−aT

)
,

and

α = e−amT − e−aT

1− e−amT .

The zero location −α varies from α = ∞ at m = 0 to α = 0 as m→ 1.
Note also G3(1) = 1.0 for all a, m, and l. For the specific values τd = 1.5,
T = 1, a = 1, l = 2, and m = 1

2 , the transfer function reduces to

G3(z) = 0.3935
z+ 0.6065

z2(z− 0.3679)
.

(a) Write the discrete-time system equations in state-space form.
(b) Design a state feedback gain that yields αc(z) = z3.
(c) Design a state estimator with αe(z) = z3.
(d) Plot the root locus of the system with respect to the plant gain.
(e) Plot the step response of the system.

W8.4 Consider the linear equation Ax = b, where A is an n× n matrix. When
b is given, one way of solving for x is to use the discrete-time recursion

x(k+ 1) = (I+ cA)x(k)− cb,

where c is a scalar to be chosen.

(a) Show that the solution of Ax = b is the equilibrium point x∗ of
the discrete-time system. An equilibrium point x∗ of a discrete-time
system x(k+ 1) = f(x(k)) satisfies the relation x∗ = f(x∗).

(b) Consider the error e(k) = x(k) − x∗. Write the linear equation that
relates the error e(k + 1) to e(k).

(c) Suppose |1 + cλi(A)| < 1, i = 1, . . . , n, where λi(A) denotes the ith
eigenvalue of A. Show that, starting from any initial guess x0, the
algorithm converges to x∗. [Hint: For any matrix B, λi(I + B) =
1+ λi(B).]

W8.5 The open-loop plant of a unity feedback system has the transfer function

G(s) = 1
s(s+ 2)

.

Determine the transfer function of the equivalent digital plant using a
sampling period of T = 1 sec, and design a proportional controller for
the discrete-time system that yields dominant closed-loop poles with a
damping ratio ζ of 0.7.

W8.6 Write a computer program to compute � and � from A, B, and the sam-
ple period T . It is okay to use Matlab, but don’t use c2d. Write code in
Matlab to compute the discrete matrices using the relations developed in
this chapter. Use your program to compute � and � when

(a)

A =
[ −1 0

0 −2

]
, B =

[
1
1

]
, T = 0.2 sec,

(b)

A =
[ −3 −2

1 0

]
, B =

[
1
0

]
, T = 0.2sec.
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W8.7 Consider the following discrete-time system in state-space form:[
x1(k+ 1)
x2(k+ 1)

]
=
[

0 1
0 −1

] [
x1(k)
x2(k)

]
+
[

0
10

]
u(k).

Use state feedback to relocate all of the system’s poles to 0.5.

W8.8 Let

� =
[

1 T
0 1

]
and � =

[
T2/2

T

]
.

(a) Find a transformation matrix T so, if x = Tw, the state equations
for w will be in control canonical form.

(b) Compute the gain Kw so, if u = −Kww, the characteristic equation
will be αc(z) = z2 − 1.6z+ 0.7.

(c) Use T from part (a) to compute Kx, which is the feedback gain
required by the state equations in x to achieve the desired charac-
teristic polynomial.

W8.9 Consider a system whose plant transfer function is 1/s2 and has a
piecewise constant input of the form

u(t) = u(kT), kT ≤ t < (k+ 1)T .

(a) Show, if we restrict attention to the time instants kT , k = 0, 1, 2, . . .,
the resulting sampled-data system can be described by the equations

[
x1(k+ 1)
x2(k+ 1)

]
=
[

1 0
T 1

] [
x1(k)
x2(k)

]
+
[

T
T2/2

]
u(k).

y(k) = [0 1][x1(k) x2(k)]
T .

(b) Design a second-order estimator that will always drive the error in
the estimate of the initial state vector to zero in time 2T or less.

(c) Is it possible to estimate the initial state exactly with a first-order
estimator? Justify your answer.

W8.10 In this problem, you will show how to compute � by changing states so
that the system matrix is diagonal.

(a) Using an infinite series expansion, compute eAT for

A =
[ −1 0

0 −2

]
.

(b) Show if A = TAT−1 for some nonsingular transformation matrix T,
then

eAT = TeAT T−1.

(c) Show if

A =
[ −3 1
−2 0

]
,

there exists a T such that TAT−1 = A. (Hint: Write TA = AT,
assume four unknowns for the elements of T, and solve. Next show
that the columns of T are the eigenvectors of A.)

(d) Compute eAT .
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